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ABSTRACT 

Enterprise APIs in distributed Java environments face unprecedented cybersecurity 

challenges as microservice architectures expand attack surfaces beyond traditional 

perimeter defenses. Conventional intrusion detection systems (IDS) fail to address API-

specific threats such as authentication bypass, request manipulation, and behavioral 

anomalies in real-time distributed systems. This paper presents a novel AI-driven 

intrusion detection framework specifically designed for Spring Boot-based 

microservices using unsupervised learning algorithms and distributed tracing 

correlation. The proposed system integrates autoencoder neural networks with API 

gateway telemetry, achieving 92% detection accuracy with minimal latency overhead 

of less than 10ms per request. Through comprehensive evaluation across financial and 

insurance platforms, our solution demonstrates superior performance in detecting 

sophisticated API-level attacks including token abuse, privilege escalation, and 

distributed denial-of-service patterns. The framework leverages Zipkin for distributed 

tracing, Logstash for event aggregation, and a custom Spring Boot interceptor pattern 

for real-time threat mitigation. Results indicate significant improvements in proactive 
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threat detection while maintaining enterprise-grade scalability and operational 

efficiency. 

Keywords: API Security, Intrusion Detection Systems, Microservices Architecture, 
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I. Introduction 

The exponential adoption of microservice architectures has fundamentally transformed 

enterprise application development, with APIs serving as the primary communication 

mechanism between distributed components. Modern enterprise systems process millions of 

API requests daily, creating complex interaction patterns that traditional security tools struggle 

to monitor effectively. Unlike monolithic applications where security boundaries are clearly 

defined, microservice architectures introduce numerous internal communication channels, each 

representing potential attack vectors that bypass conventional perimeter defenses. 

Contemporary cybersecurity threats targeting APIs have evolved beyond simple 

injection attacks to sophisticated behavioral manipulation, authentication token abuse, and 

privilege escalation schemes that exploit the distributed nature of modern systems. Traditional 

intrusion detection systems, designed for network-level monitoring, lack the contextual 

awareness necessary to understand API-specific attack patterns, request-response correlations, 

and the temporal relationships between distributed service calls. This gap in security coverage 

has led to numerous high-profile breaches where attackers successfully compromised systems 

through API vulnerabilities that went undetected by existing security infrastructure. 

The emergence of cloud-native architectures and containerized deployments has further 

complicated the security landscape, as traditional IDS solutions cannot adapt to the dynamic, 

ephemeral nature of modern distributed systems. Legacy security tools rely on static 

configurations and predefined attack signatures, making them ineffective against zero-day 

exploits and adaptive attack methodologies that continuously evolve to bypass detection 

mechanisms. Additionally, the performance overhead introduced by conventional IDS 
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solutions often renders them unsuitable for high-throughput API environments where 

millisecond latencies can significantly impact user experience and business operations. 

This research addresses these critical gaps by proposing an AI-driven intrusion 

detection framework specifically engineered for distributed Java environments running Spring 

Boot microservices. Our approach leverages unsupervised machine learning algorithms to 

establish baseline behavioral patterns for API interactions, enabling the detection of anomalous 

activities without relying on predefined attack signatures. The system integrates seamlessly 

with existing microservice infrastructure through distributed tracing correlation, providing 

comprehensive visibility into API request flows while maintaining minimal performance 

impact. 

The contributions of this paper include: (1) a novel autoencoder-based anomaly 

detection algorithm optimized for API traffic patterns, (2) a distributed correlation framework 

that analyzes cross-service request patterns for sophisticated attack detection, (3) an enterprise-

ready implementation strategy using Spring Boot interceptors and cloud-native deployment 

patterns, and (4) comprehensive evaluation results demonstrating superior detection accuracy 

and minimal performance overhead compared to existing solutions. 

 

II. METHODOLOGY 

1. System Architecture Design 

1.1 API Gateway Integration 

The proposed intrusion detection system integrates with enterprise API gateways to 

provide comprehensive traffic analysis and threat detection capabilities. The architecture 

leverages Kong API Gateway with OAuth2 authentication and Keycloak identity management 

for centralized token validation and access control. All incoming API requests are intercepted 

at the gateway level, where initial security checks are performed before routing to downstream 

microservices. The gateway maintains detailed request logs including authentication tokens, 

request payloads, response codes, and timing information, which serve as primary data sources 

for anomaly detection algorithms. 

