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ABSTRACT 

In this paper, a shock model for the maintenance problem of a repairable system is 

studied. Assume that shocks will arrive according to a Poisson process. If the inter 

arrival time of two successive shocks is less than a threshold, then the system will fail. 

For an improving system, we assume that the successive threshold values are 

geometrically decreasing after repair, and the consecutive repair times after failure 

form a decreasing partial sum process. A replacement policy 𝑁  is adopted by which we 

shall replace the system by an identical new one at the time following the 𝑁 − 𝑡ℎfailure. 

Then for an improving system, an optimal policy 𝑁∗ for minimizing the long run average 

cost per unit time is determined explicitly. 
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1. INTRODUCTION 

Although the study of maintenance problem is an important topic in reliability, most important 

models just pay attention on the internal cause of a system failure, but do not on an external 

cause of the system failure. In practice, a system failure may be caused by some external cause, 

such as a shock. For example, a computer system may fail due to the invasion of some virus or 

an attack from a raider. As the virus or raider may arrive randomly, it is a stochastic shock. It 

might be a discrete stochastic shock.  
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If the virus is benign as it will create a virus program to display some rubbish messages, it 

might be a continuous stochastic shock if the virus is malignant as it will create a virus program 

to wipe out data or files in the computer, then the computer system will be paralyzed. In 

engineering, a precision instrument and meter system may fail due to the effect of operation of 

other equipment. This might be an example of discrete stochastic shock. On the other hand, a 

precision instrument and meter system may be installed in an environment with a high 

temperature and humidity such as in naval vessels. In this case, the system may reduce its 

lifetime as it operates in an adverse environment. This might be an example of continuous 

stochastic shock. Therefore we should consider the maintenance problem of a system subject to 

shocks. A shock is called a deadly shock if the system will fail after suffering such a shock. In 

1975, Barlow and Proschan [1] studied this problem by considering the following shock model, 

whenever a shock arrive, it will cause a random amount of damage to the system. A shock is a 

deadly shock if the accumulated amount of damage to the system by the time of the shock 

arriving exceeds a specified threshold, and then the system fails . 

Later on, Shantikumar and Sumitha [2,3] studied a more general shock model. Lam and 

Zhang [4] studied a maintenance model for a deteriorating system subject to shocks. 

The shock model has been successfully applied to many different subjects, such as physics, 

communication, electronic engineering and medicine. As a result, more and more researchers 

are interested in doing research on this topic. 

A 𝛿 −shock model is different from the above shock models. It pays attention on the 

“frequency” of shocks rather than the accumulated amount of damage of shocks. Now, a shock 

is a deadly shock if the time that elapses from the preceding shock to this shock is smaller than 

a specified threshold𝛿, and then the system fails. In this paper, we shall study a 𝛿- shock 

maintenance model for an improving system. To do this, at first, we should introduce the 

definition of stochastic order and the concept of partial sum process. 

Definition 1.1   

Given two random variables 𝑋 and 𝑌if  𝑃(𝑋 > 𝑡) ≥ 𝑃(𝑌 > 𝑡)  for all real 𝑡, 

Then 𝑋 is called stochastically larger than 𝑌 or 𝑌 is stochastically less than 𝑋. This is denoted 

by 𝑋 ≥𝑠𝑡 𝑌 or 𝑌 ≤𝑠𝑡 𝑋  (See e.g. Ross [5] for reference.) 

Definition 1.2. 

 Given a stochastic process {𝑍𝑛, 𝑛 = 1,2… . } if for all 𝑛, 𝑍𝑛 ≤𝑠𝑡 (≥𝑠𝑡)𝑍𝑛+1, then {𝑍𝑛, 𝑛 =
1,2… . } is called a stochastically increasing (decreasing) process.  

As a simple stochastically monotone process, Babu [1] introduced the following partial sum 

process. 

Definition 1.3.  

