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ABSTRACT 

Linear stability analyses of Ferro convection in rotating Ferromagnetic liquids with 

variable viscosity have been studied numerically using the generalized Lorenz model.  

The linear stability is studied to discuss influence of variable viscosity in terrestrial 

gravity condition. Linear stability is studied effects of various parameters which include 

Taylor number, Ta, variable viscosity, V, internal Rayleigh number, 𝑅𝐼, buoyancy- 

magnetization parameter, 𝑀1, non - buoyancy magnetization parameter, 𝑀3 have been 

studied. We notice that the variable viscosity and heat source suppress the convection. 

However, due to the presence of variable viscosity, V, there is a change in the onset of 

Ferro convection.  

Keywords: Rayleigh-Bénard Convection, Rotation, Variable Viscosity, Generalized 

Lorenz Model. 
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INTRODUCTION 

Rayleigh-Bénard convection of ferromagnetic liquid in a rotating enclosure is a highly explored 

phenomenon in geophysics and astrophysics. It has a lot of industrial applications such as 

chemical engineering, geophysics, biomechanics etc. Ferro convection brings new applications 

in motion cooling, loud speakers, line transmission, and other equipment that already have a 

magnetic field. Ferro fluid is a form of functional fluid whose flow and energy transport 

processes can be regulated by modifying an external magnetic field, making it useful in sectors 

like electronic packaging, mechanical engineering, aerospace, bioengineering, and thermal 

engineering, among others.  
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By combining suspended single domain particles, Neuringer and Rosensweig [1] had 

discussed the flows of ferromagnetic liquids with a rotating magnetic field. Onset of convection, 

Niiler and Bisshop [2] had analyzed the variation of the Coriolis force in a shallow level for 

FIFI & RIRI boundaries. Rosensweig et al. [3] had studied the consistency of the liquids using 

the presence magnetic intensity assumed by dimensional stability. Finlayson [4] was 

researching convective instability in a ferromagnetic liquid in detail. Results on ferroconvection 

were studied by Gupta and Gupta [5]. The results of Ferro fluid layer heated from the bottom 

were discussed by Qin and Kaloni [6] on the theory of both linear and non-linear of combined 

buoyancy force. Venkatasubramanian and Kaloni [7] made a detailed study about rotation on 

boundaries of stress-free, rigid-paramagnetic and rigid-ferromagnetic to analyze consequences 

of instability on thermo-convective in the Ferro fluid layer horizontally. Natural convection in 

a revolving layer of a magnetic Ferro fluid was studied by Auernhammer and Brand [8]. 

Ganguly et al. [9] discussed the heat dissipation in ferromagnetic fluids and notice that the heat 

dissipation expansion due to thermal convection.  

Siddheshwar and Abraham [10] used analytical methods to analyze Ferro convection in a 

micro polar magnetic fluid layer, concluding that micro polar ferromagnetic liquids are more 

reliable than Newtonian ferromagnetic liquids. Shivakumara [11] had studied velocity and 

temperature boundary at the quiescent Ferro fluid layer on the onset of ferro convection. The 

Bénard Marangoni ferroconvection with internal heat generation by applying a uniform vertical 

magnetic field was explored by Nanjundappa et al. [12]. Stability of linear and non-linear theory 

by using the rotating nanofluids-saturated porous medium with local thermal non-equilibrium 

effects were studied by Vanishree and Siddheshwar [13]. Each equilibrium's asymptotic 

stability was investigated by Kaloni and Mahajan [14]. For all feasible boundary combinations, 

Sekhar et al. [15], Siddheshwar et al. [16], Siddheshwar et al. [17] examined the effects of 

temperature-dependent viscosity on Bénard Marangoni magneto convection. Bénard-

Marangoni Ferro convection in rotating layer of Ferro fluid boundary was researched by 

Shivakumara et al. [18]. 

