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ABSTRACT

Enterprise APIs in distributed Java environments face unprecedented cybersecurity
challenges as microservice architectures expand attack surfaces beyond traditional
perimeter defenses. Conventional intrusion detection systems (IDS) fail to address API-
specific threats such as authentication bypass, request manipulation, and behavioral
anomalies in real-time distributed systems. This paper presents a novel Al-driven
intrusion detection framework specifically designed for Spring Boot-based
microservices using unsupervised learning algorithms and distributed tracing
correlation. The proposed system integrates autoencoder neural networks with API
gateway telemetry, achieving 92% detection accuracy with minimal latency overhead
of less than 10ms per request. Through comprehensive evaluation across financial and
insurance platforms, our solution demonstrates superior performance in detecting
sophisticated API-level attacks including token abuse, privilege escalation, and
distributed denial-of-service patterns. The framework leverages Zipkin for distributed
tracing, Logstash for event aggregation, and a custom Spring Boot interceptor pattern

for real-time threat mitigation. Results indicate significant improvements in proactive
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threat detection while maintaining enterprise-grade scalability and operational
efficiency.
Keywords: API Security, Intrusion Detection Systems, Microservices Architecture,

Machine Learning, Distributed Systems, Spring Boot, Cybersecurity
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1. Introduction

The exponential adoption of microservice architectures has fundamentally transformed
enterprise application development, with APIs serving as the primary communication
mechanism between distributed components. Modern enterprise systems process millions of
API requests daily, creating complex interaction patterns that traditional security tools struggle
to monitor effectively. Unlike monolithic applications where security boundaries are clearly
defined, microservice architectures introduce numerous internal communication channels, each
representing potential attack vectors that bypass conventional perimeter defenses.

Contemporary cybersecurity threats targeting APIs have evolved beyond simple
injection attacks to sophisticated behavioral manipulation, authentication token abuse, and
privilege escalation schemes that exploit the distributed nature of modern systems. Traditional
intrusion detection systems, designed for network-level monitoring, lack the contextual
awareness necessary to understand API-specific attack patterns, request-response correlations,
and the temporal relationships between distributed service calls. This gap in security coverage
has led to numerous high-profile breaches where attackers successfully compromised systems
through API vulnerabilities that went undetected by existing security infrastructure.

The emergence of cloud-native architectures and containerized deployments has further
complicated the security landscape, as traditional IDS solutions cannot adapt to the dynamic,
ephemeral nature of modern distributed systems. Legacy security tools rely on static
configurations and predefined attack signatures, making them ineffective against zero-day
exploits and adaptive attack methodologies that continuously evolve to bypass detection

mechanisms. Additionally, the performance overhead introduced by conventional IDS
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solutions often renders them unsuitable for high-throughput API environments where
millisecond latencies can significantly impact user experience and business operations.

This research addresses these critical gaps by proposing an Al-driven intrusion
detection framework specifically engineered for distributed Java environments running Spring
Boot microservices. Our approach leverages unsupervised machine learning algorithms to
establish baseline behavioral patterns for API interactions, enabling the detection of anomalous
activities without relying on predefined attack signatures. The system integrates seamlessly
with existing microservice infrastructure through distributed tracing correlation, providing
comprehensive visibility into API request flows while maintaining minimal performance
impact.

The contributions of this paper include: (1) a novel autoencoder-based anomaly
detection algorithm optimized for API traffic patterns, (2) a distributed correlation framework
that analyzes cross-service request patterns for sophisticated attack detection, (3) an enterprise-
ready implementation strategy using Spring Boot interceptors and cloud-native deployment
patterns, and (4) comprehensive evaluation results demonstrating superior detection accuracy

and minimal performance overhead compared to existing solutions.

