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ABSTRACT

Facial landmark estimation plays a pivotal role in diverse real-time applications,
including identity authentication, expression recognition, and augmented reality. With
the proliferation of resource-constrained devices like smartphones and 1oT nodes,
optimizing Al models for efficiency, speed, and accuracy is critical. This research
examines the development and deployment of lightweight yet accurate deep learning
models tailored for mobile and edge computing environments. Leveraging knowledge
distillation, pruning, quantization, and architecture design such as MobileNetV2 and
BlazeFace, this paper evaluates state-of-the-art strategies to balance precision and

computational feasibility in facial landmark estimation on low-resource platforms.

Keywords: Facial Landmark Detection Mobile Al Optimization, Deep Learning on
Edge Devices, BlazeFace, MobileNetV2, Knowledge Distillation, Quantization, Edge
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1. Introduction

Facial landmark estimation, the process of identifying key facial features such as eyes,
nose, and mouth corners, is a foundational task in computer vision with applications ranging
from biometric authentication to emotion analysis and augmented reality. As the demand for
real-time and context-aware applications surges, so does the need for computationally efficient
solutions that can operate under strict power and memory constraints. While high-end systems
can afford to use large-scale neural networks, smartphones and IoT devices pose significant
challenges in balancing accuracy, speed, and resource consumption.

With advancements in mobile Al hardware accelerators and compact neural network
architectures, it's now feasible to bring facial analysis capabilities to embedded systems.
However, naively porting traditional models to these platforms often results in performance

bottlenecks or degraded precision. This paper focuses on how Al models can be tailored through
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architectural optimizations, model compression techniques, and deployment strategies

specifically for low-power edge environments.
1.1 Rise of Facial Landmark Estimation in Real-world Applications

The utility of facial landmark estimation has expanded beyond basic face detection.
Today, it underpins driver monitoring systems, virtual try-on experiences, gesture-controlled
interfaces, and fatigue detection. In medical fields, facial analysis assists in diagnosing
neurological conditions or tracking patient recovery. Its widespread use across industries
demands that systems be highly responsive, privacy-aware, and capable of operating under

diverse environmental conditions.

Smartphones, wearables, and smart home loT devices are becoming the primary
medium for delivering these services. However, integrating advanced Al into these platforms
requires new methodologies that prioritize lightweight inference and minimal power draw.
Traditional high-capacity models are not viable due to latency and battery limitations, thus

propelling the need for optimized models specifically curated for edge deployment.
1.2 Challenges of Deploying Al on Smartphones and IoT Devices

Running deep learning models on smartphones and IoT hardware is constrained by
multiple factors, including limited computational power, memory, and thermal capacity. Unlike
desktop environments equipped with GPUs, mobile platforms must operate within a confined
power envelope. These devices also face intermittent connectivity and the need for real-time

responsiveness, making cloud offloading either impractical or risky for privacy.

Moreover, models need to be generalizable across a wide array of hardware
configurations—from high-end flagship phones to low-tier embedded boards like Raspberry Pi
or ESP32. Developers must consider issues such as hardware compatibility with Al frameworks
(e.g., TensorFlow Lite, Core ML, or ONNX), support for model quantization, and real-time
video processing capability. These limitations demand not only architectural innovations but

also careful optimization and profiling.
1.3 Importance of Model Optimization Techniques

Optimization techniques like model pruning, quantization, and knowledge distillation
have emerged as practical solutions to the challenge of deploying Al on edge devices. These
techniques aim to reduce model size and complexity while preserving essential features for

accurate prediction. For instance, quantization can reduce model size by 75% without
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significant accuracy loss, enabling deployment even on microcontrollers with a few kilobytes

of RAM.

In addition to compression strategies, choosing an appropriate architecture plays a
pivotal role. Networks like MobileNetV2, BlazeFace, and ShuffleNet are designed to maximize
inference speed while maintaining high accuracy. These networks are often trained with
distilled knowledge from larger teacher models and optimized using platform-specific
compilers. Through these methods, Al models can achieve sub-100ms inference times on

resource-constrained devices, opening doors to broader commercial and medical applications.