Mahajan and Arora [19] investigated the instability of convection in a thin layer of a nano 

fluid using rotation. The effect of magnetic and non-magnetic variables on Marangoni 

convection was investigated by Sekhar et al. [21]. In a Brinkman porous media, Nanjundappa 

et al. [22] Investigated the effects of cubic temperature profiles on ferro convection. For all 

feasible boundary combinations, Sekhar et al. [23] investigated a linear stability analysis of 

thermal convection in variable viscosity. Many studies have been conducted on the Rayleigh-

Bénard convection of a ferromagnetic liquid in revolving enclosures. The influence of MFD 

viscosity on Benard-Marangoni Ferro convection on viscosity in a rotating Ferro fluid layer was 

investigated by Arunkumar et al. (2018).  

On a rotating anisotropic Ferro fluid layer, Amit et al. (2019) investigated both linear and 

weakly non-linear stability studies. The finite-amplitude equation was solved using the Runge- 

Kutta- Gill numerical method. Anthony et al. (2020) used the Lorenz model to investigate the 

effects of various factors on heat transfer in a nonlinear investigation of the influence of rigid 

body rotation on Ferro convection. 

The major aim of this analysis is to examine at the stability of both linear and non-linear 

Coriolis force systems with varying ferroconvection viscosity, as well as a numerical analysis 

of how rotation affects convection and heat transfer in ferromagnetic liquids. The normal mode 

approach is used to investigate linear stability. The Lorenz model was used to do the non-linear 

stability study. It has been discussed how many physical characteristics affect heat transport. 
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MATHEMATICAL FORMULATION 

Consider an infinite horizontal layer of an electrically non-conducting incompressible 

ferromagnetic fluid with a thickness of 'd' that is permeated by a uniform applied magnetic field 

𝐻0 acting in the vertical direction. The layer is rotating uniformly about its vertical axis with 

constant angular velocity   ⃗⃗⃗  =  𝑘̂. The lower and upper surfaces T0 + ∆T and T0 respectively, 

are maintained at constant temperature. The equations defining for the motion of the fluid are 

the continuity equation, momentum equation, transport equation and Maxwell’s equations 

(Finlayson [4] and Gupta and Gupta [5]). In the continuity equation  𝑞  =(𝑢, 𝑣, 𝑤) is the velocity 

vector. The momentum equation is containing viscous force .[(H, T)(q⃗ +  . q⃗ Tr)] in the 

rotating frame and  (q⃗ +  . q⃗ Tr) is the rate of strain tensor. (See Fig.1).  

 

Figure 1: The physical representation of the proble 

The basic governing equations for the present problem describe:  

Continuity equation:  

.𝑞 =0,             (1)  

Conservation of linear momentum: 

  
 

  
0
 [

∂q⃗⃗ 

∂t
+ (q⃗ .) q⃗ ] = -p +  g⃗  + 

0[M .⃗⃗⃗⃗  ⃗   ]  H⃗⃗  ⃗  + .[(H, T)(q⃗ + . q⃗ Tr)] + 2 
0
 (q⃗  ),  (2)  

In equation (2), third term represents the ponder motive force. In the last term density ‘ 
0
’ is a constant. 

T is the temperature,  H⃗⃗  ⃗ is the magnetic field, M  ⃗⃗⃗⃗  ⃗ is the magnetization, p is the pressure. 

Energy balance equation: 

  
0
 [

∂T

∂t
+ (q⃗ .) T] =    2T + Q (T − T0),        (3)  

Where ‘’ is the thermal conductivity and   2 = 
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2  is the Laplacian operator. 

Equation of the state:  

 = 
0
[1 − (T − T0)],           (4)  

where ′′ is the thermal expansion coefficient. 