1.2 Distributed Tracing Framework 

Zipkin distributed tracing provides end-to-end visibility into API request flows across 

multiple microservices, enabling correlation of related service calls and identification of 

suspicious interaction patterns. Each API request generates a unique trace ID that follows the 
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request through its entire lifecycle, capturing service-to-service communication patterns, 

response times, and error conditions. This distributed tracing data is essential for detecting 

sophisticated attacks that span multiple services, such as privilege escalation attempts or 

coordinated reconnaissance activities. 

1.3 Event Aggregation and Processing 

Logstash serves as the central event processing engine, collecting logs from API 

gateways, microservices, and distributed tracing systems. The aggregation framework 

normalizes data from multiple sources, extracts relevant features for machine learning analysis, 

and forwards processed events to Elasticsearch for storage and indexing. Real-time stream 

processing capabilities enable immediate threat detection and response, while historical data 

retention supports long-term trend analysis and model retraining. 

2. Machine Learning Engine 

2.1 Autoencoder Neural Network Architecture 

The core anomaly detection capability is implemented using a deep autoencoder neural 

network specifically designed for API traffic pattern analysis. The network architecture consists 

of an encoder that compresses API request features into a lower-dimensional representation, 

followed by a decoder that reconstructs the original input. Normal API traffic patterns are 

learned during training, and anomalies are detected by measuring reconstruction error between 

input and output. The autoencoder processes features including request frequency, payload size, 

response time, authentication patterns, and service interaction sequences. 

2.2 Feature Engineering and Extraction 

API request data is transformed into numerical features suitable for machine learning 

analysis through a comprehensive feature engineering pipeline. Temporal features capture 

request timing patterns, frequency distributions, and seasonal variations. Behavioral features 

analyze user interaction patterns, service usage sequences, and authentication token 

characteristics. Structural features examine request payload formats, parameter distributions, 

and response code patterns. This multi-dimensional feature space enables the detection of 

subtle anomalies that might be missed by single-metric analysis. 

2.3 Real-Time Anomaly Scoring 

The trained autoencoder model generates anomaly scores for incoming API requests in 

real-time, with scores representing the likelihood that a request deviates from learned normal 

patterns. Dynamic thresholding algorithms automatically adjust detection sensitivity based on 

system load, time of day, and historical false positive rates. Anomaly scores are combined with 
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contextual information from distributed tracing to provide comprehensive threat assessment 

and prioritization. 

3. Integration with Spring Boot Microservices 

3.1 Interceptor Pattern Implementation 

Custom Spring Boot interceptors are deployed within each microservice to capture 

detailed request and response information without modifying application business logic. The 

interceptor pattern provides a non-intrusive method for collecting security-relevant data while 

maintaining separation of concerns between security monitoring and application functionality. 

Interceptors capture authentication details, request parameters, response characteristics, and 

timing information, forwarding this data to the central anomaly detection system. 

3.2 Reactive Security Response 

Upon detecting anomalous API behavior, the system triggers automated response 

mechanisms including request blocking, rate limiting, and alert generation. Spring Boot's 

reactive programming model enables non-blocking security responses that maintain system 

performance while implementing protective measures. The response framework supports 

configurable actions ranging from logging and monitoring to active request termination based 

on threat severity levels. 

4. Deployment and Orchestration 

4.1 Containerized Deployment Strategy 

The entire intrusion detection system is containerized using Docker for consistent 

deployment across diverse enterprise environments. Kubernetes orchestration manages system 

scaling, fault tolerance, and resource allocation, ensuring high availability and performance 

under varying load conditions. The containerized approach enables seamless integration with 

existing microservice infrastructure and supports rapid deployment updates without service 

interruption. 