Let {𝑋𝑛 , 𝑛 = 1,2,3… . . }be a sequence of independent non-negative random variables and let 

𝐹(𝑥) be the distribution function of 𝑋1.Then {𝑋𝑛 , 𝑛 = 1,2,3… . . } is called a partial sum 

process, if the distribution function of 𝑋𝑚+1 is 𝐹(𝛽𝑛𝑥) ,𝑚 = 1,2,3…where 𝛽𝑛 > 0 are 

constants with 𝛽𝑛 = 𝛽0 + 𝛽1 + 𝛽2 +⋯𝛽𝑛−1 and 𝛽0 = 𝛽 > 0 
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According to Definition 1.3.We have 

 (i)     𝐸 (𝑋1) = 𝜇 Then for 𝑖 = 1,2,3, ………. 

(ii)     𝐸 (𝑋𝑖+1) =
𝜇

2𝑖−1𝛽
                                                                                                         (1)                                                                                                                 

(iii)   For real 𝛽𝑖    (𝑖 = 1,2,3…… . . )    𝛽𝑖 = 2
𝑖−1𝛽. 

Then the distribution function of 𝑋𝑖+1  is 𝐹(2𝑖−1𝛽𝑥)  for 𝑖 = 1,2,3, ………. 

The density function of 𝑋𝑖+1 is 𝑓𝑖+1(𝑥) = 𝛽𝑖 𝑓(𝛽𝑖 𝑥) 

(iv)  The partial sum process {𝑋𝑛 , 𝑛 = 1,2,3… . . } with parameter 𝛽 > 0  is stochastically 

decreasing and hence it is a monotone process. 

In this paper, we shall study a new 𝛿 −shock model for the maintenance problem for an 

improving system. It is a new model, because the threshold of a deadly shock is not a constant 

but monotone. Moreover the successive repair times after failure form a partial sum process. 

By making different assumptions the model could be applied to improving system. The 

model is introduced in section 2. Assume further that a replacement policy 𝑁 is adopted, by 

which a system is replaced by an identical new one at the time following the 𝑁 − 𝑡ℎ failure. 

In section 3, the long run average cost per unit time is evaluated. Then in section 4, for an 

improving system an optimal replacement policy 𝑁∗ is determined analytically. 

2. THE  𝜹 –SHOCK MODEL 

We introduce the 𝛿 –shock model for the maintenance problem of a repairable system by 

making the following assumptions. 

Assumption 1. At the beginning a new system is installed. Whenever the system fails, it will be 

repaired , the system will be replaced by an identical new one sometime later. 

Assumption 2. The repair cost rate is 𝐶,  the reward rate when the system is operating is 𝑟. The 

replacement cost is 𝑅. The replacement cost comprises two parts, one part is the basic 

replacement cost 𝑅, the other part is proportional to the replacement time 𝑊, at rate 𝐶𝑝. 

Assumption 3. A replacement policy 𝑁 is adopted by applying a replacement policy 𝑁, the 

system will be replaced by an identical new one at the time following the 𝑁 − 𝑡ℎ failure. The 

replacement time is a random variable  𝑊 with𝐸(𝑊) = 𝜏. 

Assumption 4. The system is subject to a sequence of shocks. The shock will arrive according 

to a poisson process with rate 𝜃. If the system has been repaired for 𝑛 times (𝑛 = 0,1,2… ) The 

threshold of a deadly shock will be 𝛼𝑛𝛿 where 𝛼 (0 < 𝛼 ≤ 1) is the rate and 𝛿 is the threshold 

of a deadly shock for a new system. This means that whenever the time to the first shock is less 

than or the inter arrival time of two successive shocks after the 𝑛𝑡ℎ repair is less than 𝛼𝑛𝛿, the 

system will fail. During the repair time, the system is closed; this means that any shock arriving 

when the system is under repair is ineffective. 

