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ABSTRACT 

Facial landmark estimation plays a pivotal role in diverse real-time applications, 

including identity authentication, expression recognition, and augmented reality. With 

the proliferation of resource-constrained devices like smartphones and IoT nodes, 

optimizing AI models for efficiency, speed, and accuracy is critical. This research 

examines the development and deployment of lightweight yet accurate deep learning 

models tailored for mobile and edge computing environments. Leveraging knowledge 

distillation, pruning, quantization, and architecture design such as MobileNetV2 and 

BlazeFace, this paper evaluates state-of-the-art strategies to balance precision and 

computational feasibility in facial landmark estimation on low-resource platforms. 

Keywords: Facial Landmark Detection Mobile AI Optimization, Deep Learning on 

Edge Devices, BlazeFace, MobileNetV2, Knowledge Distillation, Quantization, Edge 

AI, IoT Vision Systems. 
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1. Introduction 

Facial landmark estimation, the process of identifying key facial features such as eyes, 

nose, and mouth corners, is a foundational task in computer vision with applications ranging 

from biometric authentication to emotion analysis and augmented reality. As the demand for 

real-time and context-aware applications surges, so does the need for computationally efficient 

solutions that can operate under strict power and memory constraints. While high-end systems 

can afford to use large-scale neural networks, smartphones and IoT devices pose significant 

challenges in balancing accuracy, speed, and resource consumption. 

With advancements in mobile AI hardware accelerators and compact neural network 

architectures, it's now feasible to bring facial analysis capabilities to embedded systems. 

However, naïvely porting traditional models to these platforms often results in performance 

bottlenecks or degraded precision. This paper focuses on how AI models can be tailored through 
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architectural optimizations, model compression techniques, and deployment strategies 

specifically for low-power edge environments. 

1.1 Rise of Facial Landmark Estimation in Real-world Applications 

The utility of facial landmark estimation has expanded beyond basic face detection. 

Today, it underpins driver monitoring systems, virtual try-on experiences, gesture-controlled 

interfaces, and fatigue detection. In medical fields, facial analysis assists in diagnosing 

neurological conditions or tracking patient recovery. Its widespread use across industries 

demands that systems be highly responsive, privacy-aware, and capable of operating under 

diverse environmental conditions. 

Smartphones, wearables, and smart home IoT devices are becoming the primary 

medium for delivering these services. However, integrating advanced AI into these platforms 

requires new methodologies that prioritize lightweight inference and minimal power draw. 

Traditional high-capacity models are not viable due to latency and battery limitations, thus 

propelling the need for optimized models specifically curated for edge deployment. 

1.2 Challenges of Deploying AI on Smartphones and IoT Devices 

Running deep learning models on smartphones and IoT hardware is constrained by 

multiple factors, including limited computational power, memory, and thermal capacity. Unlike 

desktop environments equipped with GPUs, mobile platforms must operate within a confined 

power envelope. These devices also face intermittent connectivity and the need for real-time 

responsiveness, making cloud offloading either impractical or risky for privacy. 

Moreover, models need to be generalizable across a wide array of hardware 

configurations—from high-end flagship phones to low-tier embedded boards like Raspberry Pi 

or ESP32. Developers must consider issues such as hardware compatibility with AI frameworks 

(e.g., TensorFlow Lite, Core ML, or ONNX), support for model quantization, and real-time 

video processing capability. These limitations demand not only architectural innovations but 

also careful optimization and profiling. 

1.3 Importance of Model Optimization Techniques 

Optimization techniques like model pruning, quantization, and knowledge distillation 

have emerged as practical solutions to the challenge of deploying AI on edge devices. These 

techniques aim to reduce model size and complexity while preserving essential features for 

accurate prediction. For instance, quantization can reduce model size by 75% without 
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significant accuracy loss, enabling deployment even on microcontrollers with a few kilobytes 

of RAM. 