4.2 Monitoring and Observability 

Prometheus metrics collection provides comprehensive visibility into system 

performance, detection accuracy, and operational health. Custom metrics track anomaly 

detection rates, false positive percentages, response times, and resource utilization. Grafana 

dashboards present real-time security metrics and trends, enabling security teams to monitor 

system effectiveness and tune detection parameters as needed. 
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III. TOOLS & TECHNOLOGIES 

1. API Gateway and Authentication 

Enterprise API gateway solutions provide the foundation for centralized security policy 

enforcement and traffic management in distributed microservice architectures. Kong API 

Gateway serves as the primary ingress point for all API traffic, offering advanced features 

including rate limiting, request transformation, and plugin extensibility. The gateway integrates 

with OAuth2 authentication flows and Keycloak identity management systems to provide 

robust access control and token validation capabilities. Kong's plugin architecture enables 

custom security extensions and seamless integration with the proposed intrusion detection 

system. Advanced routing capabilities support canary deployments, blue-green deployments, 

and gradual rollouts of security policies. The gateway maintains comprehensive audit logs of 

all API interactions, providing essential data for security analysis and compliance reporting. 

Integration with service mesh technologies like Istio enables additional security features 

including mutual TLS authentication and fine-grained traffic policies. 

Keycloak identity and access management provides centralized authentication and 

authorization services for distributed microservice environments. It supports multiple 

authentication protocols including OAuth2, OpenID Connect, and SAML, enabling integration 

with existing enterprise identity systems. Keycloak's role-based access control (RBAC) 

framework allows fine-grained permission management for API resources, while its session 

management capabilities support single sign-on (SSO) across multiple applications. The 

platform's extensive audit logging and user activity tracking provide valuable data for security 

monitoring and compliance reporting. 
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2. Distributed Tracing and Observability 

Distributed tracing solutions provide comprehensive visibility into API request flows 

across complex microservice architectures, enabling correlation of related service calls and 

identification of performance bottlenecks. Zipkin distributed tracing captures detailed timing 

information for each service interaction, creating a complete picture of request processing paths 

through distributed systems. The tracing framework automatically instruments Spring Boot 

applications to collect span data without requiring code modifications. Zipkin's web-based 
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interface enables interactive exploration of trace data, helping security analysts understand 

complex attack patterns that span multiple services. The system supports sampling strategies 

to manage data volume while maintaining sufficient coverage for security analysis. Integration 

with alerting systems enables automated detection of suspicious tracing patterns and 

performance anomalies. 

Jaeger provides an alternative distributed tracing solution with advanced features 

including adaptive sampling, service dependency analysis, and deep integration with 

Kubernetes environments. Its architecture supports high-throughput tracing data collection 

with minimal performance impact on monitored applications. Jaeger's query interface enables 

sophisticated analysis of trace data, supporting complex searches and aggregations for security 

investigation purposes. 

3. Data Processing and Storage 

Elasticsearch serves as the primary data storage and search platform for the intrusion 

detection system, providing scalable indexing and querying capabilities for large volumes of 

API log data. Its distributed architecture supports horizontal scaling to accommodate growing 

data volumes and query loads. Elasticsearch's advanced search capabilities enable complex 

security queries, pattern analysis, and real-time alerting based on log data. The platform's 

machine learning features provide additional anomaly detection capabilities that complement 

the custom autoencoder models. Integration with Kibana provides powerful visualization and 

dashboard capabilities for security monitoring and analysis. 

Logstash functions as the central log processing engine, collecting data from multiple 

sources including API gateways, microservices, and distributed tracing systems. Its flexible 

input and output plugins support integration with diverse data sources and destinations. 

Logstash's filtering capabilities enable real-time data transformation, enrichment, and 

normalization before storage in Elasticsearch. The platform's parsing capabilities extract 

structured data from unstructured log entries, making them suitable for machine learning 

analysis. 

4. Machine Learning and Analytics 

TensorFlow provides the machine learning framework for implementing the 

autoencoder neural network architecture used for anomaly detection. Its distributed training 

capabilities support large-scale model development using historical API traffic data. 

TensorFlow Serving enables scalable model deployment for real-time inference in production 

environments. The framework's extensive ecosystem includes pre-built components for 

common machine learning tasks and integration with popular data processing tools. 
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TensorFlow's model optimization features reduce inference latency and resource requirements 

for real-time anomaly detection. 

Scikit-learn offers additional machine learning algorithms for feature engineering, 

preprocessing, and ensemble methods that complement the deep learning approaches. Its 

comprehensive collection of unsupervised learning algorithms provides alternatives to neural 

network-based anomaly detection. The library's preprocessing utilities support data 

normalization, feature selection, and dimensionality reduction tasks essential for effective 

machine learning on API data. 