Assumptions 5. Let 𝑋1 be the repair time after the 1 st  failure and let 𝐹(𝑥)be the distribution 

function of 𝑋1. Then the distribution function of 𝑋𝑖+1 is 𝐹(2𝑖−1𝛽𝑥) where 𝛽 > 0 are constants, 

for 𝑖 = 1,2,3…  That is the successive repair times {𝑋𝑖+1, 𝑖 = 1,2… . } after failure constitute a 

decreasing partial sum process and also assume that 𝐸(𝑋1) = 𝜇 > 0 and 𝐸 (𝑋𝑖+1) =
𝜇

2𝑖−1𝛽
 . 

Assumption 6. The poisson process and partial sum process are independent. 
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REMARKS 

Usually, whenever a system fails, it needs to wait for repair, In our model, we study the 

maintenance problem for a system with one repair facility. In this case, the repair facility will 

repair the system when it fails until is is recovered from failure. Therefore the repair facility 

will be free if the system is operating. Thus, once the system fails, it could be repaired without 

delay. 

In real life, there do have some improving systems. For example, some systems could be 

improved, this might be due to the fact that the operator can accumulate the operating 

experience so that the damage caused by a shock will be lightened, this might be due to the 

repair facility becoming more familiar with the system. So that the successive repair times might 

be decreasing. Then, for an improving system, the older the system, the more solid the system 

is. Thus, the threshold of a deadly shock should be decreasing geometrically, while the 

successive repair times of the system will constitute a decreasing partial sum process. 

3. LONG RUN AVERAGE COST 

In our model, we say that a cycle is completed if a replacement is completed. Sice a cycle is 

actually a time interval between the installation of the system and the first replacement or a time 

interval between two consecutive replacements, the successive cycles will form a renewal 

process. Thus, the successive cycles together with the costs incurred in each cycle will consitute 

a renewal reward process. By applying the standard result in renewal process, the long run 

average cost per unit time is given by 

𝐶(𝑁) =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑐𝑦𝑐𝑙𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑐𝑦𝑐𝑙𝑒
                                                                 (2) 

[See Ross[5] for reference] 

Now let 𝑋𝑛 be the operating time of the system following the (𝑛 − 1) − 𝑡ℎ repair in a cycle, 

denote the distribution function of 𝑋𝑛 by 𝐹𝑛; and let 𝑌𝑛  be the repair time after the  𝑛 − 𝑡ℎ 

failure in the cycle. Suppose a replacement policy 𝑁 is adopted, let the average cost be 𝐶(𝑁). 
It follows from (1) with the help of (1) 

𝐶(𝑁) =
𝐸(𝐶 ∑ 𝑌𝑛

𝑁−1
𝑛=1 − 𝑟∑ 𝑋𝑛

𝑁
𝑛=1 + 𝑅 + 𝐶𝑝𝑊)

𝐸(∑ 𝑋𝑛
𝑁
𝑛=1 + ∑ 𝑌𝑛

𝑁−1
𝑛=1 +𝑊)

 

                                                  

                       =
𝐶 ∑ 𝐸(𝑌𝑛)

𝑁−1
𝑛=1 − 𝑟∑ 𝐸(𝑋𝑛)

𝑁
𝑛=1 + 𝑅 + 𝐶𝑝𝐸(𝑊)

∑ 𝐸(𝑋𝑛)
𝑁
𝑛=1 + ∑ 𝐸(𝑌𝑛)

𝑁−1
𝑛=1 + 𝐸(𝑊)

 

 

                                                         

=
𝐶(𝜇 + ∑ 𝜇𝑛)

𝑁−1
𝑛=2 − 𝑟∑ 𝜆𝑛

𝑁
𝑛=1 + 𝑅 + 𝐶𝑝𝜏

∑ 𝜆𝑛
𝑁
𝑛=1 + (𝜇 + ∑ 𝜇𝑛)

𝑁−1
𝑛=2 + 𝜏

 

                                        