II. METHODOLOGY

1. System Architecture Design
1.1 API Gateway Integration

The proposed intrusion detection system integrates with enterprise API gateways to
provide comprehensive traffic analysis and threat detection capabilities. The architecture
leverages Kong API Gateway with OAuth2 authentication and Keycloak identity management
for centralized token validation and access control. All incoming API requests are intercepted
at the gateway level, where initial security checks are performed before routing to downstream
microservices. The gateway maintains detailed request logs including authentication tokens,
request payloads, response codes, and timing information, which serve as primary data sources
for anomaly detection algorithms.
1.2 Distributed Tracing Framework

Zipkin distributed tracing provides end-to-end visibility into API request flows across
multiple microservices, enabling correlation of related service calls and identification of

suspicious interaction patterns. Each API request generates a unique trace ID that follows the
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request through its entire lifecycle, capturing service-to-service communication patterns,
response times, and error conditions. This distributed tracing data is essential for detecting
sophisticated attacks that span multiple services, such as privilege escalation attempts or
coordinated reconnaissance activities.
1.3 Event Aggregation and Processing

Logstash serves as the central event processing engine, collecting logs from API
gateways, microservices, and distributed tracing systems. The aggregation framework
normalizes data from multiple sources, extracts relevant features for machine learning analysis,
and forwards processed events to Elasticsearch for storage and indexing. Real-time stream
processing capabilities enable immediate threat detection and response, while historical data
retention supports long-term trend analysis and model retraining.
2. Machine Learning Engine
2.1 Autoencoder Neural Network Architecture

The core anomaly detection capability is implemented using a deep autoencoder neural
network specifically designed for API traffic pattern analysis. The network architecture consists
of an encoder that compresses API request features into a lower-dimensional representation,
followed by a decoder that reconstructs the original input. Normal API traffic patterns are
learned during training, and anomalies are detected by measuring reconstruction error between
input and output. The autoencoder processes features including request frequency, payload size,
response time, authentication patterns, and service interaction sequences.
2.2 Feature Engineering and Extraction

API request data is transformed into numerical features suitable for machine learning
analysis through a comprehensive feature engineering pipeline. Temporal features capture
request timing patterns, frequency distributions, and seasonal variations. Behavioral features
analyze user interaction patterns, service usage sequences, and authentication token
characteristics. Structural features examine request payload formats, parameter distributions,
and response code patterns. This multi-dimensional feature space enables the detection of
subtle anomalies that might be missed by single-metric analysis.
2.3 Real-Time Anomaly Scoring

The trained autoencoder model generates anomaly scores for incoming API requests in
real-time, with scores representing the likelihood that a request deviates from learned normal
patterns. Dynamic thresholding algorithms automatically adjust detection sensitivity based on

system load, time of day, and historical false positive rates. Anomaly scores are combined with
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contextual information from distributed tracing to provide comprehensive threat assessment
and prioritization.
3. Integration with Spring Boot Microservices
3.1 Interceptor Pattern Implementation

Custom Spring Boot interceptors are deployed within each microservice to capture
detailed request and response information without modifying application business logic. The
interceptor pattern provides a non-intrusive method for collecting security-relevant data while
maintaining separation of concerns between security monitoring and application functionality.
Interceptors capture authentication details, request parameters, response characteristics, and
timing information, forwarding this data to the central anomaly detection system.
3.2 Reactive Security Response

Upon detecting anomalous API behavior, the system triggers automated response
mechanisms including request blocking, rate limiting, and alert generation. Spring Boot's
reactive programming model enables non-blocking security responses that maintain system
performance while implementing protective measures. The response framework supports
configurable actions ranging from logging and monitoring to active request termination based
on threat severity levels.
4. Deployment and Orchestration
4.1 Containerized Deployment Strategy

The entire intrusion detection system is containerized using Docker for consistent
deployment across diverse enterprise environments. Kubernetes orchestration manages system
scaling, fault tolerance, and resource allocation, ensuring high availability and performance
under varying load conditions. The containerized approach enables seamless integration with
existing microservice infrastructure and supports rapid deployment updates without service
interruption.
4.2 Monitoring and Observability

Prometheus metrics collection provides comprehensive visibility into system
performance, detection accuracy, and operational health. Custom metrics track anomaly
detection rates, false positive percentages, response times, and resource utilization. Grafana
dashboards present real-time security metrics and trends, enabling security teams to monitor

system effectiveness and tune detection parameters as needed.
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III. TOOLS & TECHNOLOGIES

1. API Gateway and Authentication

Enterprise API gateway solutions provide the foundation for centralized security policy
enforcement and traffic management in distributed microservice architectures. Kong API
Gateway serves as the primary ingress point for all API traffic, offering advanced features
including rate limiting, request transformation, and plugin extensibility. The gateway integrates
with OAuth2 authentication flows and Keycloak identity management systems to provide
robust access control and token validation capabilities. Kong's plugin architecture enables
custom security extensions and seamless integration with the proposed intrusion detection
system. Advanced routing capabilities support canary deployments, blue-green deployments,
and gradual rollouts of security policies. The gateway maintains comprehensive audit logs of
all API interactions, providing essential data for security analysis and compliance reporting.
Integration with service mesh technologies like Istio enables additional security features
including mutual TLS authentication and fine-grained traffic policies.