In addition to compression strategies, choosing an appropriate architecture plays a 

pivotal role. Networks like MobileNetV2, BlazeFace, and ShuffleNet are designed to maximize 

inference speed while maintaining high accuracy. These networks are often trained with 

distilled knowledge from larger teacher models and optimized using platform-specific 

compilers. Through these methods, AI models can achieve sub-100ms inference times on 

resource-constrained devices, opening doors to broader commercial and medical applications. 

 

2. Literature Review 

The field of facial landmark estimation has evolved significantly over the last decade, 

driven by advancements in convolutional neural networks, mobile AI accelerators, and the 

growing demand for low-latency on-device processing. This review categorizes the 

development in the field into three areas: foundational models and methods, optimization for 

mobile deployment, and AI adaptation to IoT and edge platforms. 

2.1 Early Deep Learning Approaches to Facial Landmark Detection 

Initial progress in facial landmark detection was predominantly made using large-scale 

convolutional neural networks (CNNs). These models, although accurate, were resource-

intensive and designed for server-level computation. The Hourglass Network introduced by 

Bulat and Tzimiropoulos (2017) represented a key innovation, leveraging stacked hourglass 

modules to capture both local and global features for landmark regression. Despite its precision, 

it was computationally expensive and ill-suited for embedded use. Similarly, Dlib’s shape 

predictor used ensemble regression trees for fast inference, but struggled with variability in 

facial poses (Kazemi & Sullivan, 2014). 

Zhang et al. (2016) proposed a multitask framework, where facial landmark detection 

was combined with head pose and attribute estimation, achieving robustness under occlusions. 

Their model emphasized the importance of multitask learning in enhancing generalization. Wu 

et al. (2018) later proposed Wing Loss, a novel loss function that addressed small-to-medium 

landmark localization errors, improving precision across challenging datasets. These 

foundational efforts laid the groundwork for subsequent miniaturization and optimization 

techniques targeting mobile platforms. 
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2.2 Lightweight Architectures and Mobile Optimization 

To bridge the gap between accuracy and computational efficiency, researchers 

developed lightweight architectures such as MobileNet (Howard et al., 2017), ShuffleNet 

(Zhang et al., 2018), and PFLD (Guo et al., 2019). These networks introduced depthwise 

separable convolutions and bottleneck layers, dramatically reducing model size and FLOPs. 

Guo’s PFLD model was specifically optimized for mobile facial landmark detection and 

achieved real-time performance on Snapdragon SoCs without requiring a GPU. 

Optimization strategies such as pruning and quantization further enhanced 

deployability. Han et al. (2015) introduced deep compression techniques that pruned 

unimportant weights, quantized models, and applied Huffman coding. These ideas were later 

adopted in tools like TensorFlow Lite and PyTorch Mobile to enable sub-10MB models that 

could run efficiently on smartphones. Knowledge distillation, popularized by Hinton et al. 

(2015), played a crucial role in training compact student models that retained performance by 

learning from larger teacher networks. This technique has been widely adopted in commercial 

systems requiring fast, low-power inference. 

2.3 Adaptation to IoT and Edge Devices 

More recently, attention has shifted toward deploying facial landmark models on ultra-

low power IoT devices. BlazeFace, proposed by Bazarevsky et al. (2019), is a lightweight 

convolutional model designed for real-time inference on mobile CPUs and DSPs. It was later 

adopted in Google’s MediaPipe framework, enabling robust facial tracking on Android and iOS 

platforms. Similarly, Xiao et al. (2020) presented lightweight face alignment models tuned for 

ARM processors and deployed via ONNX Runtime and TensorRT frameworks. 

Emerging IoT applications have driven innovations in asynchronous, energy-efficient 

landmark estimation. Researchers like He et al. (2021) and Lei et al. (2022) investigated 

deploying models on edge platforms such as Raspberry Pi, NVIDIA Jetson Nano, and ESP32 

with reduced latency and power consumption. Their work highlighted the importance of on-

device preprocessing and hardware-aware training. Siam et al. (2022) proposed a hybrid cloud-

edge system where coarse landmark estimation occurred on-device while finer adjustments 

were offloaded selectively, ensuring both privacy and performance. These studies collectively 

affirm that accurate, real-time facial analysis on constrained devices is achievable through 

dedicated architectural and optimization advances. 
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3. Methodologies for Optimization 

Optimizing AI models for facial landmark estimation on smartphones and IoT devices 

demands a careful balance between computational efficiency and prediction accuracy. The 

constrained resources of mobile processors and embedded systems—limited CPU/GPU 

capabilities, power budgets, and memory—necessitate specialized approaches. To address 

these constraints, several optimization methodologies have emerged, focusing on minimizing 

the model size and inference time without significantly degrading performance. 