Maxwell equations:  

.𝐵⃗ =0, ( H⃗⃗ )=0 or H⃗⃗  ⃗ = −           (5) 

Magnetic induction of a state:  

 B⃗⃗ = 
0[M⃗⃗⃗

  + H⃗⃗  ],          (6)  

Magnetic equation of a state:  

  M⃗⃗⃗⃗ =𝑀0+
𝑚

(𝐻 − 𝐻0)-𝑘𝑙(𝑇 − 𝑇0),         (7)  

is linearized about the magnetic field 𝐻0  and the temperature 𝑇0. Where  𝑘𝑙 = − (
∂M

∂T
)
𝐻0,𝑇0

,  the pyro 

magnetic coefficient and   
𝑚

= (
∂M

∂H
)
𝐻0,𝑇0

 is the magnetic susceptibility. 

𝑀0 = M (𝐻0,𝑇0),   is the constant mean value of magnetization. 

Effective viscosity: 

  = 
0[ 1+ H(Hb − 𝐻0 )

2 −  
T
(Tb − 𝑇0 )

2 ]         (8) 
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We have neglected the inertia of the suspended particles and their motion, so that the 

equations of motion could be tractable. Therefore, in the present study, the effective viscosity 

is taken to be a quadratic function of magnetic field and temperature. 

Quiescent state solution: 

The basic state solutions are: 

  q⃗ 𝑏= 0,   p = 𝑝𝑏(z),     = 
𝑏

(z),    = 
𝑏
(z),    

 T = 𝑇𝑏(z), M⃗⃗⃗⃗ =(0,0,𝑀𝑏(z))  ,  H  ⃗⃗ ⃗⃗  ⃗ = (0,0,𝐻𝑏(z))                (9)          

                                                                                                                                                                                                                       
 Where   𝑇𝑏(z) = 𝑇1 −  𝑇z,    where 𝑇1is the constant temperature of the lower boundary = ( 𝑇0+ 𝑇). 

 
𝑏
(z) =  

0
[1 +   𝑇z],   H⃗⃗  ⃗𝑏(𝑧) =[𝐻0 − 

    𝑘𝑙 𝑇z

(1+𝑚)
]   and       M⃗⃗⃗⃗ 𝑏(𝑧) =[𝑀0 + 

    𝑘𝑙 𝑇z

(1+𝑚)
] . 

The effective viscosity reduces to the form: 


𝑏
(z) = 

0[ 1+ H(Hb − 𝐻0 )
2 −  

T
(Tb − 𝑇0 )

2 ] 

            = 
0 [1 − (

T
( 𝑇)2(1 − 𝑧)2 + (

H 𝑘𝑙
2

1+𝑚

  ) ( 𝑇)2(1 − 𝑧)2)] 

𝑔1(𝑧) =  [1 − 𝑉(1 − 𝑧)2],   where  

 𝑔1(𝑧) =    
𝑏(𝑧)

0

  and  𝑓(𝑧) =  (1 − 𝑧)2,  

V =   ( T −
H 𝑘𝑙

2

1+𝑚

 ) ( 𝑇)2  is the variable viscosity. 

After perturbation, we will now have, 

q⃗ =    q⃗ 𝑏 + 𝑞′, 𝑝 =  𝑝𝑏 + 𝑝′,  M⃗⃗⃗⃗  = 𝑀𝑏 + 𝑀′, T = 𝑇𝑏 + 𝑇′,  = 
𝑏
 + ′,  H⃗⃗  ⃗ = 𝐻𝑏 + H′  

In the dimensionless formulation scales for length, velocity, time and temperature are taken as 

   𝑥∗ = 
  𝑥

𝑑
 ,     𝑦∗ =  

  𝑦

𝑑
 ,     𝑧∗ = 

  𝑧

𝑑
 ,      𝑡∗ = 

  𝑡

𝑑2  ,    𝑤∗ = 
  𝑤

𝑑
 ,      𝑇∗ = 

 𝑇

 T
 , 

     ∗ = 
 (1+𝑚)

  T 𝑑2  ,    𝑓∗(𝑧) =  
 𝑓(𝑧)

 T
,   where    is the magnetic scalar potential. 