Keycloak identity and access management provides centralized authentication and
authorization services for distributed microservice environments. It supports multiple
authentication protocols including OAuth2, OpenID Connect, and SAML, enabling integration
with existing enterprise identity systems. Keycloak's role-based access control (RBAC)
framework allows fine-grained permission management for API resources, while its session
management capabilities support single sign-on (SSO) across multiple applications. The
platform's extensive audit logging and user activity tracking provide valuable data for security

monitoring and compliance reporting.
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2. Distributed Tracing and Observability

Distributed tracing solutions provide comprehensive visibility into API request flows
across complex microservice architectures, enabling correlation of related service calls and
identification of performance bottlenecks. Zipkin distributed tracing captures detailed timing
information for each service interaction, creating a complete picture of request processing paths
through distributed systems. The tracing framework automatically instruments Spring Boot

applications to collect span data without requiring code modifications. Zipkin's web-based

https://iaeme.com/Home/journal/IJRCAIT @ editor@iaeme.com



Sandeep Kamadi

interface enables interactive exploration of trace data, helping security analysts understand
complex attack patterns that span multiple services. The system supports sampling strategies
to manage data volume while maintaining sufficient coverage for security analysis. Integration
with alerting systems enables automated detection of suspicious tracing patterns and
performance anomalies.

Jaeger provides an alternative distributed tracing solution with advanced features
including adaptive sampling, service dependency analysis, and deep integration with
Kubernetes environments. Its architecture supports high-throughput tracing data collection
with minimal performance impact on monitored applications. Jaeger's query interface enables
sophisticated analysis of trace data, supporting complex searches and aggregations for security
investigation purposes.

3. Data Processing and Storage

Elasticsearch serves as the primary data storage and search platform for the intrusion
detection system, providing scalable indexing and querying capabilities for large volumes of
API log data. Its distributed architecture supports horizontal scaling to accommodate growing
data volumes and query loads. Elasticsearch's advanced search capabilities enable complex
security queries, pattern analysis, and real-time alerting based on log data. The platform's
machine learning features provide additional anomaly detection capabilities that complement
the custom autoencoder models. Integration with Kibana provides powerful visualization and
dashboard capabilities for security monitoring and analysis.

Logstash functions as the central log processing engine, collecting data from multiple
sources including API gateways, microservices, and distributed tracing systems. Its flexible
input and output plugins support integration with diverse data sources and destinations.
Logstash's filtering capabilities enable real-time data transformation, enrichment, and
normalization before storage in Elasticsearch. The platform's parsing capabilities extract
structured data from unstructured log entries, making them suitable for machine learning
analysis.

4. Machine Learning and Analytics

TensorFlow provides the machine learning framework for implementing the
autoencoder neural network architecture used for anomaly detection. Its distributed training
capabilities support large-scale model development using historical API traffic data.
TensorFlow Serving enables scalable model deployment for real-time inference in production
environments. The framework's extensive ecosystem includes pre-built components for

common machine learning tasks and integration with popular data processing tools.
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TensorFlow's model optimization features reduce inference latency and resource requirements
for real-time anomaly detection.

Scikit-learn offers additional machine learning algorithms for feature engineering,
preprocessing, and ensemble methods that complement the deep learning approaches. Its
comprehensive collection of unsupervised learning algorithms provides alternatives to neural
network-based anomaly detection. The library's preprocessing utilities support data
normalization, feature selection, and dimensionality reduction tasks essential for effective
machine learning on API data.

5. Containerization and Orchestration

Docker containerization enables consistent deployment of the intrusion detection
system across diverse enterprise environments, encapsulating all dependencies and
configuration requirements. Container images ensure reproducible deployments and simplify
system maintenance and updates. Docker's networking capabilities support secure
communication between system components while maintaining isolation from other
applications. The containerized approach enables rapid scaling of system components based on
load requirements and provides fault isolation to prevent system-wide failures.