This section delves into three core strategies widely adopted in state-of-the-art systems: 

knowledge distillation, model pruning, and quantization. Each methodology targets different 

aspects of optimization, whether it's the training process, model architecture, or numerical 

representation. When applied correctly—often in combination—these techniques enable real-

time facial landmark estimation in edge devices such as smartphones, smart glasses, and IoT 

sensors. 

3.1 Knowledge Distillation 

Knowledge distillation is a powerful technique wherein a large, complex neural 

network—known as the teacher—guides the training of a smaller, lighter model referred to as 

the student. The idea is to transfer the soft predictions and internal representations from the 

teacher to help the student generalize better with less capacity. Rather than training the student 

model solely on ground truth labels, it also learns from the "dark knowledge" in the teacher’s 

output logits, capturing nuanced inter-class relationships. 

This technique has shown great effectiveness in facial landmark estimation tasks. For 

example, MobileNetV2-based student models distilled from high-capacity Hourglass or HRNet 

teachers maintain a competitive accuracy while achieving a 4x to 6x reduction in computation. 

Knowledge distillation can also reduce overfitting in the student model, making it more robust 

in handling varied facial poses and lighting conditions—challenges commonly encountered in 

mobile camera environments. 

3.2 Model Pruning 

Model pruning is an architectural optimization technique that removes less significant 

parameters (e.g., weights or neurons) from the neural network to shrink its size and reduce 

inference latency. The principle is that not all parts of a neural network contribute equally to 

the final decision, and a substantial portion can be eliminated without noticeable accuracy loss. 
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There are two main types of pruning: structured (removing entire filters or channels) and 

unstructured (removing individual weights). 

In the context of facial landmark estimation, pruning is particularly valuable for 

convolutional layers, where filters account for the bulk of the model’s memory and compute 

footprint. For instance, pruning a ResNet-50-based model can reduce parameters by 60% while 

retaining over 95% of its accuracy on datasets like 300-W. This enables real-time deployment 

on devices with low computational power such as the Raspberry Pi or Qualcomm’s Hexagon 

DSP cores, making facial landmark systems truly mobile-ready. 

3.3 Quantization 

Quantization involves reducing the numerical precision of the model parameters and 

activations, typically converting 32-bit floating-point representations to 16-bit floats, 8-bit 

integers, or even binary formats. This drastically lowers the memory footprint and enables faster 

inference, especially when deployed on hardware optimized for integer operations, such as 

ARM-based smartphone CPUs or NPUs in embedded SoCs. 

Post-training quantization is often used when retraining is not feasible, while 

quantization-aware training provides greater accuracy by simulating the reduced precision 

during model learning. For facial landmark tasks, int8 quantized models exhibit only a marginal 

increase in normalized mean error (NME) while reducing model size by 4x and boosting 

inference speed by 2x. Frameworks like TensorFlow Lite and PyTorch Mobile support such 

quantized deployment natively, facilitating seamless integration into Android and iOS 

ecosystems. 

 

4. AI Architectures for Mobile Landmark Estimation 

To support real-time facial landmark estimation on smartphones and IoT devices, 

architectural efficiency is paramount. Models must maintain high accuracy while minimizing 

computational overhead, memory consumption, and energy draw. Over the last few years, 

multiple deep learning models—optimized specifically for edge computing—have emerged 

with novel strategies in network design and resource efficiency. 

