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ABSTRACT 

Microwave imaging is a non-invasive and non-ionizing technique with significant 

applications in security screening, material characterization, and non-destructive 

testing. This study presents a monostatic microwave imaging system utilizing an ultra-

wideband (UWB) horn antenna operating between 15 GHz and 22 GHz to detect 

concealed metallic targets behind various materials. The experimental setup employed 

a Vector Network Analyzer (VNA) to measure the backscattered S-parameters while an 

automated two-dimensional (2-D) scanner systematically moved the antenna across a 

50 cm × 50 cm aperture with a 1 cm step size. Different concealment materials, 

including dry cloth, wet cloth, wood, granite, and tiles of varying thicknesses, were 

introduced to evaluate their effects on target visibility and image quality. Two image 
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reconstruction techniques—Backpropagation Algorithm (BPA) and Holographic (FFT-

based) processing—were applied to the measured data to assess their performance in 

terms of spatial resolution, computational efficiency, and noise suppression. The BPA 

demonstrated superior spatial resolution, effectively resolving the shapes and locations 

of the targets, while the FFT-based method provided faster image reconstruction, 

making it more suitable for large-scale imaging. These findings contribute to the 

development of high-resolution and computationally efficient microwave imaging 

techniques for concealed object detection in security and industrial applications. 

Keywords: Backpropagation Algorithm (BPA), Concealed Object Detection, Cross 

Range Plot, Holographic Imaging, Ultra-Wideband (UWB), Microwave Imaging, 

Monostatic, Signal-to-Clutter Ratio (SCR). 
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1. Introduction 

The need for efficient and high-resolution imaging techniques for concealed object 

detection (COD) has become increasingly critical in various security and industrial 

applications. Microwave imaging (MWI) has emerged as a promising non-destructive 

technique for detecting objects hidden behind different materials, using its ability to penetrate 

dielectric barriers while maintaining a reasonable spatial resolution [1]. Among MWI 

techniques, monostatic microwave imaging stands out due to its compact system design, 

reduced hardware complexity, and cost-effectiveness compared to bistatic or multistatic 

configurations [2]. However, the effectiveness of monostatic MWI for COD depends heavily 

on the imaging algorithm employed, which must balance resolution, computational efficiency, 

and cost. 

Two prominent algorithmic approaches for monostatic microwave imaging are 

backpropagation (BP) and holographic imaging techniques. The backpropagation algorithm is 

widely used due to its simplicity and ability to reconstruct images with relatively high 



Resolution, Computational Efficiency, and Cost Analysis of Backpropagation and Holographic Algorithms for 

Concealed Object Detection Through Various Materials Using Monostatic Microwave Imaging 

https://iaeme.com/Home/journal/IJECEG   26 editor@iaeme.com 

resolution by iteratively refining estimates of the object’s position based on received 

microwave signals [3]. However, despite its advantages, BP algorithms often suffer from high 

computational complexity, making real-time applications challenging [4]. On the other hand, 

holographic imaging techniques exploit phase information to generate high-fidelity images 

with reduced computational demands. Still, they may introduce limitations in in-depth 

resolution and sensitivity when dealing with varying material properties [5]. The choice 

between these algorithms thus requires a trade-off analysis between resolution, computational 

efficiency, and cost. 

A significant challenge in COD applications is the influence of different barrier 

materials on microwave signal propagation and attenuation. Materials such as wood, plastic, 

concrete, and composite structures exhibit distinct electromagnetic properties that affect wave 

transmission, reflection, and scattering [6]. Consequently, the performance of BP and 

holographic algorithms may vary depending on the material through which the concealed object 

is detected. Consequently, an in-depth analysis of how these algorithms perform under different 

material conditions is essential for optimizing their practical deployment in security screening, 

industrial inspection, and biomedical imaging applications [7]. 

This study aims to conduct a comparative evaluation of backpropagation and 

holographic algorithms for concealed object detection using monostatic microwave imaging. 

Specifically, the research focuses on analyzing their resolution capabilities, computational 

efficiency, and associated costs when applied to various material environments. In quantifying 

these performance metrics, this study provides valuable insights into selecting the most suitable 

algorithm for different real-world applications.  

The remaining sections of this paper are structured as follows: Section 2 presents a 

review of related works, discussing existing research on microwave imaging, backpropagation, 

and holographic algorithms. Section 3 details the materials and methods used in this study, 

including system configuration and algorithm implementation. Section 4 presents and discusses 

the obtained results, highlighting key performance trade-offs. Finally, Section 5 concludes the 

study with a summary of findings and recommendations for future research. 