5. Containerization and Orchestration 

Docker containerization enables consistent deployment of the intrusion detection 

system across diverse enterprise environments, encapsulating all dependencies and 

configuration requirements. Container images ensure reproducible deployments and simplify 

system maintenance and updates. Docker's networking capabilities support secure 

communication between system components while maintaining isolation from other 

applications. The containerized approach enables rapid scaling of system components based on 

load requirements and provides fault isolation to prevent system-wide failures. 

Kubernetes orchestration manages the deployment, scaling, and operation of 

containerized system components. Its declarative configuration model ensures consistent 

system state across different environments. Kubernetes' service discovery and load balancing 

capabilities enable seamless communication between system components. The platform's 

rolling update capabilities support zero-downtime deployments of system updates and security 

patches. Kubernetes' resource management features ensure optimal resource allocation and 

prevent resource contention between system components. 

 

IV. TECHNICAL IMPLEMENTATION 

1. Kubernetes Cluster Deployment 

1.1 Multi-Node Cluster Architecture 

The intrusion detection system is deployed on a highly available Kubernetes cluster 

consisting of multiple master nodes and worker nodes distributed across availability zones. The 

cluster utilizes AWS EKS managed service to provide enterprise-grade reliability, security, and 

scalability. Master nodes are configured with etcd clustering for distributed configuration 

management and leader election. Worker nodes are deployed with mixed instance types 
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optimized for different workload characteristics, including CPU-intensive machine learning 

tasks and memory-intensive data processing operations. 

1.2 Network Security and Service Mesh 

A comprehensive networking strategy implements Calico CNI for network policy 

enforcement and micro-segmentation between application components. Istio service mesh 

provides additional security features including mutual TLS authentication, traffic encryption, 

and fine-grained access control policies. Network policies restrict inter-pod communication to 

only necessary service interactions, implementing a zero-trust networking model. Load 

balancers are configured with SSL termination and DDoS protection to safeguard against 

network-level attacks. 

1.3 Resource Management and Autoscaling 

Kubernetes resource quotas and limits ensure fair resource allocation and prevent 

resource exhaustion attacks. Horizontal Pod Autoscaler (HPA) automatically scales application 

pods based on CPU utilization and custom metrics including anomaly detection processing 

queues. Vertical Pod Autoscaler (VPA) optimizes resource requests and limits based on 

historical usage patterns. Cluster Autoscaler manages worker node scaling to accommodate 

changing workload demands while maintaining cost efficiency. 

2. Spring Boot Microservices Configuration 

2.1 Security Interceptor Implementation 

Custom security interceptors are implemented using Spring Boot's HandlerInterceptor 

interface to capture detailed request and response information for security analysis. The 

interceptors collect authentication details, request headers, payload characteristics, and timing 

information without impacting application performance. Asynchronous processing ensures that 

security data collection does not block request processing paths. The interceptor pattern 

supports configurable data collection policies and sampling rates to manage data volume and 

processing overhead. 
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Java Code:  

 

 

 

2.2 Distributed Tracing Integration 

Spring Cloud Sleuth automatically instruments Spring Boot applications to generate 

distributed tracing data compatible with Zipkin. Trace context propagation ensures that related 

service calls are properly correlated across the entire request processing pipeline. Custom span 

annotations provide security-relevant metadata including authentication status, authorization 

decisions, and security policy evaluations. Sampling configuration balances data collection 

requirements with performance considerations. 

2.3 Reactive Security Responses 

Spring WebFlux reactive programming model enables non-blocking security response 

implementations that maintain application performance while enforcing security policies. 

Circuit breaker patterns protect against cascading failures when security systems are 

unavailable. Reactive streams support backpressure handling to prevent system overload during 
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high-volume security events. Integration with Spring Security provides seamless authentication 

and authorization enforcement based on anomaly detection results. 

3. Machine Learning Pipeline Implementation 

3.1 Data Preprocessing and Feature Engineering 

The machine learning pipeline implements comprehensive data preprocessing to 

transform raw API logs into numerical features suitable for anomaly detection. Time-series 

features capture temporal patterns including request frequency, inter-arrival times, and periodic 

variations. Statistical features analyze payload size distributions, response time characteristics, 

and error rate patterns. Categorical encoding transforms authentication methods, user roles, and 

API endpoints into numerical representations. Feature scaling and normalization ensure 

consistent input ranges for neural network training. 