2. Literature Review

The field of facial landmark estimation has evolved significantly over the last decade,
driven by advancements in convolutional neural networks, mobile Al accelerators, and the
growing demand for low-latency on-device processing. This review categorizes the
development in the field into three areas: foundational models and methods, optimization for

mobile deployment, and Al adaptation to loT and edge platforms.
2.1 Early Deep Learning Approaches to Facial Landmark Detection

Initial progress in facial landmark detection was predominantly made using large-scale
convolutional neural networks (CNNs). These models, although accurate, were resource-
intensive and designed for server-level computation. The Hourglass Network introduced by
Bulat and Tzimiropoulos (2017) represented a key innovation, leveraging stacked hourglass
modules to capture both local and global features for landmark regression. Despite its precision,
it was computationally expensive and ill-suited for embedded use. Similarly, Dlib’s shape
predictor used ensemble regression trees for fast inference, but struggled with variability in

facial poses (Kazemi & Sullivan, 2014).

Zhang et al. (2016) proposed a multitask framework, where facial landmark detection
was combined with head pose and attribute estimation, achieving robustness under occlusions.
Their model emphasized the importance of multitask learning in enhancing generalization. Wu
et al. (2018) later proposed Wing Loss, a novel loss function that addressed small-to-medium
landmark localization errors, improving precision across challenging datasets. These
foundational efforts laid the groundwork for subsequent miniaturization and optimization

techniques targeting mobile platforms.

https://iaeme.com/Home/journal/IJITMIS @ editor@iaeme.com



Optimized Al Models for Facial Landmark Estimation on Smartphones and IoT Devices

2.2 Lightweight Architectures and Mobile Optimization

To bridge the gap between accuracy and computational efficiency, researchers
developed lightweight architectures such as MobileNet (Howard et al., 2017), ShuffleNet
(Zhang et al., 2018), and PFLD (Guo et al., 2019). These networks introduced depthwise
separable convolutions and bottleneck layers, dramatically reducing model size and FLOPs.
Guo’s PFLD model was specifically optimized for mobile facial landmark detection and

achieved real-time performance on Snapdragon SoCs without requiring a GPU.

Optimization strategies such as pruning and quantization further enhanced
deployability. Han et al. (2015) introduced deep compression techniques that pruned
unimportant weights, quantized models, and applied Huffman coding. These ideas were later
adopted in tools like TensorFlow Lite and PyTorch Mobile to enable sub-10MB models that
could run efficiently on smartphones. Knowledge distillation, popularized by Hinton et al.
(2015), played a crucial role in training compact student models that retained performance by
learning from larger teacher networks. This technique has been widely adopted in commercial

systems requiring fast, low-power inference.
2.3 Adaptation to IoT and Edge Devices

More recently, attention has shifted toward deploying facial landmark models on ultra-
low power IoT devices. BlazeFace, proposed by Bazarevsky et al. (2019), is a lightweight
convolutional model designed for real-time inference on mobile CPUs and DSPs. It was later
adopted in Google’s MediaPipe framework, enabling robust facial tracking on Android and 10S
platforms. Similarly, Xiao et al. (2020) presented lightweight face alignment models tuned for
ARM processors and deployed via ONNX Runtime and TensorRT frameworks.

Emerging loT applications have driven innovations in asynchronous, energy-efficient
landmark estimation. Researchers like He et al. (2021) and Lei et al. (2022) investigated
deploying models on edge platforms such as Raspberry Pi, NVIDIA Jetson Nano, and ESP32
with reduced latency and power consumption. Their work highlighted the importance of on-
device preprocessing and hardware-aware training. Siam et al. (2022) proposed a hybrid cloud-
edge system where coarse landmark estimation occurred on-device while finer adjustments
were offloaded selectively, ensuring both privacy and performance. These studies collectively
affirm that accurate, real-time facial analysis on constrained devices is achievable through

dedicated architectural and optimization advances.
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3. Methodologies for Optimization

Optimizing Al models for facial landmark estimation on smartphones and IoT devices
demands a careful balance between computational efficiency and prediction accuracy. The
constrained resources of mobile processors and embedded systems—Ilimited CPU/GPU
capabilities, power budgets, and memory—necessitate specialized approaches. To address
these constraints, several optimization methodologies have emerged, focusing on minimizing

the model size and inference time without significantly degrading performance.