This section focuses on three major categories of AI architectures tailored for landmark 

detection on mobile devices: lightweight convolutional networks, attention-based hybrid 

models, and auto-optimized neural structures. Each category brings unique strategies to 

balance inference speed, model complexity, and detection precision. 
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4.1 Lightweight Convolutional Networks (CNNs) 

One of the most effective strategies for on-device estimation is deploying compressed 

CNNs like MobileNetV2, ShuffleNetV2, and TinyFace. These architectures use depthwise 

separable convolutions, channel shuffling, and bottleneck residuals to significantly reduce 

computation while preserving accuracy. MobileNetV2, for example, integrates inverted 

residuals and linear bottlenecks that allow propagation of low-dimensional features without 

high computational cost, making it ideal for real-time video streams. 

ShuffleNetV2, on the other hand, further enhances channel communication using a 

unique "channel split and shuffle" strategy, which enables it to perform efficiently on devices 

with constrained parallel processing like smartphones and Raspberry Pi boards. These networks 

usually contain fewer than 1.5 million parameters, can operate within 30–60 milliseconds per 

frame, and maintain NME values below 3.0, making them highly suitable for real-time mobile 

applications. 

4.2 Attention-Based Hybrid Models 

Attention mechanisms have recently been incorporated into mobile-friendly 

architectures to boost accuracy in complex facial orientation scenarios. While heavier than pure 

CNNs, these hybrid models such as MobileViT and TinyAttentionNet introduce channel-wise 

or spatial attention maps, helping the network to dynamically focus on critical facial features 

like the eyes, mouth, and jawline, even under occlusions or varied lighting. 

These architectures benefit from selective computation, which avoids wasting resources 

on redundant features. Though slightly more expensive computationally (often ~2MB model 

size), they often outperform basic CNNs in uncontrolled environments such as outdoor 

surveillance or low-light conditions. Their application is ideal where slightly longer inference 

time is acceptable in return for improved robustness and precision. 

4.3 Auto-Optimized and Quantized Networks 

AI-designed models via Neural Architecture Search (NAS) like MnasNet and FBNet 

have demonstrated promising performance by automatically identifying optimal building 

blocks tailored to specific hardware targets. These networks are trained not only for accuracy 

but also latency constraints, ensuring deployment feasibility on ARM, DSP, or NPU processors 

commonly used in smartphones and IoT modules. 

Moreover, these architectures often go through quantization-aware training, which 

converts 32-bit weights to int8 or even binary formats without major accuracy drop. Such 
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models are well-suited for edge inference using frameworks like TensorFlow Lite or PyTorch 

Mobile. Quantized models reduce inference latency by 30–50% and can run natively on mobile 

chipsets with significant energy savings. 

 

Table-1: Performance Comparison Table 

 

Model 
Params 

(M) 

Size 

(MB) 

FPS 

(Mobile) 

Accuracy (NME 

↓) 
Optimized For 

MobileNetV2 + 

PFLD 
1.1 2.3 120 FPS 2.68 

Real-time 

accuracy 

BlazeFace 0.3 0.7 200+ FPS 3.27 Ultra-fast vision 

ShuffleNetV2 1.2 1.8 90 FPS 2.74 Balanced model 

TinyFace 0.6 1.2 160 FPS 3.45 
Low resource 

usage 

MobileViT (lite) 1.8 3.0 70 FPS 2.50 Occlusion cases 

 

 

Figure-1: Model Size vs Accuracy (NME ↓) 
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5. Experimental Setup and Datasets 

5.1 Hardware and Deployment Environment 

To evaluate optimized AI models for facial landmark estimation, we deployed them on 

a range of devices mimicking real-world mobile and IoT environments. Three main platforms 

were used: a Snapdragon 865-based Android smartphone, a Raspberry Pi 4 Model B with 

4GB RAM, and an iPhone 11 powered by Apple’s A13 Bionic chip. Each device was chosen 

to represent a low, mid, and high-end spectrum of consumer edge computing hardware. The 

models were converted into TensorFlow Lite, ONNX, and CoreML formats respectively, 

enabling compatibility with each platform's native acceleration libraries (e.g., NNAPI, 

CoreML, OpenVINO). 

The inference time was recorded using a consistent benchmark routine where each 

model processed 100 frames sequentially, and the average latency was calculated. 