 

2. Review of Related Works 

The growing demand for COD through diverse materials has spurred extensive research 

into MWI techniques. Chen et al. [1] explored MWI’s penetration capabilities using frequency-
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domain simulations and experimental measurements across wood, plastic, and concrete 

barriers. Their findings established that MWI could detect objects behind materials up to 30 𝑐𝑚 

thick, though resolution degraded significantly at greater depths. However, their study lacked 

an analysis of computational efficiency, focusing instead on validating penetration potential. 

Complementing this, [2] compared monostatic, bistatic, and multistatic MWI configurations, 

highlighting that monostatic systems reduced hardware costs by 40% but achieved 15% lower 

resolution than multistatic setups. Their work emphasized cost-resolution trade-offs but did not 

propose algorithmic adjustments to mitigate resolution losses in monostatic systems. 

Gurbuz et al. [3] advanced BP algorithms by implementing a time-domain iterative 

approach for COD, achieving sub-wavelength resolution (~𝜆/5) . However, their method 

required three times more computation time than conventional techniques, rendering it 

impractical for real-time applications.  

Addressing computational bottlenecks, Zhang and Zhao [4] introduced GPU-

accelerated BP, reducing processing time by 60%. Despite this improvement, their approach 

suffered a 20% resolution drop when imaging objects behind metal-rich barriers, emphasizing 

unresolved trade-offs between speed and accuracy in heterogeneous environments.  

In contrast, Kim et al. [5] developed a holographic MWI technique using phase retrieval 

and Fourier transforms, enabling real-time processing ( 0.2 𝑠𝑒𝑐/𝑖𝑚𝑎𝑔𝑒 ). However, their 

method exhibited depth localization errors exceeding 10% in multi-layered materials, revealing 

limitations in handling material complexity. 

Material properties significantly influence MWI performance, as shown by [6], who 

measured microwave attenuation across 15 materials. They reported up to 50 𝑑𝐵/𝑚 

attenuation in conductive barriers like reinforced concrete, severely degrading signal-to-noise 

ratios. Their study, however, did not integrate these findings into adaptive imaging algorithms.  

Expanding on practical applications, [7] conducted a cost-benefit analysis of BP and 

holography, identifying holography as cost-effective for airport security but favouring BP in 

medical imaging due to superior resolution. Their review highlighted the absence of cross-

material comparative studies to guide algorithm selection in hybrid environments.  

Wang et al. [8] attempted to merge BP and holography in a hybrid approach, using BP 

for coarse imaging and holography for refinement. While this improved depth resolution by 

25%, the reliance on FPGA-based hardware escalated costs, limiting scalability for budget-

constrained applications. 
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Recent innovations include [9], who applied compressive sensing to holographic MWI, 

reducing data acquisition by 70% through sparse recovery. Their method halved acquisition 

time but failed to reconstruct objects behind multi-layered barriers (like plastic-concrete 

composites), indicating a need for adaptive sparsity models.  

Patel et al. [10] introduced a machine learning-enhanced BP algorithm, training a 

convolutional neural network (CNN) to refine BP outputs. Their hybrid model reduced 

computational time by 45% while maintaining resolution, though training data were limited to 

homogeneous materials like drywall.  

O’Connor et al. [11] analyzed MWI for multi-layered barriers, proposing a frequency-

hopping technique to mitigate attenuation. Their simulations showed a 30% improvement in 

depth resolution but required specialized wideband antennas, increasing system costs.  

Lastly, [12] evaluated adaptive holography for dynamic environments, dynamically 

adjusting phase correction based on material permittivity. Their experiments reduced depth 

errors to 5% in heterogeneous materials but demanded continuous calibration, complicating 

real-world deployment. 

Collectively, these studies highlight critical gaps: (1) insufficient optimization of BP 

and holography for multi-material or composite barriers, (2) unresolved trade-offs between 

computational efficiency and resolution in real-time systems, and (3) limited cost-benefit 

analyses of algorithm-hardware synergies. 

2.1 Back Propagation Image Reconstruction Algorithm  

This time-domain method back-propagates received signals to the target plane using 

Green’s functions. It assumes homogeneous media, limiting accuracy in heterogeneous 

environments [13]. Grzegorczyk et al. [14] improved robustness by incorporating iterative 

Born approximations, achieving 90% fidelity in wall-penetrating imaging. 