3.2 Autoencoder Model Architecture 

The autoencoder neural network is implemented using TensorFlow with a carefully 

designed architecture optimized for API traffic anomaly detection. The encoder consists of 

densely connected layers with progressively reduced dimensions, compressing input features 

into a low-dimensional latent space. The decoder mirrors the encoder structure, reconstructing 

the original input from the compressed representation. Regularization techniques including 

dropout and batch normalization prevent overfitting and improve generalization performance. 
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Python Code: 

 

 

 

3.3 Real-Time Inference and Scoring 

The trained autoencoder model is deployed using TensorFlow Serving for high-

performance real-time inference. Model serving infrastructure supports horizontal scaling to 

handle varying inference loads. Reconstruction error calculation provides anomaly scores that 

are normalized and calibrated based on historical data distributions. Dynamic thresholding 

algorithms adjust detection sensitivity based on system conditions and false positive feedback. 
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4. Security and Compliance Implementation 

4.1 Identity and Access Management 

Comprehensive identity and access management integrates with enterprise 

authentication systems including Active Directory and LDAP. Role-based access control 

(RBAC) policies define granular permissions for system components and administrative 

functions. Service account management ensures secure inter-service communication with 

minimal privilege principles. Token-based authentication supports API access with 

configurable expiration and refresh policies. 

4.2 Data Protection and Privacy 

All data in transit is encrypted using TLS 1.3 with perfect forward secrecy. Data at rest 

encryption utilizes AES-256 encryption with hardware security module (HSM) key 

management. Privacy-preserving techniques including data anonymization and 

pseudonymization protect sensitive information in log data. Compliance with regulations 
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including GDPR, CCPA, and industry-specific standards is ensured through automated policy 

enforcement and audit trails. 

4.3 Audit Logging and Compliance 

Comprehensive audit logging captures all system activities including user access, 

configuration changes, and security decisions. Tamper-evident logging ensures audit trail 

integrity and supports forensic analysis. Automated compliance reporting generates reports for 

regulatory requirements and security assessments. Log retention policies balance compliance 

requirements with storage costs and performance considerations. 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

1. Detection Accuracy Analysis 

The proposed AI-driven intrusion detection system was evaluated using a 

comprehensive dataset of API traffic collected from production enterprise environments over 

a six-month period. The evaluation methodology included synthetic attack injection to test 

detection capabilities against known threat patterns. The autoencoder model demonstrated 

superior performance in detecting various types of API-level attacks including authentication 

bypass attempts, privilege escalation, and distributed denial-of-service patterns. 

 

Table 1: Attack Detection Performance Metrics 

 

Attack Type Detection Rate 

(%) 

False Positive Rate 

(%) 

Response Time 

(ms) 

Authentication Bypass 94.2 2.1 8.3 

Privilege Escalation 91.7 3.4 9.1 

Token Abuse 96.5 1.8 7.2 

API Rate Limiting 

Bypass 

89.3 4.2 10.5 

Data Exfiltration 93.8 2.9 8.7 

Overall Average 92.1 2.9 8.8 

 

The detection accuracy results demonstrate the effectiveness of the autoencoder-based 

approach in identifying subtle anomalies in API traffic patterns. Token abuse attacks showed 

the highest detection rate due to clear deviations from normal authentication patterns. API rate 
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limiting bypass attempts proved most challenging to detect, as they often mimic legitimate burst 

traffic patterns. The consistently low false positive rates across all attack types validate the 

system's suitability for production deployment where excessive false alarms can impact 

operational efficiency. 

2. Performance Impact Assessment 

System performance evaluation focused on measuring the overhead introduced by the 

intrusion detection system on normal API processing workflows. The assessment included 

latency measurements, throughput analysis, and resource utilization monitoring across different 

load conditions. Results demonstrate minimal performance impact while maintaining high 

detection accuracy. 

 

Table 2: Performance Impact Analysis 

 

System Load Baseline 

Latency (ms) 

IDS Latency 

(ms) 

Overhead 

(%) 

Throughput 

Impact (%) 

Low (< 100 RPS) 45.2 52.8 16.8 2.1 

Medium (100-500 

RPS) 

62.1 71.3 14.8 3.4 

High (500-1000 

RPS) 

78.9 87.2 10.5 4.2 

Peak (> 1000 

RPS) 

95.4 104.1 9.1 5.8 

Average 70.4 78.9 12.8 3.9 

 

The performance analysis reveals that the intrusion detection system introduces 

minimal overhead to API processing pipelines, with average latency increases of less than 13%. 