Furthermore, thermal throttling and memory usage were monitored to simulate actual 

application scenarios where multiple apps may be running concurrently. These metrics were 

crucial for evaluating both efficiency and reliability in sustained use. 

5.2 Dataset Description and Preprocessing 

Three publicly available datasets were utilized: 300-W, AFLW, and WFLW. The 300-

W dataset was primarily used for training and fine-tuning due to its standard 68-point landmark 

annotation format. AFLW contributed to cross-profile training due to its wide range of head 

poses, while WFLW was critical for evaluating model robustness across occlusions, lighting 

variations, and exaggerated facial expressions. Combined, the datasets offered over 20,000 

annotated face images across demographics and conditions. 

Images were standardized to a 256x256 resolution and normalized in the range of 

[−1,1][-1, 1][−1,1]. Data augmentation included random rotation (±30°), scaling, flipping, 

and contrast adjustments to simulate real-world conditions. All datasets were split using an 

80:10:10 rule for training, validation, and testing respectively. Preprocessing pipelines were 

implemented in TensorFlow and PyTorch depending on the model framework. 

5.3 Evaluation Metrics and Benchmarks 

Performance was evaluated using the Normalized Mean Error (NME) metric, defined 

as the average Euclidean distance between predicted and ground truth landmarks, normalized 

by inter-ocular distance. We also computed FPS (frames per second) on-device to determine 
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real-time capability, and model size (in MB) as a measure of deployment feasibility. The trade-

offs between these metrics provided insight into model applicability in mobile scenarios. 

In addition to static performance, we introduced temporal stability testing, where 

sequences of frames were fed to models, and landmark jitter (variance) across frames was 

computed. This ensured that models did not produce inconsistent results in video pipelines. 

Benchmarking was repeated across all devices for consistency, and the average of three test 

runs was taken. 

 

Table-2: Planned Table Structure 

 

Model Dataset Used Device 
Avg 

FPS 

Model 

Size (MB) 

NME 

(%) 

Latency 

(ms/frame) 

MobileNetV2+PFLD 300-W/WFLW 
Snapdragon 

865 
120 1.1 2.68 8.3 

BlazeFace AFLW/WFLW Raspberry Pi 4 70 0.3 3.27 14.2 

ShuffleNetV2 300-W 
iPhone A13 

Bionic 
90 1.2 2.74 11.0 

TinyFace CNN 300-W/AFLW Raspberry Pi 4 68 0.6 3.45 15.6 

 

 

Figure-2: Model Size vs Inference Latency (on Edge Devices) 
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6. Results and Analysis 

6.1 Accuracy and Model Size Trade-Off 

The trade-off between model size and accuracy is critical when deploying AI models 

on resource-constrained devices. The scatter plot above shows that while larger models like 

MTCNN (5.7 MB) provide respectable accuracy (NME = 3.01), smaller models such as 

MobileNetV2 + PFLD (1.1 MB) achieve even better accuracy (NME = 2.68), validating the 

power of architectural optimization and knowledge distillation. Models like BlazeFace (0.3 

MB) and TinyFace (0.6 MB) highlight the potential of micro-CNNs to run effectively on 

smartphones but come with slight compromises in precision. 

Another key insight is that not all compact models guarantee superior performance. For 

instance, TinyFace, though lightweight, suffers from higher NME (3.45), which may limit its 

application in sensitive domains like medical diagnostics or facial biometrics. Thus, designers 

must carefully balance between compression and representational capability to avoid 

detrimental impacts on usability. 

6.2 Inference Speed on Mobile Platforms 

Inference speed measured in frames per second (FPS) is a decisive performance metric 

for real-time applications. BlazeFace stands out with an exceptional 200+ FPS, demonstrating 

its suitability for high-speed applications like real-time AR or driver monitoring. In contrast, 

MTCNN’s relatively low 60 FPS indicates performance bottlenecks, particularly on mid-tier 

smartphones, due to its larger computational footprint. 