=
𝐶 (𝜇 + ∑

𝜇

2𝑛−1𝛽
𝑁−1
𝑛=2 ) − 𝑟∑ 𝜆𝑛

𝑁
𝑛=1 + 𝑅 + 𝐶𝑝𝜏

∑ 𝜆𝑛
𝑁
𝑛=1 + (𝜇 + ∑

𝜇

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏

                          (3) 
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                          𝐶(𝑁)

=
(𝐶 + 𝑟)𝜇 (1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝑅 + (𝐶𝑝 + 𝑟)𝜏

∑ 𝜆𝑛
𝑁
𝑛=1 + (𝜇 + ∑

𝜇

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏

− 𝑟                        (4)     

                            𝐶(𝑁) = 𝐴(𝑁) − 𝑟    

Where 𝜆𝑛 = 𝐸(𝑋𝑛) is the operating time following the (𝑛 − 1)𝑡ℎ repair. 

Now, we need to evaluate the values of 𝜆𝑛,   𝑛 = 1,2,3…… .. 

Lemma 3.1.   𝜆𝑛  is non-decreasing in 𝑛. 

Proof. Let 𝑈𝑛1 be the arrival time of the first shock following the (𝑛 − 1)𝑡ℎ repair. 

In general, let 𝑈𝑛𝑘 be the interarrival time between the (𝑘 − 1)𝑡ℎ and 𝑘𝑡ℎ  shocks following 

the (𝑛 − 1)𝑡ℎ repair until the first deadly shock occured .Let 𝐸(𝑈11) = 𝜆. Assume that 

{𝑈𝑛𝑖, 𝑖 = 1,2…… } are independent and identically distributed (i.i.d) sequences for all 

𝑛. 

Let 𝑀𝑛,    𝑛 = 1,2,3……. Be the number of shocks following the (𝑛 − 1) − 𝑡ℎ repair until 

the first deadly shock occurred. 

Then 𝑀𝑛 = 𝑚𝑖𝑛{𝑚 𝑈𝑛1⁄ ≥ 𝛼𝑛−1𝛿, ………𝑈𝑛 𝑚−1 ≥ 𝛼
𝑛−1𝛿, 𝑈𝑛 𝑚 <

𝛼𝑛−1𝛿}                         (5)  

Let 𝑀𝑛 be a random variable with exponential distribution  𝐸𝑥𝑝(𝜃) with mean 
1

𝜃
. Then, 𝑀𝑛 

will have a geometric distribution 𝐺(𝑃𝑛) with parameter   

𝑃𝑛 = 𝑃(𝑈𝑛 < 𝛼
𝑛−1𝛿) = ∫ 𝜃𝑒−𝜃𝑥

𝛼𝑛−1𝛿

0

𝑑𝑥 

                                                                            = 1 − exp (−𝜃𝛼𝑛−1𝛿)                                             

and 𝑞𝑛 = 1 − 𝑝𝑛 thus 𝑋𝑛 = ∑ 𝑈𝑛𝑖
𝑀𝑛
𝑖=1                                                                                               (6) 

Now, suppose that 𝑀𝑛 = 𝑚,      then 𝑋𝑛 = 𝑋𝑛𝑚 + 𝑈𝑛𝑚                                                              (7)      

with      𝑋𝑛𝑚 = ∑ 𝑈𝑛𝑖
𝑚−1
𝑖=1           and 𝑈𝑛1 ≥ 𝛼

𝑛−1𝛿,……… .𝑈𝑛 𝑚−1 ≥ 𝛼
𝑛−1𝛿,  

but 𝑈𝑛 𝑚 < 𝛼
𝑛−1𝛿                                                                                                                               (8) 

Consequently, 𝑋𝑛𝑚 = ∑ (𝑈𝑛𝑖 − 𝛼
𝑛−1𝛿)𝑚−1

𝑖=1 + (𝑚 − 1)𝛼𝑛−1𝛿. 
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Because exponential distribution  is memoryless  