Where * denotes the perturbed quantity. Now we need to remove pressure p from x and y components 

of eq. (2) and the stream function is defined as   

                 𝑢 =  − (
𝜕

𝜕𝑧
)  ,           𝑤 = (

𝜕

𝜕𝑥
)   

We obtain a dimensionless form of governing equation as 
1

𝑃𝑟
 𝑑𝑡  

 2 = −𝑅𝑎 (1 + 𝑀1) 
𝜕𝑇

𝜕𝑥 
 − 𝑅𝑎𝑀1  (

𝜕2

𝜕𝑥𝜕𝑧
) + 𝑅𝑎𝑀1 𝐽 (𝑇,

𝜕

𝜕𝑥
) + 

1

𝑃𝑟
            

      𝐽 (,   2 ) +  𝑔1(𝑧)
 4 + 2 D [𝑔1(𝑧)] 

 2 + 𝐷2 [𝑔1(𝑧)]  (
𝜕2

𝜕𝑧2) − 

      𝐷2 [𝑔1(𝑧)]  (
𝜕2

𝜕𝑥2) - √𝑇𝑎
𝜕𝑣

𝜕𝑧
 ,      (10) 

   Where q⃗ ′  = 𝑣  
1

𝑃𝑟
 [

𝜕𝑉

𝜕𝑡
+  𝐽 (, 𝑣 ) ] = 𝑔1(𝑧)

 2𝑣  + D [𝑔1(𝑧)]
𝜕𝑣

𝜕𝑧
  +√𝑇𝑎

𝜕

𝜕𝑧
 ,                                                     (11)  

𝜕𝑇

𝜕𝑡 
 = 𝐽 (, T ) +  2T + 𝑅𝐼T −𝑔2(𝑧) 

𝜕

𝜕𝑥
 ,    (12)  

M3 1
2  + (

𝜕2

𝜕𝑧2)  
𝜕𝑇

𝜕𝑧
 = 0.                       (13)  

The dimensionless parameters appearing in the above equations are 

𝑃𝑟 =  
0

   0  
 , Ra = 

  0 𝑔𝑑3 T 

0 
 ,  𝑅𝐼 = 

𝑄1𝑑
2 

 T
  , M1= 

0 k1
2
 T 

  0 𝑔(1+𝑚)𝑑
  , M3= 

1+
M0
H0

 

(1+𝑚)
  & Ta = (

2    𝑑2 

0 𝑚

)
2

             

 

Eqs. (10) – (13) are solved by using following boundary conditions appropriate for free –free  

isothermal boundaries. (Vanishree et al.[13]). 

   = 
𝜕2

𝜕𝑧2   = T = 
𝜕𝑣

𝜕𝑧
= 

𝜕

𝜕𝑧
 = 0,  at  z = (0, 1)         (14) 
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STABILITY ANALYSIS OF LINEAR STUDY 

Linearized steady state eqs.(10)–(12) are  considered to obtain resulting equation  

𝑅𝑎 (1 + 𝑀1) 
𝜕𝑇

𝜕𝑥 
 − 𝑅𝑎𝑀1  (

𝜕2

𝜕𝑥𝜕𝑧
) +  𝑔1(𝑧)

 4 + 2 D [𝑔1(𝑧)] 
 2 −    𝐷2 [𝑔1(𝑧)]  (

𝜕2

𝜕𝑥2) – 

√𝑇𝑎 
𝜕𝑣

𝜕𝑧
 = 0,           (15) 

𝑔1(𝑧)
 2𝑣  + D [𝑔1(𝑧)]

𝜕𝑣

𝜕𝑧
  + √𝑇𝑎

𝜕

𝜕𝑧
 = 0,       (16)  

  2T + 𝑅𝐼T −𝑔2(𝑧) 
𝜕

𝜕𝑥
 = 0,         (17) 

M3 1
2  + (

𝜕2

𝜕𝑧2)  
𝜕𝑇

𝜕𝑧
 = 0.           (18)  

 

We have the following time derivative equations. 