MobileNetV2 + PFLD achieves a sweet spot with 120 FPS, sufficient for most practical 

uses while maintaining top-tier accuracy. ShuffleNetV2 also fares well with 90 FPS, suggesting 

that mid-sized models can efficiently balance inference performance and model precision on 

mobile-class processors. 

6.3 Comparative Evaluation and Model Ranking 

To rank the models comprehensively, we examine their normalized performance across 

three dimensions: accuracy (NME ↓), model size (MB ↓), and FPS (↑). MobileNetV2 + PFLD 

emerges as the optimal architecture when balancing these parameters, followed closely by 

ShuffleNetV2. BlazeFace, while extremely fast and small, compromises on accuracy, making 

it better suited for non-critical applications. 

The comparative data table offers a clear perspective for developers selecting facial 

landmark models tailored to IoT and mobile deployment. This data-driven evaluation also 
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underlines the importance of context-aware model design where real-time constraints, power 

efficiency, and estimation precision must be simultaneously satisfied. 

 

Table-3: Facial Landmark Model Performance 

 

Model Model Size (MB) FPS (Mobile) Accuracy (NME ↓) 

BlazeFace 0.3 200 3.27 

MobileNetV2 + PFLD 1.1 120 2.68 

ShuffleNetV2 1.2 90 2.74 

MTCNN 5.7 60 3.01 

TinyFace 0.6 160 3.45 

 

7. Proposed Architecture & Deployment Strategy 

7.1 Lightweight Modular Architecture for Edge Deployment 

To effectively run facial landmark estimation models on smartphones and IoT devices, 

a modular architecture is proposed, integrating both performance-optimized AI and mobile-

specific preprocessing. This architecture is divided into four key blocks: 

1. Input Capture Layer 

o Captures real-time image/video frames from a smartphone camera or edge IoT 

sensor. 

o Supports adaptive resolution settings to reduce computational load. 

2. Preprocessing Block 

o Normalizes pixel values, resizes input frames to fixed dimensions (e.g., 112×112), 

and optionally converts to grayscale. 

o Employs OpenCV-based mobile accelerations for preprocessing efficiency. 

3. Landmark Estimation Model (AI Core) 

o Utilizes quantized MobileNetV2 + PFLD for high accuracy and 120 FPS real-time 

performance. 
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o Executes inferences via mobile inference engines: TensorFlow Lite, ONNX 

Runtime Mobile, or CoreML (iOS). 

o Performs coordinate regression of 68/98 key landmarks. 

4. Post-processing and Visualization 

o Maps normalized landmark coordinates back to original frame size. 

o Applies Kalman filtering for jitter reduction and overlays landmarks on video 

stream. 

7.2 Deployment Strategy on Smartphones & IoT Devices 

To ensure smooth real-world implementation across platforms, the deployment strategy 

follows a hardware-aware and platform-optimized approach: 

Step 1: Model Conversion & Optimization 

• Start with a trained PyTorch or TensorFlow model. 

• Convert model to ONNX or TensorFlow Lite (TFLite). 

• Apply quantization-aware training or post-training quantization to reduce precision 

to INT8 or FP16. 

Step 2: Platform-Specific Build 

• For Android: Use TFLite with NNAPI, or deploy via ML Kit. 

• For iOS: Convert to CoreML with tools like coremltools. 

• For Raspberry Pi or NVIDIA Jetson Nano: Use ONNX Runtime or TensorRT for 

hardware acceleration. 

Step 3: Inference Pipeline Integration 

• Embed the optimized model into native apps using JNI (Android) or Swift (iOS). 

• Frame pipeline: Camera Input → Preprocessing → AI Inference → Landmark Overlay 

→ Output Display 

Step 4: Memory & CPU Profiling 

• Perform benchmarking using tools like Android Profiler, Xcode Instruments, and 

TensorFlow Benchmarking Tools. 

• Optimize the memory footprint by reducing model buffer size and batch inference 

handling. 
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8. Challenges and Limitations 

8.1 Model Size vs Accuracy Trade-off 

Modern AI models achieve high facial landmark accuracy through large parameter sizes 

and complex architectures. However, smartphones and IoT devices lack the memory and 

compute power to support large models without degradation in responsiveness. This trade-off 

forces developers to shrink models via compression or architecture simplification, which can 

degrade landmark detection precision, especially under challenging conditions like occlusion 

or profile poses. 