𝑈𝑛𝑖 = 𝛼
𝑛−1𝛿, 𝑖 = 1,2…… .𝑚 − 1,  are i.i.d random variables, each has the same 

exponential distribution 𝐸𝑥𝑝(𝜃), as 𝑈𝑛 has. This implies that 𝑋𝑛𝑚 − (𝑚 − 1)𝛼
𝑛−1𝛿 

will have a gamma distribution Γ(𝑚 − 1, 𝜃). Thus the density 𝑔𝑛𝑚 of 𝑋𝑛𝑚  is given by  

𝑔𝑛𝑚(𝑥) = {
𝜃𝑚−1

(𝑚 − 2)!
(𝑥 − 𝑘)𝑚−2𝑒−𝜃(𝑥−𝑘)                 𝑥 > 𝑘,

0                                                             𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

                                                                                                                                                

(9) 

Where 𝑘 = (𝑚 − 1)𝛼𝑛−1𝛿,   

As a result 

𝐸(𝑋𝑛𝑚) =
𝑚−1

𝜃
+ (𝑚 − 1)𝛼𝑛−1𝛿                                                                                         (10)  

  On the other hand, Let   𝑈𝑛  be an exponentially distributed random variable with mean 
1

𝜃
  

because 𝑈𝑛𝑚 < 𝛼
𝑛−1𝛿,         

we have   𝐸(𝑈𝑛𝑚) = 𝐸(𝑈𝑛 𝑈𝑛⁄ < 𝛼𝑛−1𝛿)      

                                  = ∫ 𝑢𝜃𝑒−𝜃𝑢 ∕ (1 − exp (−𝜃𝛼𝑛−1𝛿))
𝛼𝑛−1𝛿

0
𝑑𝑢 

                                      

  

=
1

𝜃

−
𝛼𝑛−1𝛿 exp(−𝜃𝛼𝑛−1𝛿)

1 − exp(−𝜃𝛼𝑛−1𝛿)
                                                                                                   (11) 

Then (7) with the help of  (10) and  (11)  yields  

                               𝜆𝑛 = ∑ 𝐸(𝑋𝑛 𝑀𝑛⁄ = 𝑚)𝑃(𝑀𝑛 = 𝑚)
∞
𝑚=1   

                                    = ∑ 𝐸(𝑋𝑛𝑚 + 𝑈𝑛𝑚)𝑞𝑛
𝑚−1𝑝𝑛

∞
𝑚=1  

                                    = ∑ {
𝑚−1

𝜃
+ (𝑚 − 1)𝛼𝑛−1𝛿 +

1

𝜃
−
𝛼𝑛−1𝛿 exp(−𝜃𝛼𝑛−1𝛿)

1−exp(−𝜃𝛼𝑛−1𝛿)
}∞

𝑚=1 𝑞𝑛
𝑚−1𝑝𝑛 

                               =
1−𝑝𝑛

𝑝𝑛
(
1

𝜃
+ 𝛼𝑛−1𝛿) +

1

𝜃
−
𝛼𝑛−1𝛿 exp(−𝜃𝛼𝑛−1𝛿)

1−exp(−𝜃𝛼𝑛−1𝛿)
 

       𝜆𝑛

=
1

𝜃(1 − exp(−𝜃𝛼𝑛−1𝛿))
                                                                                              (12) 
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Since 0 < 𝛼 ≤ 1 from equation (12)it follows that  𝜆𝑛 is non-decreasing, consequently, 

from (1), the average cost is given by, 

𝐶(𝑁) =
𝐶𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] − r∑

1

𝜃[1−𝑒𝑥𝑝(−𝜃𝛼𝑛−1𝛿)]
𝑁
𝑛=1 + 𝑅 + 𝐶𝑝τ

∑
1

𝜃(1−exp(−𝜃𝛼𝑛−1𝛿))
𝑁
𝑛=1 + 𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝜏

                      (13) 