– 𝑞2𝑓(𝑉1)𝐴() − 
𝑅 𝑘2

𝑞2  [
𝑘2𝑀3+𝑘2𝑀1𝑀3+𝜋2

𝑘2𝑀3+ 𝜋2 ]  𝐵()+ 
√𝑇𝑎πk

𝑞2  𝐸() = 0,      (19)  

4 𝜋2

( 4 𝜋2−𝑅𝐼)
 𝐴() +  (𝑅𝐼 −  𝑞2) 𝐵() = 0,          (20)  

– 𝑓(𝑉2)𝐸() + 
√𝑇𝑎π

𝑞2  𝐴() = 0.            (21)  

We have considered non-trivial solutions from eqs. (19) - (21) in the following form 
 

|

|

– 𝑞2𝑓(𝑉1)
𝑅 𝑘2

𝑞2  [
𝑘2𝑀3+𝑘2𝑀1𝑀3+𝜋2

𝑘2𝑀3+ 𝜋2 ]
√𝑇𝑎πk

𝑞2

4 𝜋2

( 4 𝜋2−𝑅𝐼)
 (𝑅𝐼 −  𝑞2) 0

√𝑇𝑎π

𝑞2 0 – 𝑓(𝑉2)

|

|
 = 0          (22)  

The stationary Rayleigh number 𝑅𝑎𝑠 is obtained in the form 
 

𝑅𝑎𝑠=
𝑞6(𝑘2𝑀3+ 𝜋2)

𝑘2(𝑘2𝑀3+𝑘2𝑀1𝑀3+𝜋2)
{– 𝑞2𝑓(𝑉1) (

4 𝜋2−𝑅𝐼

4 𝜋2 ) − (
𝑞2𝑓(𝑉1)( 4 𝜋2−𝑅𝐼)

4 𝜋2 ) + ( 
𝑇𝑎 𝜋2 𝑘 (𝑞2−𝑅𝐼)( 4 𝜋2−𝑅𝐼)

𝑞4𝑓(𝑉2)4 𝜋2 ) }   23) 

Where 

𝑓(𝑉1) = 1+(
−1

3
+

1

2 𝜋2) V + (
2 𝜋2𝑉

q4 ) -  (
2 𝑘2𝑉

q4 ) - 
V

q2  ,    𝑓(𝑉2) = 
1

𝑘
+ (

−1

3𝑘
+

1

2 𝜋2𝑘
) V + 

𝑘V

q2 . 

The following are the graphs plotted for linear stability analysis. 
 

 

 (a)                                                                                   (b) 

Fig 2:  Plots of  𝑅𝑎𝑠  and 𝑎𝑐 versus V for different with fixed values of  𝑀1 =   5, 𝑀3 = 1,  𝑅𝐼 = 0.1.  

 



Roopa G and A.Pranesha Setty 

 

https://iaeme.com/Home/journal/IJMM 6 editor@iaeme.com 

The magnetic numbers are field dependent with 𝑀1 10−4 - 102 and  𝑀3  1 for typical 

magnetic field strengths. In the stationary convection case ‘r’ is greater than one. Therefore in 

the present paper, the values of the parameters, 𝑅1 = 10,  𝑀3 = 1.1,  are chosen for numerical 

calculations.  

CONCLUSION 

In the presence of varying viscosity, the effect of Taylor number (Ta) on the stationary Rayleigh 

number and the corresponding wave number is investigated. In the presence of changing 

viscosity, increasing Ta lowers the stationary Rayleigh number, implying that the function of 

Taylor number is to destabilize the system, whereas the wave number has the opposite effect. 

This indicates that the process is being stabilized by the system. 

Increasing the variable viscosity V and Taylor number Ta, the Nusselt number (Nu) 

decreases. It indicates that increasing these parameters lowers the heat transfer rate. It can be 

observed for other parameters such as 𝑅𝐼, 𝑀1, 𝑀3, the system stabilizes and the amount of the 

heat transfer reduces. Therefore, we try to control the convection process and also synchronize 

the transfer of heat with the help of Ferro magnetic liquid and the magnetic field strength. 
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