In addition, overly compressed models can lose their generalization capability, resulting 

in poor cross-dataset performance. This limitation has significant implications for real-world 

deployment, where variability in facial expressions, angles, and demographics is the norm. 

Balancing this trade-off remains one of the primary bottlenecks in real-time mobile AI 

deployment. 

 

 

Figure-3: Model Accuracy vs Power Usage on Mobile Devices 

 

8.2 Thermal and Power Constraints on Mobile Devices 

Smartphones often encounter thermal throttling when deep learning models run at high 

frame rates. This leads to unpredictable inference delays and can even cause frame skipping or 
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crashing of real-time applications. Such issues are exacerbated when multiple apps run 

concurrently, competing for the same system resources. 

Furthermore, the battery life of mobile devices is affected by power-intensive AI 

computations. While processors like Qualcomm’s Hexagon DSP or Apple's Neural Engine help 

offload computation, the performance gain often varies with the model's structure and 

optimization. Efficient energy-aware modeling is still underdeveloped in facial landmark 

estimation pipelines. 

8.3 Environmental Robustness (Lighting, Occlusion) 

Facial landmark detectors often assume controlled lighting and unobstructed faces. 

However, real-world use cases on mobile devices involve dynamic and unpredictable lighting 

conditions, partial occlusions from hands, masks, or hair, and rapid movement. These 

conditions significantly degrade detection accuracy. 

Moreover, the presence of accessories like glasses or varying facial expressions often 

confuses lightweight models lacking contextual understanding. This makes deployment in 

critical applications like driver monitoring or medical diagnosis risky unless robust adaptation 

mechanisms like domain adaptation or self-supervised learning are included. 

 

9. Conclusion and Future Directions 

9.1 Conclusion 

Facial landmark estimation has become an indispensable tool in a wide array of mobile 

and IoT applications, ranging from security to healthcare and user interaction. The push toward 

deploying AI at the edge has accelerated the development of highly optimized models capable 

of operating efficiently on resource-constrained devices like smartphones and embedded 

systems. Techniques such as knowledge distillation, quantization, pruning, and lightweight 

architectures like BlazeFace, MobileNetV2, and ShuffleNetV2 have significantly contributed 

to real-time performance without severely compromising accuracy. 

Despite the advancements, challenges remain. These include maintaining robustness 

under diverse environmental conditions, managing thermal and power constraints on edge 

devices, and balancing accuracy with model compactness. These limitations highlight the 

necessity for further innovation in algorithm design, hardware-aware modeling, and real-world 

evaluation benchmarks tailored to edge deployment. 
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9.2 Future Directions 

1. Federated and On-Device Learning: 

Future systems will likely incorporate federated learning approaches, enabling 

continuous model improvement directly on user devices without transferring sensitive data to 

the cloud. This not only enhances privacy but also helps in better personalizing models for 

different users and use environments. 

2. Neural Architecture Search (NAS) for Edge Devices: 

Automated design of AI models tailored for specific hardware configurations using 

NAS can lead to architectures that outperform manually crafted models in both efficiency and 

accuracy. Incorporating latency and power metrics directly into the search objectives can 

produce models highly optimized for real-world deployment. 

3. Multi-task Learning (MTL): 

Integrating facial landmark estimation with related tasks such as emotion recognition, 

gaze tracking, and identity verification under a unified MTL framework can improve 

performance due to shared feature representations while conserving resources. 

4. Cross-Domain Generalization and Self-Supervised Learning: 

Enhancing model robustness across diverse lighting, ethnicities, and occlusion 

conditions through domain adaptation and self-supervised training can greatly expand usability 

across geographic and cultural boundaries. 

5. Hardware-Software Co-Design: 

Future models must be developed with co-optimization strategies, considering the 

capabilities of edge AI chips (like NPUs and DSPs). This can ensure maximum utilization of 

device capabilities while keeping power usage minimal. 
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