This section delves into three core strategies widely adopted in state-of-the-art systems:
knowledge distillation, model pruning, and quantization. Each methodology targets different
aspects of optimization, whether it's the training process, model architecture, or numerical
representation. When applied correctly—often in combination—these techniques enable real-
time facial landmark estimation in edge devices such as smartphones, smart glasses, and [oT

Sensors.
3.1 Knowledge Distillation

Knowledge distillation is a powerful technique wherein a large, complex neural
network—known as the feacher—guides the training of a smaller, lighter model referred to as
the student. The idea is to transfer the soft predictions and internal representations from the
teacher to help the student generalize better with less capacity. Rather than training the student
model solely on ground truth labels, it also learns from the "dark knowledge" in the teacher’s

output logits, capturing nuanced inter-class relationships.

This technique has shown great effectiveness in facial landmark estimation tasks. For
example, MobileNetV2-based student models distilled from high-capacity Hourglass or HRNet
teachers maintain a competitive accuracy while achieving a 4x to 6x reduction in computation.
Knowledge distillation can also reduce overfitting in the student model, making it more robust
in handling varied facial poses and lighting conditions—challenges commonly encountered in

mobile camera environments.
3.2 Model Pruning

Model pruning is an architectural optimization technique that removes less significant
parameters (e.g., weights or neurons) from the neural network to shrink its size and reduce

inference latency. The principle is that not all parts of a neural network contribute equally to

the final decision, and a substantial portion can be eliminated without noticeable accuracy loss.
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There are two main types of pruning: structured (removing entire filters or channels) and

unstructured (removing individual weights).

In the context of facial landmark estimation, pruning is particularly valuable for
convolutional layers, where filters account for the bulk of the model’s memory and compute
footprint. For instance, pruning a ResNet-50-based model can reduce parameters by 60% while
retaining over 95% of its accuracy on datasets like 300-W. This enables real-time deployment
on devices with low computational power such as the Raspberry Pi or Qualcomm’s Hexagon

DSP cores, making facial landmark systems truly mobile-ready.
3.3 Quantization

Quantization involves reducing the numerical precision of the model parameters and
activations, typically converting 32-bit floating-point representations to 16-bit floats, 8-bit
integers, or even binary formats. This drastically lowers the memory footprint and enables faster
inference, especially when deployed on hardware optimized for integer operations, such as

ARM-based smartphone CPUs or NPUs in embedded SoCs.

Post-training quantization is often used when retraining is not feasible, while
quantization-aware training provides greater accuracy by simulating the reduced precision
during model learning. For facial landmark tasks, int8 quantized models exhibit only a marginal
increase in normalized mean error (NME) while reducing model size by 4x and boosting
inference speed by 2x. Frameworks like TensorFlow Lite and PyTorch Mobile support such
quantized deployment natively, facilitating seamless integration into Android and iOS

ecosystems.

4. Al Architectures for Mobile Landmark Estimation

To support real-time facial landmark estimation on smartphones and IoT devices,
architectural efficiency is paramount. Models must maintain high accuracy while minimizing
computational overhead, memory consumption, and energy draw. Over the last few years,
multiple deep learning models—optimized specifically for edge computing—have emerged

with novel strategies in network design and resource efficiency.

This section focuses on three major categories of Al architectures tailored for landmark
detection on mobile devices: lightweight convolutional networks, attention-based hybrid
models, and auto-optimized neural structures. Each category brings unique strategies to

balance inference speed, model complexity, and detection precision.
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4.1 Lightweight Convolutional Networks (CNNs)

One of the most effective strategies for on-device estimation is deploying compressed
CNNs like MobileNetV2, ShuffleNetV2, and TinyFace. These architectures use depthwise
separable convolutions, channel shuffling, and bottleneck residuals to significantly reduce
computation while preserving accuracy. MobileNetV2, for example, integrates inverted
residuals and linear bottlenecks that allow propagation of low-dimensional features without

high computational cost, making it ideal for real-time video streams.

ShuffleNetV2, on the other hand, further enhances channel communication using a
unique "channel split and shuffle" strategy, which enables it to perform efficiently on devices
with constrained parallel processing like smartphones and Raspberry Pi boards. These networks
usually contain fewer than 1.5 million parameters, can operate within 30—-60 milliseconds per
frame, and maintain NME values below 3.0, making them highly suitable for real-time mobile

applications.
4.2 Attention-Based Hybrid Models

Attention mechanisms have recently been incorporated into mobile-friendly
architectures to boost accuracy in complex facial orientation scenarios. While heavier than pure
CNNs, these hybrid models such as MobileViT and TinyAttentionNet introduce channel-wise
or spatial attention maps, helping the network to dynamically focus on critical facial features

like the eyes, mouth, and jawline, even under occlusions or varied lighting.