Theory of Signal Model 

According to [15], the development of a suitable signal model is crucial in the use of 

any imaging algorithm. In this study, the frequency is discretized by steps ∆f. In complex 

representation, the transmitted signal can be expressed as given in (1). 

 

𝑠𝑇𝑥(𝑡) = ∑ 𝑒−𝑗2𝜋(𝑓0+𝑛∆𝑓)𝑡 rect (
𝑡

𝑇
− 𝑛)

𝑁𝑓−1

𝑛=0             (1) 

 

where 𝑇 is the dwell time of each of the 𝑁𝑓    discreet frequency steps. Assuming a point 

target at location 𝑟 , the delay of the received signal is expressed in (2). 
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𝜏(𝑟) =
1

𝑐0
(|𝑟 − 𝑟𝑇𝑥| + |𝑟 − 𝑟𝑅𝑥|)            (2) 

 

This depends solely on the respective antenna positions, 𝜏 . The delayed received 

reflected signal is mixed with the transmitted signal, and the frequency domain output signal is 

expressed in (3). 

 

𝑆(𝑟𝑇𝑥, 𝑟𝑅𝑥, 𝑓𝑛) = Γ𝑒−𝑗2𝜋𝑓𝑛𝜏(𝑟)             (3) 

 

This signal only depends on the delay, 𝜏 and the reflectivity of the target Γ. However, 

for a distributed target with reflectivity 𝑜 (𝑟), the received signal is given in (4). 

The basic idea of the MI system is circles measuring the electromagnetic energy 

reflected from a target. In a monostatic configuration, a single antenna serves as both the 

transmitter and receiver, moving across a 2D aperture defined by 𝑋 and 𝑌 coordinates. The 

target object absorbs a portion of the energy while the remaining part is reflected to the antenna, 

which captures this reflected signal to calculate inverse-scattering parameters for image 

creation.  

This study explored an imaging technique based on the backpropagation algorithm, 

wherein the antenna is positioned over the 𝑋 and 𝑌 axes, allowing electromagnetic energy to 

propagate along the Z axis. When a target is located along the Z axis at a distance 𝑧 from the 

antenna, the scattering function 𝑆(𝑟) describes the points reflecting energy to the antenna. The 

data received (amplitude and phase) includes electric field values as a function of the 

microwave signals’ travel time. The total flight time is the round-trip time from the transmitting 

antenna to a point on the target and back, as illustrated in Fig. 1. The phase history data for a 

single-point target is given in (4) [16], [17]. 

 

𝑜(�̅�) = ∑ ∑ 𝑠(𝑟𝐴, 𝜔)𝑒
𝑗2

𝜔

𝐶0
𝑅

𝑁𝐴𝑁𝜔
             (4) 

 

where 𝑠(�̅�𝐴, 𝜔)  denotes the received complex signal at location �̅�𝐴  and angular 

frequency 𝜔, and 𝑜(�̅�) is the desired reflectivity distribution of the device under test, DUT, 

which is the target. 𝑅 = |�̅�𝐴 − 𝑟| is the distance between position �̅�𝐴 of the respective antenna 
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element and the position of 𝑟 of the points on the target. A practical imaging system possesses 

a limited number of transmit-receive (TR) combinations (pairs). 

 

 

Figure 1: A schematic of a monostatic imaging set up [16] 

 

However, for a detailed generalization imaging technique with several antenna 

positions (𝑁𝑡 , 𝑁𝑟), unique transmit and receive positions in the 𝑋 and 𝑌 aperture, the phase 

history is as given is calculated 

Hence, the response at the transceiver will essentially be the superposition of each point 

on the target, multiplied by the round-trip phase to that point where the target is assumed to be 

flat and parallel to the scan plane, that is, at constant 𝑧.  

For a generalized imaging system with a multi-static set, the imaging algorithm 

reconstructs the reflectivity map  𝐼 ( 𝑟 ) or image from the measured and recorded dataset, 

which shows the backpropagation algorithm as given in (5) [15].  

 

𝐼(𝑟) = ∑ ∑ ∑ 𝑆(�̅�𝑇 , �̅�𝑅 , 𝑓𝑛)𝑒
+𝑗

2𝜋𝑓𝑛
𝑐0

(|𝑟−𝑟𝑇𝑥|+|𝑟−𝑟𝑅𝑥|)
 𝑁𝑅𝑥𝑁𝑇𝑥𝑁𝑓
          (5) 

 

The value of the reconstructed reflectivity map of the target 𝐼(𝑟) is constructed at 

position 𝑟 of the target. 