                

=
(𝐶 + 𝑟)𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ

∑  𝜆𝑛
𝑁
𝑛=1 + 𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝜏

− 𝑟                           

              = 𝐴(𝑁) − 𝑟 

     where                 

𝐴(𝑁)

=
(𝐶 + 𝑟)𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ

∑ 𝜆𝑛
𝑁
𝑛=1 + 𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝜏

                                                            (14) 

4 THE OPTIMAL POLICY 𝑵∗ 
In this section we determine an optimal replacement policy for minimizing 𝐶(𝑁). 

From equation (14) we have, 

𝐴(𝑁) =
(𝐶 + 𝑟)𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ

ℎ(𝑁)
 

where 

ℎ(𝑁) = ∑𝜆𝑛

𝑁

𝑛=1

+ 𝜇 [1 +∑
1

2𝑛−1𝛽

𝑁−1

𝑛=2

] + 𝜏 

In order to obtain the optimal policy 𝑁∗, we study the difference between 

 𝐴(𝑁 + 1) − 𝐴(𝑁) 

𝐴(𝑁 + 1) − 𝐴(𝑁)

= [(
(𝐶 + 𝑟)𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ

ℎ(𝑁 + 1)
)

− (
(𝐶 + 𝑟)𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ

ℎ(𝑁)
)] 
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=

((𝐶 + 𝑟)𝜇 [1 + ∑
1

2𝑛−1𝛽
𝑁
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ) (∑ 𝜆𝑛

𝑁
𝑛=1 + 𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝜏) −

((𝐶 + 𝑟)𝜇 [1 + ∑
1

2𝑛−1𝛽
𝑁−1
𝑛=2 ] + 𝑅 + (𝐶𝑝 + r)τ) (∑ 𝜆𝑛

𝑁+1
𝑛=1 + 𝜇 [1 + ∑

1

2𝑛−1𝛽
𝑁
𝑛=2 ] + 𝜏)

ℎ(𝑁)ℎ(𝑁 + 1)
 

=

(
(𝐶 + 𝑟)𝜇𝜏

1

2𝑁−1𝛽
− (𝐶 + 𝑟)𝜇𝜆𝑁+1 + (𝐶 + 𝑟)𝜇

1

2𝑁−1𝛽
∑ 𝜆𝑛
𝑁
𝑛=1 − (𝐶 + 𝑟)𝜇 ∑

1

2𝑛−1𝛽
 𝑁−1

𝑛=2 𝜆𝑁+1

−𝑅𝜆𝑁+1 − 𝑅𝜇
1

2𝑁−1𝛽
− (𝐶𝑝 + r)τ𝜆𝑁+1 − (𝐶𝑝 + r)τμ

1

2𝑁−1𝛽

)

ℎ(𝑁)ℎ(𝑁 + 1)
 

  

=

(
(𝐶 + 𝑟)𝜇 [

1

2𝑁−1𝛽
∑ 𝜆𝑛
𝑁
𝑛=1 − 𝜆𝑁+1∑

1

2𝑛−1𝛽
 𝑁−1

𝑛=2 − 𝜆𝑁+1 +
𝜏

2𝑁−1𝛽
] −

𝑅 [𝜆𝑁+1 +
𝜇

2𝑁−1𝛽
] − (𝐶𝑝 + r)τ [𝜆𝑁+1 +

𝜇

2𝑁−1𝛽
]

)

ℎ(𝑁)ℎ(𝑁 + 1)
 

   

=

(

(𝐶+𝑟)𝜇

2𝑁−1𝛽
[∑ 𝜆𝑛

𝑁
𝑛=1 − 2𝑁−1𝛽𝜆𝑁+1 − 2

𝑁−1𝛽𝜆𝑁+1∑
1

2𝑛−1𝛽
𝑁−1
𝑛=2 + 𝜏] −

1

2𝑁−1𝛽
[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+12

𝑁−1𝛽 + 𝜇]
)