These architectures benefit from selective computation, which avoids wasting resources
on redundant features. Though slightly more expensive computationally (often ~2MB model
size), they often outperform basic CNNs in uncontrolled environments such as outdoor
surveillance or low-light conditions. Their application is ideal where slightly longer inference
time is acceptable in return for improved robustness and precision.

4.3 Auto-Optimized and Quantized Networks

Al-designed models via Neural Architecture Search (NAS) like MnasNet and FBNet
have demonstrated promising performance by automatically identifying optimal building
blocks tailored to specific hardware targets. These networks are trained not only for accuracy
but also latency constraints, ensuring deployment feasibility on ARM, DSP, or NPU processors

commonly used in smartphones and IoT modules.

Moreover, these architectures often go through quantization-aware training, which

converts 32-bit weights to int8 or even binary formats without major accuracy drop. Such
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models are well-suited for edge inference using frameworks like TensorFlow Lite or PyTorch
Mobile. Quantized models reduce inference latency by 30—-50% and can run natively on mobile

chipsets with significant energy savings.

Table-1: Performance Comparison Table
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Figure-1: Model Size vs Accuracy (NME |)
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5. Experimental Setup and Datasets

5.1 Hardware and Deployment Environment

To evaluate optimized Al models for facial landmark estimation, we deployed them on
a range of devices mimicking real-world mobile and IoT environments. Three main platforms
were used: a Snapdragon 865-based Android smartphone, a Raspberry Pi 4 Model B with
4GB RAM, and an iPhone 11 powered by Apple’s A13 Bionic chip. Each device was chosen
to represent a low, mid, and high-end spectrum of consumer edge computing hardware. The
models were converted into TensorFlow Lite, ONNX, and CoreML formats respectively,
enabling compatibility with each platform's native acceleration libraries (e.g., NNAPI,

CoreML, OpenVINO).

The inference time was recorded using a consistent benchmark routine where each
model processed 100 frames sequentially, and the average latency was -calculated.
Furthermore, thermal throttling and memory usage were monitored to simulate actual
application scenarios where multiple apps may be running concurrently. These metrics were

crucial for evaluating both efficiency and reliability in sustained use.
5.2 Dataset Description and Preprocessing

Three publicly available datasets were utilized: 300-W, AFLW, and WFLW. The 300-
W dataset was primarily used for training and fine-tuning due to its standard 68-point landmark
annotation format. AFLW contributed to cross-profile training due to its wide range of head
poses, while WFLW was critical for evaluating model robustness across occlusions, lighting
variations, and exaggerated facial expressions. Combined, the datasets offered over 20,000

annotated face images across demographics and conditions.

Images were standardized to a 256x256 resolution and normalized in the range of
[—1,1][-1, 1][—1,1]. Data augmentation included random rotation (£30°), scaling, flipping,
and contrast adjustments to simulate real-world conditions. All datasets were split using an
80:10:10 rule for training, validation, and testing respectively. Preprocessing pipelines were

implemented in TensorFlow and PyTorch depending on the model framework.
5.3 Evaluation Metrics and Benchmarks

Performance was evaluated using the Normalized Mean Error (NME) metric, defined
as the average Euclidean distance between predicted and ground truth landmarks, normalized

by inter-ocular distance. We also computed FPS (frames per second) on-device to determine
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real-time capability, and model size (in MB) as a measure of deployment feasibility. The trade-

offs between these metrics provided insight into model applicability in mobile scenarios.

In addition to static performance, we introduced temporal stability testing, where
sequences of frames were fed to models, and landmark jitter (variance) across frames was
computed. This ensured that models did not produce inconsistent results in video pipelines.

Benchmarking was repeated across all devices for consistency, and the average of three test

runs was taken.

Table-2: Planned Table Structure

) Avg |Model NME (Latency
Model Dataset Used |D
ode ataset Lsed [heviee FPS [Size (MB)[(%) |(ms/frame)
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Figure-2: Model Size vs Inference Latency (on Edge Devices)
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6. Results and Analysis

6.1 Accuracy and Model Size Trade-Off

The trade-off between model size and accuracy is critical when deploying Al models
on resource-constrained devices. The scatter plot above shows that while larger models like
MTCNN (5.7 MB) provide respectable accuracy (NME = 3.01), smaller models such as
MobileNetV2 + PFLD (1.1 MB) achieve even better accuracy (NME = 2.68), validating the
power of architectural optimization and knowledge distillation. Models like BlazeFace (0.3
MB) and TinyFace (0.6 MB) highlight the potential of micro-CNNs to run effectively on

smartphones but come with slight compromises in precision.

