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Abstract 

Semiconductor manufacturing is characterized by highly complex, multistage processes that 

demand stringent validation to maintain product quality and yield. As traditional supervised 

approaches require extensive labeled datasets, there is an increasing interest in leveraging 

unsupervised learning and generative models for anomaly detection. This paper explores the 

integration of these advanced methods into semiconductor process validation circa 2020, 

addressing the challenges of high-dimensional data, subtle fault patterns, and label scarcity. 

By employing unsupervised learning techniques, such as clustering and autoencoders, 

alongside generative models like GANs and VAEs, the study demonstrates notable 

improvements in early fault detection rates. Methodologies involve the use of historical process 

data without explicit fault labeling, enhancing model adaptability to unseen anomalies. Our 

findings underline the potential of these approaches to achieve higher sensitivity while 

reducing false alarms compared to traditional methods. This research contributes to advancing 

the field toward more autonomous, reliable validation frameworks. 

Keywords: Semiconductor manufacturing, process validation, anomaly detection, 

unsupervised learning, generative models, autoencoders, GANs, clustering, process control, 

machine learning. 

1.  Introduction 

The semiconductor industry relies heavily on precise process control to ensure device 

performance and yield. Variations, even at the micro-level, can introduce significant quality 

deviations, making process validation a critical task. Traditional validation techniques, largely 

rooted in statistical process control (SPC), have shown limitations when addressing complex, 

nonlinear dynamics inherent in modern fabrication environments. These challenges have 

created a demand for more robust, data-driven validation frameworks. 

Despite the proliferation of machine learning applications, most solutions depend on labeled 

datasets, which are expensive and sometimes impractical to obtain in semiconductor contexts. 

Hence, there is an emerging focus on unsupervised learning and generative models for anomaly 

detection. These techniques offer the promise of learning intrinsic data patterns without the 

need for extensive labeling, thereby enabling proactive identification of faults that would 

otherwise be undetected by conventional means. The research gap this study addresses lies in 
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systematically integrating unsupervised and generative models for real-time semiconductor 

process validation. 

 

2. Literature Review 

Multiple efforts explored machine learning for semiconductor process monitoring. Wang et 

al. (2018) investigated the use of principal component analysis (PCA) combined with clustering 

to monitor plasma etching processes, demonstrating improved detection rates over basic SPC. 

Similarly, Kim and Lee (2017) applied support vector machines (SVMs) for fault detection, 

but noted that supervised methods falter when labeled fault data are scarce. 

Generative models began to attract attention in broader anomaly detection fields. 

Goodfellow et al. (2014) introduced Generative Adversarial Networks (GANs), although their 

application in semiconductor processes was limited until later adaptations such as AnoGAN 

(Schlegl et al., 2017). In semiconductor-specific contexts, Suzuki and Yamashita (2019) 

employed variational autoencoders (VAEs) for image-based defect detection but did not extend 

it to process variable validation. Gaps in the literature prior to 2020 included insufficient 

exploration of unsupervised generative models specifically tuned for multivariate process data 

and a lack of comparative studies between different unsupervised techniques in industrial 

semiconductor validation settings. 

 

3. Methodology 

This research adopts an empirical approach utilizing historical process data from a 300mm 

semiconductor fab. The dataset comprises high-frequency sensor readings collected across 

multiple fabrication steps, including deposition, lithography, and etching stages. Data 

preprocessing involved standard normalization, outlier removal via Isolation Forests, and 

dimension reduction through PCA for baseline comparison. 

For anomaly detection, two primary unsupervised learning techniques were employed: 

• Clustering-Based Approaches: K-means and DBSCAN were used to partition normal 

process behavior. Deviations from cluster centroids served as anomaly indicators. 

• Generative Models: Variational Autoencoders (VAEs) and GAN-based architectures 

were trained to model normal operational distributions. Reconstruction errors were 

used to flag potential anomalies. 

Model performance was evaluated using metrics like detection sensitivity, specificity, and 

Area Under the ROC Curve (AUC). Cross-validation ensured that the models generalize across 

various process conditions without overfitting to specific fault patterns. 

 

4. Model Architecture 

The architectures used were tailored to handle high-dimensional sensor data: 
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• VAE Architecture: Comprised three fully connected encoding layers reducing the 

dimensionality from 500 features to a latent space of 16, followed by symmetric 

decoding layers. 

• GAN Architecture: Employed a standard generator-discriminator setup where the 

generator attempts to synthesize realistic normal samples, and the discriminator 

distinguishes between real and generated instances. 

Training utilized Adam optimizer with a learning rate of 0.0002 and early stopping based on 

validation loss to prevent overfitting. 

 

5. Results and Analysis 

5.1 Clustering-Based Detection Performance 

Clustering techniques showed moderate performance. K-means clustering achieved a 

detection sensitivity of 71%, while DBSCAN reached 76%. However, both methods struggled 

with detecting subtle drifts due to their rigid cluster assumptions. 

 

 

Figure 1: Clustering –Based Detection Performance 

 

5.2 Generative Model Results 

Generative models significantly outperformed clustering approaches. VAEs achieved an 

average sensitivity of 89%, while GANs reached up to 91% sensitivity with relatively low false 

positive rates. 
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Figure 2: VAE Reconstruction Error Distribution 

 

6. Discussion 

Comparing these findings to prior studies, it is evident that generative models deliver 

superior detection capabilities. Previous methods, such as basic SVMs or PCA-clustering 

hybrids (Wang et al., 2018; Kim and Lee, 2017), demonstrated limitations, particularly in 

capturing nonlinear relationships and subtle temporal variations in process parameters. 

The adoption of unsupervised learning also has theoretical implications. It aligns with the 

increasing complexity of semiconductor processes where pre-labeled anomalies are often 

unavailable. Practically, early detection enabled by these models may reduce material wastage 

and costly downtime, offering substantial economic incentives for manufacturers. 

 

7. Implementation Challenges and Limitations 

One major challenge in deploying unsupervised models is the need for massive amounts of 

clean historical data, free from significant anomalies. Noise in training datasets can corrupt 

model learning, leading to poor generalization. Additionally, interpretability remains a key 

limitation, as unsupervised and generative models typically lack transparent decision-making 

pathways. 

Real-time deployment also presents computational constraints. Inference latency from 

models like VAEs or GANs must meet the stringent cycle time requirements of semiconductor 

fabs, often less than a few seconds per validation step. Further optimization of model 

architectures is necessary for industrial-scale adoption. 
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8. Conclusion and Future Work 

This study reinforces the feasibility and advantages of using unsupervised learning and 

generative models for anomaly detection in semiconductor process validation. Generative 

models, particularly VAEs and GANs, show promising improvements over traditional 

clustering approaches, especially in detecting complex, subtle deviations. 

Future work will explore hybrid semi-supervised models that can leverage limited labeled 

anomaly data while retaining the strengths of unsupervised learning. Another direction 

involves enhancing model explainability through techniques such as latent space visualization 

and attention mechanisms, making these models more actionable for process engineers. 
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