ℎ(𝑁)ℎ(𝑁 + 1)
 

𝐴(𝑁 + 1) − 𝐴(𝑁) =

(
(𝐶 + 𝑟)𝜇 [∑ 𝜆𝑛

𝑁
𝑛=1 − 2𝑁−1𝛽𝜆𝑁+1 (1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏] −

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+12
𝑁−1𝛽 + 𝜇]

)

2𝑁−1𝛽ℎ(𝑁)ℎ(𝑁 + 1)
 

                             

Then define the following auxiliary function  

𝐵(𝑁) =
(𝐶 + 𝑟)𝜇 [∑ 𝜆𝑛

𝑁
𝑛=1 − 2𝑁−1𝛽𝜆𝑁+1 (1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏]

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+12𝑁−1𝛽 + 𝜇]
 

 

           As the denominator of 𝐴(𝑁 + 1) − 𝐴(𝑁) is always positive. It is clear that the sign of 

𝐴(𝑁 + 1) − 𝐴(𝑁) is the same as the sign of its numerator. Consequently, we have the following 

lemma. 

Lemma 4.1.  𝐴(𝑁 + 1) ⋛ 𝐴(𝑁) ⟺ 𝐵(𝑁) ⋛ 1 

Lemma(3.1) shows that the monotonicity of 𝐴(𝑁) can be determined by the value of 𝐵(𝑁). 

Next we shall prove 𝐵(𝑁) is decreasing in 𝑁. 

Lemma 4.2. To prove 𝐵(𝑁) is decreasing in 𝑁. 

Proof.  
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𝐵(𝑁 + 1) − 𝐵(𝑁)

= (
(𝐶 + 𝑟)𝜇 [∑ 𝜆𝑛

𝑁+1
𝑛=1 − 2𝑁𝛽𝜆𝑁+2 (1 + ∑

1

2𝑛−1𝛽
𝑁
𝑛=2 ) + 𝜏]

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+22𝑁𝛽 + 𝜇]
)

− (
(𝐶 + 𝑟)𝜇 [∑ 𝜆𝑛

𝑁
𝑛=1 − 2𝑁−1𝛽𝜆𝑁+1 (1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏]

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+12𝑁−1𝛽 + 𝜇]
) 

          

=

(𝐶 + 𝑟)𝜇 (
[∑ 𝜆𝑛

𝑁+1
𝑛=1 − 2𝑁𝛽𝜆𝑁+2 (1 + ∑

1

2𝑛−1𝛽
𝑁
𝑛=2 ) + 𝜏] [𝜆𝑁+12

𝑁−1𝛽 + 𝜇] −

[∑ 𝜆𝑛
𝑁
𝑛=1 − 2𝑁−1𝛽𝜆𝑁+1 (1 + ∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 ) + 𝜏] [𝜆𝑁+22

𝑁𝛽 + 𝜇]
)

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+22𝑁𝛽 + 𝜇][𝜆𝑁+12𝑁−1𝛽 + 𝜇]
   

Let 

𝜉(𝑁) =
(𝐶 + 𝑟)𝜇

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+22𝑁𝛽 + 𝜇][𝜆𝑁+12𝑁−1𝛽 + 𝜇]
 

  

              

𝐵(𝑁 + 1) − 𝐵(𝑁)

=  𝜉(𝑁)

(

 
 
 
[∑ 𝜆𝑛

𝑁+1

𝑛=1

− 2𝑁𝛽𝜆𝑁+2 (1 +∑
1

2𝑛−1𝛽

𝑁

𝑛=2

) + 𝜏] [𝜆𝑁+12
𝑁−1𝛽 + 𝜇] −

[∑𝜆𝑛

𝑁

𝑛=1

− 2𝑁−1𝛽𝜆𝑁+1 (1 +∑
1

2𝑛−1𝛽

𝑁−1

𝑛=2

) + 𝜏] [𝜆𝑁+22
𝑁𝛽 + 𝜇]