Kubernetes orchestration manages the deployment, scaling, and operation of
containerized system components. Its declarative configuration model ensures consistent
system state across different environments. Kubernetes' service discovery and load balancing
capabilities enable seamless communication between system components. The platform's
rolling update capabilities support zero-downtime deployments of system updates and security
patches. Kubernetes' resource management features ensure optimal resource allocation and

prevent resource contention between system components.

IV. TECHNICAL IMPLEMENTATION

1. Kubernetes Cluster Deployment
1.1 Multi-Node Cluster Architecture

The intrusion detection system is deployed on a highly available Kubernetes cluster
consisting of multiple master nodes and worker nodes distributed across availability zones. The
cluster utilizes AWS EKS managed service to provide enterprise-grade reliability, security, and
scalability. Master nodes are configured with etcd clustering for distributed configuration

management and leader election. Worker nodes are deployed with mixed instance types
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optimized for different workload characteristics, including CPU-intensive machine learning
tasks and memory-intensive data processing operations.
1.2 Network Security and Service Mesh

A comprehensive networking strategy implements Calico CNI for network policy
enforcement and micro-segmentation between application components. Istio service mesh
provides additional security features including mutual TLS authentication, traffic encryption,
and fine-grained access control policies. Network policies restrict inter-pod communication to
only necessary service interactions, implementing a zero-trust networking model. Load
balancers are configured with SSL termination and DDoS protection to safeguard against
network-level attacks.
1.3 Resource Management and Autoscaling

Kubernetes resource quotas and limits ensure fair resource allocation and prevent
resource exhaustion attacks. Horizontal Pod Autoscaler (HPA) automatically scales application
pods based on CPU utilization and custom metrics including anomaly detection processing
queues. Vertical Pod Autoscaler (VPA) optimizes resource requests and limits based on
historical usage patterns. Cluster Autoscaler manages worker node scaling to accommodate
changing workload demands while maintaining cost efficiency.
2. Spring Boot Microservices Configuration
2.1 Security Interceptor Implementation

Custom security interceptors are implemented using Spring Boot's HandlerInterceptor
interface to capture detailed request and response information for security analysis. The
interceptors collect authentication details, request headers, payload characteristics, and timing
information without impacting application performance. Asynchronous processing ensures that
security data collection does not block request processing paths. The interceptor pattern
supports configurable data collection policies and sampling rates to manage data volume and

processing overhead.
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Java Code:

[@Component
public class SecurityInterceptor implements HandlerInterceptor {

@override
public boolean preHandle(HttpServletRequest request,
HttpServletResponse response,

Object handler) throws Exception {

SecurityEvent event = SecurityEvent.builder()
.requestId(UUID.randomuUuID().toString())
.timestamp(Instant.now())
.requestPath(request.getRequestURI())
.method({request.getMethod())
.userAgent({request.getHeader("User-aAgent™))
.sourceIp(getClientIpaAddress(request))
Lbuild();

securityEventPublisher.publishasync(event);

return true;

2.2 Distributed Tracing Integration

Spring Cloud Sleuth automatically instruments Spring Boot applications to generate
distributed tracing data compatible with Zipkin. Trace context propagation ensures that related
service calls are properly correlated across the entire request processing pipeline. Custom span
annotations provide security-relevant metadata including authentication status, authorization
decisions, and security policy evaluations. Sampling configuration balances data collection
requirements with performance considerations.
2.3 Reactive Security Responses

Spring WebFlux reactive programming model enables non-blocking security response
implementations that maintain application performance while enforcing security policies.
Circuit breaker patterns protect against cascading failures when security systems are

unavailable. Reactive streams support backpressure handling to prevent system overload during
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high-volume security events. Integration with Spring Security provides seamless authentication
and authorization enforcement based on anomaly detection results.
3. Machine Learning Pipeline Implementation
3.1 Data Preprocessing and Feature Engineering

The machine learning pipeline implements comprehensive data preprocessing to
transform raw API logs into numerical features suitable for anomaly detection. Time-series
features capture temporal patterns including request frequency, inter-arrival times, and periodic
variations. Statistical features analyze payload size distributions, response time characteristics,
and error rate patterns. Categorical encoding transforms authentication methods, user roles, and
API endpoints into numerical representations. Feature scaling and normalization ensure
consistent input ranges for neural network training.
3.2 Autoencoder Model Architecture