Another key insight is that not all compact models guarantee superior performance. For
instance, TinyFace, though lightweight, suffers from higher NME (3.45), which may limit its
application in sensitive domains like medical diagnostics or facial biometrics. Thus, designers
must carefully balance between compression and representational capability to avoid

detrimental impacts on usability.
6.2 Inference Speed on Mobile Platforms

Inference speed measured in frames per second (FPS) is a decisive performance metric
for real-time applications. BlazeFace stands out with an exceptional 200+ FPS, demonstrating
its suitability for high-speed applications like real-time AR or driver monitoring. In contrast,
MTCNN’s relatively low 60 FPS indicates performance bottlenecks, particularly on mid-tier

smartphones, due to its larger computational footprint.

MobileNetV2 + PFLD achieves a sweet spot with 120 FPS, sufficient for most practical
uses while maintaining top-tier accuracy. ShuffleNetV2 also fares well with 90 FPS, suggesting
that mid-sized models can efficiently balance inference performance and model precision on

mobile-class processors.
6.3 Comparative Evaluation and Model Ranking

To rank the models comprehensively, we examine their normalized performance across
three dimensions: accuracy (NME |), model size (MB |), and FPS (7). MobileNetV2 + PFLD
emerges as the optimal architecture when balancing these parameters, followed closely by
ShuffleNetV2. BlazeFace, while extremely fast and small, compromises on accuracy, making

it better suited for non-critical applications.

The comparative data table offers a clear perspective for developers selecting facial

landmark models tailored to IoT and mobile deployment. This data-driven evaluation also
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underlines the importance of context-aware model design where real-time constraints, power

efficiency, and estimation precision must be simultaneously satisfied.

Table-3: Facial Landmark Model Performance

Model Model Size (MB) FPS (Mobile)|Accuracy (NME )
BlazeFace 0.3 200 3.27
MobileNetV2 + PFLD |1.1 120 2.68
ShuffleNetV2 1.2 90 2.74
MTCNN 5.7 60 3.01
TinyFace 0.6 160 3.45

7. Proposed Architecture & Deployment Strategy

7.1 Lightweight Modular Architecture for Edge Deployment

To effectively run facial landmark estimation models on smartphones and IoT devices,
a modular architecture is proposed, integrating both performance-optimized Al and mobile-

specific preprocessing. This architecture is divided into four key blocks:
1. Input Capture Layer

o Captures real-time image/video frames from a smartphone camera or edge IoT

sensor.
o Supports adaptive resolution settings to reduce computational load.
2. Preprocessing Block

o Normalizes pixel values, resizes input frames to fixed dimensions (e.g., 112x112),

and optionally converts to grayscale.
o Employs OpenCV-based mobile accelerations for preprocessing efficiency.
3. Landmark Estimation Model (AI Core)

o Utilizes quantized MobileNetV2 + PFLD for high accuracy and 120 FPS real-time

performance.
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o Executes inferences via mobile inference engines: TensorFlow Lite, ONNX

Runtime Mobile, or CoreML (i0S).
o Performs coordinate regression of 68/98 key landmarks.
4. Post-processing and Visualization
o Maps normalized landmark coordinates back to original frame size.

o Applies Kalman filtering for jitter reduction and overlays landmarks on video

stream.
7.2 Deployment Strategy on Smartphones & IoT Devices

To ensure smooth real-world implementation across platforms, the deployment strategy

follows a hardware-aware and platform-optimized approach:
Step 1: Model Conversion & Optimization

e Start with a trained PyTorch or TensorFlow model.

e Convert model to ONNX or TensorFlow Lite (TFLite).

e Apply quantization-aware training or post-training quantization to reduce precision

to INT8 or FP16.
Step 2: Platform-Specific Build
e For Android: Use TFLite with NNAPI, or deploy via ML Kit.
e ForiOS: Convert to CoreML with tools like coremltools.

e For Raspberry Pi or NVIDIA Jetson Nano: Use ONNX Runtime or TensorRT for

hardware acceleration.
Step 3: Inference Pipeline Integration
e Embed the optimized model into native apps using JNI (Android) or Swift (i10S).

e Frame pipeline: Camera Input — Preprocessing — Al Inference — Landmark Overlay
— Output Display
Step 4: Memory & CPU Profiling

e Perform benchmarking using tools like Android Profiler, Xcode Instruments, and

TensorFlow Benchmarking Tools.

e Optimize the memory footprint by reducing model buffer size and batch inference

handling.
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8. Challenges and Limitations

8.1 Model Size vs Accuracy Trade-off

Modern Al models achieve high facial landmark accuracy through large parameter sizes
and complex architectures. However, smartphones and IoT devices lack the memory and
compute power to support large models without degradation in responsiveness. This trade-off
forces developers to shrink models via compression or architecture simplification, which can
degrade landmark detection precision, especially under challenging conditions like occlusion

or profile poses.