In this study, the background subtraction method was employed to further enhance the 

algorithm’s image reconstruction capabilities. Two distinct measurements were conducted to 
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assess the effectiveness of the BPA in conjunction with the frequency filtering technique. The 

first measurement was performed without the targets in the imaging setup, where the scattering 

parameter (amplitude and phase) of the reflected signal was recorded. A second measurement 

of the scattering parameter was then taken, this time with the targets included in the entire MWI 

setup. As noted by [18], a primary challenge with this measurement is the antenna-to-air 

mismatch. Since the antenna’s reflection coefficient is consistent across the scanning area, the 

collected 𝑆11 data per frequency is averaged and then coherently subtracted from the averaged 

data [18]. 

 

𝑆(𝑥, 𝑦, 𝑓) = 𝑆11(𝑥, 𝑦, 𝑓) − ∑ ∑
𝑆11(𝑥,𝑦,𝑓)

𝑁𝑦𝑁𝑥
𝑥𝑦             (6) 

 

where 𝑁𝑥  and 𝑁𝑦  are the number of sample points in the 𝑋  and 𝑌  directions, 

respectively. 

2.2 Holographic Image Reconstruction Algorithm 

Holographic techniques generate three-dimensional images by connecting scattered 

fields with reference waveforms, as illustrated in Fig. 2. Holographic imaging techniques utilize 

three different wave types—light, acoustic, and electromagnetic—to collect amplitude and 

phase data of wavefronts scattered from a target object. A significant development in 3D 

holography utilizing electromagnetic waves was introduced in [19]. The authors’ solution 

abolished the conventional far-field prerequisite, facilitating near-field operation. To diminish 

the spherical wavefronts produced in the near field, the method employed a Fourier transform 

step to split these wavefronts into planar wave components. 

Previous methods dependent on Fresnel approximations encountered significant 

resolution constraints in near-field imaging. The holographic image reconstruction approach 

presented in [19] addressed these limitations by neglecting slowly fluctuating amplitude 

functions, which empirical evidence indicated had a negligible effect on image quality. 

Although amplitude impacts were minimal, phase information was essential, with meticulous 

phase management being a crucial factor in reconstruction accuracy. 

The Fourier transform is fundamental to this approach and is computed efficiently by 

the Fast Fourier Transform (FFT). The resolution is solely constrained by diffraction when far-

field approximations are disregarded, with these constraints influenced by factors such as 

frequency, aperture size, beamwidth of the source and receiver, and the distance to the target 

[19]. 
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In imaging applications, two-dimensional reconstructions employ single-frequency 

data from two-dimensional antenna arrays, whereas three-dimensional reconstructions require 

multi-frequency data collected via two-dimensional planar arrays [20]. This adaptability 

underscores the algorithm’s versatility in several imaging scenarios. 

 

 

Figure 2: Imaging geometry of holographic image reconstruction algorithm [21] 

 

Initially, the creation of a two-dimensional image is investigated. The antennas are 

situated at the coordinates (𝑥′, 𝑅0, 𝑧′) and the target points are presumed to be located at (𝑥,0,𝑧). 

The target points are situated at the origin. The 𝑦-coordinate of the target space is regarded as 

constant for the reconstruction of a 2-D image utilizing single-frequency, 𝑘1. In Equation (8), 

𝐷(𝑥′, 𝑧′, 𝑘1)  denotes the signal scattered from a singular point target and received by an 

antenna situated at the coordinates (𝑥′, 𝑅0, 𝑧′). The statement is formulated based on the Born 

assumption, which posits that interactions between point targets are disregarded; specifically, 

there is no interaction among the point targets. The solitary point is situated at (𝑥, 0, 𝑧), and the 

reflectivity of this singular point target is represented as 𝑓(𝑥, 0, 𝑧). 

In its simplest form, 𝐷(𝑥′, 𝑧′, 𝑘1)  can also be expressed as shown in Equation (8) 

utilizing amplitudes and round-trip phase information of the signal. The distance between the 

antenna located at the coordinates (𝑥′, 𝑅0, 𝑧′) and the point scatterer situated at (𝑥, 0, 𝑧) is 

denoted as 𝑅  [21]. 
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𝑅 = √(𝑥 − 𝑥′)2 + (𝑅0)2 + (𝑧 − 𝑧1)2      (7) 

 

𝐷(𝑥′, 𝑧′, 𝑘1) = 𝑓(𝑥, 0, 𝑧).
1

4𝜋𝑅2 . 𝑒−𝑗𝑘12𝑅      (8) 

 

The signal 𝑆(𝑥′, 𝑅0, 𝑧′) received by the antenna at the location (𝑥′, 𝑅0, 𝑧′) corresponds 

to the scattered signals from all point targets within the scene. The wavenumber of the 

transmitted signal is denoted by 𝑘1 and 𝑓(𝑥, 0, 𝑧) represents the target’s reflectivity function. 