The autoencoder neural network is implemented using TensorFlow with a carefully
designed architecture optimized for API traffic anomaly detection. The encoder consists of
densely connected layers with progressively reduced dimensions, compressing input features
into a low-dimensional latent space. The decoder mirrors the encoder structure, reconstructing
the original input from the compressed representation. Regularization techniques including

dropout and batch normalization prevent overfitting and improve generalization performance.
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Python Code:

class APIAnomalyAutoencoder(tf.keras.Model):
def init (self, input dim, encoding dim):
super(APIAnomalyAutoencoder, self). init ()
self.encoder = tf.keras.Sequential(][
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Batchiormalization(),
tf.keras.layers.Dropout(9.2),
tf.keras.layers.Dense(64, activation="relu'),
tf.keras.layers.Batchiormalization(),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(encoding_dim, activation="relu")

D

self.decoder = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation="relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(e.2),
tf.keras.layers.Dense(128, activation="relu’),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(input _dim, activation="sigmoid")

D

def call(self, x):
encoded = self.encoder(x)
decoded

return decoded

self.decoder(encoded)

3.3 Real-Time Inference and Scoring

The trained autoencoder model is deployed using TensorFlow Serving for high-
performance real-time inference. Model serving infrastructure supports horizontal scaling to
handle varying inference loads. Reconstruction error calculation provides anomaly scores that
are normalized and calibrated based on historical data distributions. Dynamic thresholding

algorithms adjust detection sensitivity based on system conditions and false positive feedback.
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4. Security and Compliance Implementation
4.1 Identity and Access Management

Comprehensive identity and access management integrates with enterprise
authentication systems including Active Directory and LDAP. Role-based access control
(RBAC) policies define granular permissions for system components and administrative
functions. Service account management ensures secure inter-service communication with
minimal privilege principles. Token-based authentication supports API access with
configurable expiration and refresh policies.
4.2 Data Protection and Privacy

All data in transit is encrypted using TLS 1.3 with perfect forward secrecy. Data at rest
encryption utilizes AES-256 encryption with hardware security module (HSM) key
management.  Privacy-preserving techniques including data anonymization and

pseudonymization protect sensitive information in log data. Compliance with regulations
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including GDPR, CCPA, and industry-specific standards is ensured through automated policy
enforcement and audit trails.
4.3 Audit Logging and Compliance

Comprehensive audit logging captures all system activities including user access,
configuration changes, and security decisions. Tamper-evident logging ensures audit trail
integrity and supports forensic analysis. Automated compliance reporting generates reports for
regulatory requirements and security assessments. Log retention policies balance compliance

requirements with storage costs and performance considerations.

V. EXPERIMENTAL RESULTS AND ANALYSIS

1. Detection Accuracy Analysis

The proposed Al-driven intrusion detection system was evaluated using a
comprehensive dataset of API traffic collected from production enterprise environments over
a six-month period. The evaluation methodology included synthetic attack injection to test
detection capabilities against known threat patterns. The autoencoder model demonstrated
superior performance in detecting various types of API-level attacks including authentication

bypass attempts, privilege escalation, and distributed denial-of-service patterns.

Table 1: Attack Detection Performance Metrics

Attack Type Detection Rate False Positive Rate Response Time

(%) (%) (ms)
Authentication Bypass 94.2 2.1 8.3
Privilege Escalation 91.7 34 9.1
Token Abuse 96.5 1.8 7.2

API Rate Limiting 89.3 4.2 10.5

Bypass

Data Exfiltration 93.8 2.9 8.7
Overall Average 92.1 29 8.8

The detection accuracy results demonstrate the effectiveness of the autoencoder-based
approach in identifying subtle anomalies in API traffic patterns. Token abuse attacks showed

the highest detection rate due to clear deviations from normal authentication patterns. API rate
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limiting bypass attempts proved most challenging to detect, as they often mimic legitimate burst
traffic patterns. The consistently low false positive rates across all attack types validate the
system's suitability for production deployment where excessive false alarms can impact
operational efficiency.
2. Performance Impact Assessment

System performance evaluation focused on measuring the overhead introduced by the
intrusion detection system on normal API processing workflows. The assessment included
latency measurements, throughput analysis, and resource utilization monitoring across different
load conditions. Results demonstrate minimal performance impact while maintaining high

detection accuracy.