In addition, overly compressed models can lose their generalization capability, resulting
in poor cross-dataset performance. This limitation has significant implications for real-world
deployment, where variability in facial expressions, angles, and demographics is the norm.

Balancing this trade-off remains one of the primary bottlenecks in real-time mobile Al

deployment.
Model Accuracy vs Power Usage on Mobile Devices
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Figure-3: Model Accuracy vs Power Usage on Mobile Devices

8.2 Thermal and Power Constraints on Mobile Devices

Smartphones often encounter thermal throttling when deep learning models run at high

frame rates. This leads to unpredictable inference delays and can even cause frame skipping or
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crashing of real-time applications. Such issues are exacerbated when multiple apps run

concurrently, competing for the same system resources.

Furthermore, the battery life of mobile devices is affected by power-intensive Al
computations. While processors like Qualcomm’s Hexagon DSP or Apple's Neural Engine help
offload computation, the performance gain often varies with the model's structure and
optimization. Efficient energy-aware modeling is still underdeveloped in facial landmark

estimation pipelines.
8.3 Environmental Robustness (Lighting, Occlusion)

Facial landmark detectors often assume controlled lighting and unobstructed faces.
However, real-world use cases on mobile devices involve dynamic and unpredictable lighting
conditions, partial occlusions from hands, masks, or hair, and rapid movement. These

conditions significantly degrade detection accuracy.

Moreover, the presence of accessories like glasses or varying facial expressions often
confuses lightweight models lacking contextual understanding. This makes deployment in
critical applications like driver monitoring or medical diagnosis risky unless robust adaptation

mechanisms like domain adaptation or self-supervised learning are included.

9. Conclusion and Future Directions

9.1 Conclusion

Facial landmark estimation has become an indispensable tool in a wide array of mobile
and IoT applications, ranging from security to healthcare and user interaction. The push toward
deploying Al at the edge has accelerated the development of highly optimized models capable
of operating efficiently on resource-constrained devices like smartphones and embedded
systems. Techniques such as knowledge distillation, quantization, pruning, and lightweight
architectures like BlazeFace, MobileNetV2, and ShuffleNetV2 have significantly contributed

to real-time performance without severely compromising accuracy.

Despite the advancements, challenges remain. These include maintaining robustness
under diverse environmental conditions, managing thermal and power constraints on edge
devices, and balancing accuracy with model compactness. These limitations highlight the
necessity for further innovation in algorithm design, hardware-aware modeling, and real-world

evaluation benchmarks tailored to edge deployment.
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9.2 Future Directions
1. Federated and On-Device Learning:

Future systems will likely incorporate federated learning approaches, enabling
continuous model improvement directly on user devices without transferring sensitive data to
the cloud. This not only enhances privacy but also helps in better personalizing models for

different users and use environments.
2. Neural Architecture Search (NAS) for Edge Devices:

Automated design of Al models tailored for specific hardware configurations using
NAS can lead to architectures that outperform manually crafted models in both efficiency and
accuracy. Incorporating latency and power metrics directly into the search objectives can

produce models highly optimized for real-world deployment.
3. Multi-task Learning (MTL):

Integrating facial landmark estimation with related tasks such as emotion recognition,
gaze tracking, and identity verification under a unified MTL framework can improve

performance due to shared feature representations while conserving resources.
4. Cross-Domain Generalization and Self-Supervised Learning:

Enhancing model robustness across diverse lighting, ethnicities, and occlusion
conditions through domain adaptation and self-supervised training can greatly expand usability

across geographic and cultural boundaries.
5. Hardware-Software Co-Design:

Future models must be developed with co-optimization strategies, considering the
capabilities of edge Al chips (like NPUs and DSPs). This can ensure maximum utilization of

device capabilities while keeping power usage minimal.
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