The overhead percentage decreases at higher load levels due to more efficient resource 

utilization and batch processing optimizations. Throughput impact remains below 6% even 

under peak load conditions, validating the system's scalability for high-volume enterprise 

environments. 

3. Cost-Benefit Analysis 

Economic evaluation of the intrusion detection system considers both implementation 

costs and potential savings from prevented security incidents. The analysis includes 

infrastructure costs, operational expenses, and estimated losses from security breaches based 

on industry benchmarks. 



Proactive Cybersecurity for Enterprise Apis: Leveraging AI-Driven Intrusion Detection Systems in Distributed 

Java Environments 

https://iaeme.com/Home/journal/IJRCAIT   50 editor@iaeme.com 

Table 3: Cost-Benefit Comparison Analysis 

 

Cost Category Traditional IDS ($) AI-Driven IDS ($) Savings (%) 

Infrastructure Setup 150,000 95,000 36.7 

Annual Operational 200,000 145,000 27.5 

Security Personnel 300,000 180,000 40.0 

Incident Response 500,000 125,000 75.0 

Compliance Auditing 75,000 45,000 40.0 

Total Annual Cost 1,225,000 590,000 51.8 

 

The cost-benefit analysis demonstrates significant economic advantages of the AI-

driven approach over traditional intrusion detection systems. The largest savings come from 

reduced incident response costs due to proactive threat detection and automated response 

capabilities. Lower security personnel requirements result from automated threat analysis and 

reduced false positive rates that minimize manual investigation overhead. Infrastructure cost 

savings are achieved through cloud-native deployment and efficient resource utilization. 

4. Scalability and Reliability Assessment 

The system's scalability was evaluated by progressively increasing the number of 

monitored microservices and API endpoints while measuring performance degradation and 

resource requirements. Reliability testing included fault injection scenarios and disaster 

recovery validation to ensure enterprise-grade availability. 

The autoscaling capabilities demonstrated linear scalability up to 10,000 concurrent 

API endpoints with minimal performance degradation. Kubernetes orchestration successfully 

managed resource allocation and failover scenarios, maintaining 99.9% system availability 

during the evaluation period. The distributed architecture prevented single points of failure and 

supported seamless scaling across multiple availability zones. 

 

VI. CONCLUSION 

This research presents a comprehensive AI-driven intrusion detection framework 

specifically designed for distributed Java environments running Spring Boot microservices. 

The proposed system addresses critical gaps in existing security solutions by providing API-
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specific threat detection capabilities with minimal performance overhead. Through extensive 

evaluation across enterprise environments, our solution demonstrates superior detection 

accuracy of 92.1% while maintaining average response times below 10 milliseconds per 

request. 

The integration of autoencoder neural networks with distributed tracing correlation 

enables detection of sophisticated attack patterns that span multiple services, providing 

unprecedented visibility into API-level threats. The system's cloud-native architecture ensures 

scalability and reliability while supporting seamless integration with existing microservice 

infrastructure. Cost-benefit analysis reveals significant economic advantages over traditional 

intrusion detection systems, with total cost reductions exceeding 50% through automation and 

improved operational efficiency. 

The experimental results validate the effectiveness of unsupervised learning approaches 

for API anomaly detection, demonstrating consistent performance across diverse attack 

scenarios including authentication bypass, privilege escalation, and data exfiltration attempts. 

The low false positive rates of 2.9% make the system suitable for production deployment 

without overwhelming security teams with unnecessary alerts. 

Future research directions include exploration of federated learning approaches for 

distributed model training across multiple enterprise environments, integration of graph neural 

networks for enhanced relationship analysis between API interactions, and development of 

automated response capabilities that can adapt to emerging threat patterns. Additionally, 

investigation into edge deployment scenarios and hybrid cloud architectures will expand the 

system's applicability to diverse enterprise environments. 

The proposed framework establishes a foundation for next-generation API security 

solutions that leverage artificial intelligence to provide proactive threat detection and response 

capabilities in modern distributed systems. As enterprise architectures continue evolving 

toward microservice-based designs, this research provides essential insights for maintaining 

security posture while enabling digital transformation initiatives. 
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