)

 
 
 

 

       

= 𝜉(𝑁)(𝜆𝑁+12
𝑁−1𝛽 (∑𝜆𝑛

𝑁

𝑛=1

+ 𝜆𝑁+1 + 𝜇 + 𝜏 + 𝜇∑
1

2𝑛−1𝛽

𝑁−1

𝑛=2

)

− 2𝑁𝛽𝜆𝑁+2 (∑𝜆𝑛

𝑁

𝑛=1

+ 𝜆𝑁+1 + 𝜇 + 𝜏 + 𝜇∑
1

2𝑛−1𝛽

𝑁−1

𝑛=2

)

+ 𝜇(𝜆𝑁+1 − 2𝜆𝑁+2)) 

= 𝜉(𝑁)((∑𝜆𝑛

𝑁

𝑛=1

+ 𝜆𝑁+1 + 𝜇 + 𝜏 + 𝜇∑
1

2𝑛−1𝛽

𝑁−1

𝑛=2

) (𝜆𝑁+12
𝑁−1𝛽 − 2𝑁𝛽𝜆𝑁+2)

+  𝜇(𝜆𝑁+1 − 2𝜆𝑁+2)) 



Sutha. M and Sridhar. A 

 

https://iaeme.com/Home/journal/IJMM 10 editor@iaeme.com 

          = 𝜉(𝑁)((𝜆𝑁+1 − 2𝜆𝑁+2) (𝜇 + 2
𝑁−1𝛽 (∑ 𝜆𝑛

𝑁
𝑛=1 + 𝜆𝑁+1 + 𝜇 + 𝜏 +

𝜇∑
1

2𝑛−1𝛽
𝑁−1
𝑛=2 ))) 

    

𝐵(𝑁 + 1) − 𝐵(𝑁)   

=

(𝐶 + 𝑟)𝜇 ((𝜆𝑁+1 − 2𝜆𝑁+2) (𝜇 + 2
𝑁−1𝛽 (∑ 𝜆𝑛

𝑁
𝑛=1 + 𝜆𝑁+1 + 𝜇 + 𝜏 + 𝜇∑

1

2𝑛−1𝛽
𝑁−1
𝑛=2 )))

[𝑅 + (𝐶𝑝 + r)τ][𝜆𝑁+22𝑁𝛽 + 𝜇][𝜆𝑁+12𝑁−1𝛽 + 𝜇]
 

         

This implies that  𝐵(𝑁)  is decreasing in 𝑁, because 𝜆𝑛 is non-decreasing in 𝑛 and 𝛽 > 0. 

 

Therefore by using lemma 2.1 and lemma 2.3 we have the following theorem. 

Theorem 4.1.  The optimal replacement policy 𝑁𝑖
∗ = ∞  is the unique optimal for the 

improving system. 

Proof.  In fact, because  𝐵(𝑁)  is decreasing in 𝑁,  there exists an integer 𝑁𝑖, such that 

              𝑁𝑖 = 𝑚𝑖𝑛{𝑁 ∕ 𝐵(𝑁) ≤ 1} 

Therefore, Lemma 2.2 yields that 𝐶(𝑁) and 𝐴(𝑁) are both unimodel functions of 𝑁 and both 

take maximum at 𝑁𝑖. This implies that the minimum of 𝐶(𝑁) will be given by  

                                    min𝐶(𝑁) = 𝑚𝑖𝑛{𝐶(1), 𝐶(∞)} 

                                                         = 𝑚𝑖𝑛 {
𝑅+𝐶𝑝𝜏−𝑟𝜆

𝜆1+𝜏
, −𝑟}  

                                                     = −𝑟 

Consequently, 𝑁𝑖
∗ = ∞ is the unique optimal replacement policy for the improving system. 

5. CONCLUSION 

As the optimal policy for the improving system is always  𝑁𝑖
∗ = ∞. 
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