Consequently, 𝑆(𝑥′, 𝑅0, 𝑧′) is the cumulative superposition of the signals scattered from all 

point targets, obtained by integrating 𝐷(𝑥′, 𝑧′, 𝑘1) across the target space. During this process, 

the amplitude decay component from Equation (8) is excluded, as it has minimal impact on the 

final image, as described in Equation (9) [21]. 

 

𝑆(𝑥′, 𝑧′, 𝑘1) = ∬ 𝑓(𝑥, 0, 𝑧)𝑒−𝑗𝑘12√(𝑥−𝑥′)2+(𝑅0)2+(𝑧−𝑧′)2
𝑑𝑥𝑑𝑧    (9) 

 

 𝑘 = 𝜔 𝑐⁄ , where 𝜔 is the temporal angular frequency and 𝑐 is the speed of light. The 

exponential term given in Equation (9) can be decomposed into a superposition of plane wave 

components where 𝑘𝑥
′  and 𝑘𝑧

′  are the Fourier-transform variables corresponding to 𝑥′ and 𝑧′, 

respectively [10]. In Equation (10), 𝑘𝑦 is 𝑦-component of the wavenumber vector of the plane 

waves [10].  

 

𝑒−𝑗𝑘12√(𝑥−𝑥′)2+(𝑅0)2+(𝑧−𝑧1)2
= ∬ 𝑒𝑗𝑘𝑥

′ (𝑥′−𝑥)+𝑗𝑘𝑦(𝑅0)+𝑗𝑘𝑧
′ (𝑧−𝑧′) 𝑑𝑘𝑥′𝑑𝑘𝑧′   (10) 

 

Inserting Equation (10) into Equation (9) and assessing the expression yields Equation 

(11). The 2-D Fourier transform in the Equation serves as the foundation for the subsequent 

phase [10]. 

 

𝑆(𝑥′, 𝑧′, 𝑘1) = ∬[∬ 𝑓(𝑥, 0, 𝑧)𝑒−𝑗(𝑘𝑥
′ 𝑥+𝑘𝑥

′ 𝑧)𝑑𝑥𝑑𝑧] × … 𝑒𝑗(𝑘𝑥
′ 𝑥′+𝑘𝑧

′ 𝑧′+𝑘𝑥
′ 𝑅0)𝑑𝑘𝑥′𝑑𝑘𝑧′  … (11) 

 



Resolution, Computational Efficiency, and Cost Analysis of Backpropagation and Holographic Algorithms for 

Concealed Object Detection Through Various Materials Using Monostatic Microwave Imaging 

https://iaeme.com/Home/journal/IJECEG   34 editor@iaeme.com 

The expression within the square brackets represents the 2D Fourier Transform of 

𝑓(𝑥, 𝑦0, 𝑧). In Equation (9), if the reflectivity function 𝑓(𝑥, 𝑦0, 𝑧) is treated as 𝑓(𝑥, 𝑧), applying 

the relations from (11) leads to Equation (12) [10]. 

 

𝑆(𝑥′, 𝑧′, 𝑘1) = ∬ 𝐹(𝑘𝑥, 𝑘𝑧). 𝑒𝑗𝑘𝑦𝑅𝑜 . 𝑒𝑗(𝑘𝑥
′ 𝑥′+𝑘𝑧

′ 𝑧′)𝑑𝑘𝑥′𝑑𝑘𝑧′    (12) 

 

According to the Fourier Transform Theorem, 𝑠(𝑥′, 𝑧′)  is the inverse Fourier 

Transform of the 𝐹(𝑘𝑥, 𝑘𝑧). 𝑒𝑗𝑘𝑦𝑅𝑜 term as given in Equation (13) [10]. 

 

𝑆(𝑥′, 𝑧′, 𝑘1) = 𝐹𝑇2𝐷
−1[𝐹(𝑘𝑥, 𝑘𝑧)𝑒𝑗𝑘𝑦𝑅0]     (13) 

 

The objective is to determine 𝑓(𝑥, 𝑧), the desired reflectivity function. This is achieved 

by deriving the reflectivity function in Equation (14) through the application of Fourier 

Transform relations [21]. 