Table 2: Performance Impact Analysis

System Load Baseline IDS Latency Overhead Throughput
Latency (ms) (ms) (%) Impact (%)
Low (< 100 RPS) 45.2 52.8 16.8 2.1
Medium (100-500 62.1 71.3 14.8 34
RPS)
High (500-1000 78.9 87.2 10.5 4.2
RPS)
Peak (> 1000 95.4 104.1 9.1 5.8
RPS)
Average 70.4 78.9 12.8 3.9

The performance analysis reveals that the intrusion detection system introduces
minimal overhead to API processing pipelines, with average latency increases of less than 13%.
The overhead percentage decreases at higher load levels due to more efficient resource
utilization and batch processing optimizations. Throughput impact remains below 6% even
under peak load conditions, validating the system's scalability for high-volume enterprise
environments.

3. Cost-Benefit Analysis

Economic evaluation of the intrusion detection system considers both implementation
costs and potential savings from prevented security incidents. The analysis includes
infrastructure costs, operational expenses, and estimated losses from security breaches based

on industry benchmarks.
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Table 3: Cost-Benefit Comparison Analysis

Cost Category Traditional IDS ($) Al-Driven IDS (%) Savings (%)
Infrastructure Setup 150,000 95,000 36.7
Annual Operational 200,000 145,000 27.5
Security Personnel 300,000 180,000 40.0
Incident Response 500,000 125,000 75.0

Compliance Auditing 75,000 45,000 40.0
Total Annual Cost 1,225,000 590,000 51.8

The cost-benefit analysis demonstrates significant economic advantages of the Al-
driven approach over traditional intrusion detection systems. The largest savings come from
reduced incident response costs due to proactive threat detection and automated response
capabilities. Lower security personnel requirements result from automated threat analysis and
reduced false positive rates that minimize manual investigation overhead. Infrastructure cost
savings are achieved through cloud-native deployment and efficient resource utilization.

4. Scalability and Reliability Assessment

The system's scalability was evaluated by progressively increasing the number of
monitored microservices and API endpoints while measuring performance degradation and
resource requirements. Reliability testing included fault injection scenarios and disaster
recovery validation to ensure enterprise-grade availability.

The autoscaling capabilities demonstrated linear scalability up to 10,000 concurrent
API endpoints with minimal performance degradation. Kubernetes orchestration successfully
managed resource allocation and failover scenarios, maintaining 99.9% system availability
during the evaluation period. The distributed architecture prevented single points of failure and

supported seamless scaling across multiple availability zones.

VI. CONCLUSION

This research presents a comprehensive Al-driven intrusion detection framework
specifically designed for distributed Java environments running Spring Boot microservices.

The proposed system addresses critical gaps in existing security solutions by providing API-

https://iaeme.com/Home/journal/IJRCAIT editor@iaeme.com



Sandeep Kamadi

specific threat detection capabilities with minimal performance overhead. Through extensive
evaluation across enterprise environments, our solution demonstrates superior detection
accuracy of 92.1% while maintaining average response times below 10 milliseconds per
request.

The integration of autoencoder neural networks with distributed tracing correlation
enables detection of sophisticated attack patterns that span multiple services, providing
unprecedented visibility into API-level threats. The system's cloud-native architecture ensures
scalability and reliability while supporting seamless integration with existing microservice
infrastructure. Cost-benefit analysis reveals significant economic advantages over traditional
intrusion detection systems, with total cost reductions exceeding 50% through automation and
improved operational efficiency.

The experimental results validate the effectiveness of unsupervised learning approaches
for API anomaly detection, demonstrating consistent performance across diverse attack
scenarios including authentication bypass, privilege escalation, and data exfiltration attempts.
The low false positive rates of 2.9% make the system suitable for production deployment
without overwhelming security teams with unnecessary alerts.

Future research directions include exploration of federated learning approaches for
distributed model training across multiple enterprise environments, integration of graph neural
networks for enhanced relationship analysis between API interactions, and development of
automated response capabilities that can adapt to emerging threat patterns. Additionally,
investigation into edge deployment scenarios and hybrid cloud architectures will expand the
system's applicability to diverse enterprise environments.

The proposed framework establishes a foundation for next-generation API security
solutions that leverage artificial intelligence to provide proactive threat detection and response
capabilities in modern distributed systems. As enterprise architectures continue evolving
toward microservice-based designs, this research provides essential insights for maintaining

security posture while enabling digital transformation initiatives.
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