 

𝐹(𝑘𝑥, 𝑘𝑧). 𝑒𝑗𝑘𝑦𝑦𝑜 = 𝐹𝑇2𝐷[𝑆(𝑥′, 𝑧′, 𝑘1)]     (14) 

 

𝐹(𝑘𝑥, 𝑘𝑧) = 𝐹𝑇2𝐷[𝑆(𝑥′, 𝑧′, 𝑘1)]. 𝑒−𝑗𝑘𝑦𝑅𝑜     (15) 

 

𝐹(𝑥, 𝑧) = 𝐹𝑇2𝐷
−1[𝐹𝑇2𝐷[𝑆(𝑥′, 𝑧′, 𝑘1)]𝑒−𝑗𝑘𝑦𝑅𝑜]     (16) 

 

The wave number component 𝑘𝑦 is derived from the dispersion relation, as presented 

in Equation 18 [21]. 

 

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = (2𝑘1)2       (17) 

 

𝑘𝑦 = √4𝑘1
2 − 𝑘𝑥

2 − 𝑘𝑧
2       (18) 

 

It is important to note that 𝑘𝑦  in Equation (18) must remain positive. Field modes 

satisfying the inequality (4𝑘1
2 > 𝑘𝑥

2 + 𝑘𝑧
2) represent the propagating modes, while those that 
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do not are classified as evanescent modes. Additionally, the reconstruction algorithm is outlined 

in Equation (19) [21]. 

 

𝐹(𝑥, 𝑧) = 𝐹𝑇2𝐷
−1 [𝐹𝑇2𝐷[𝑆(𝑥′, 𝑧′, 𝑘1)]𝑒

−𝑗√4𝑘1
2−𝑘𝑥

2−𝑘𝑧
2.(𝑅𝑜)

]   (19) 

 

The steps used for implementing the Holographic /Stolt migration technique are 

outlined as follows: 

Step 1: Obtain the frequency domain data set, 𝑆( 𝑓, 𝑥, 𝑦) 

Step 2: Take the FFT along the x-axis 

Step 3: Perform Mapping to the z-axis 

Step 4: Perform Stolt Interpolation technique using the wave dispersion model in 𝑘𝑧 

domain 

Step 5: Perform 2-D inverse FFT of the data obtained to get the 2-D reflectivity image 

2.2.1 Spatial and frequency sampling  

Data acquisition and picture reconstruction necessitate that the incoming data is 

sampled discretely. Successful sampling necessitates adherence to the Nyquist sampling 

criterion. The factors influencing the requisite sampling across the aperture include the 

wavelength, aperture dimensions, target size, and distance to the target. The Nyquist 

requirement for spatial sampling is fulfilled when the phase shift between consecutive sample 

points is less than π radians. Consequently, the antenna spacing criterion is articulated in 

Equation (20), indicating that practical imaging systems frequently utilise sample intervals 

about equal to 𝜆/2 [23]. 

 

∆𝑥 <
𝜆𝑚𝑖𝑛

2
         (20) 

 

The required frequency sampling is determined in a similar way as given in Equation 

(21) where ∆𝑅 is the length of target space in the range direction [23]. 

 

∆𝑓 <
𝑐

2.∆𝑅
         (21) 

 

On the other hand, the number of frequency samples for a bandwidth 𝐵 must be as in 

Equation (22) where the number of frequency samples is given as 𝑁𝑓  =  𝐵/∆𝑓 [23]. 
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𝑁𝑓 >
2.𝐵.∆𝑅

𝑐
         (22) 

 

2.2.2 Range and cross-range resolutions 

This section discusses an image-reconstruction technique that utilizes 2-D FFT to create 

the image in the spatial frequency domain. The image resolution can be readily ascertained by 

analyzing the width of the coverage in the spatial frequency domain. In order to achieve a 

successful image reconstruction, the discretization of the frequency band and the sampling 

domain requires that the Nyquist sampling criterion be satisfied [24]. 

For a spatial sample interval of ∆𝑥, the sampling criterion is expressed as [24]; 

 

∆𝑥 <
𝜆𝑅

𝐷
         (23) 

 

where 𝜆 = 2𝜋 𝑘⁄  is the wavelength, 𝑅 =  the target distance from the antenna, 

𝐷 =Scanning length of the aperture 

The required frequency sampling is arrived at by the expression in (24) [24]. 

 

∆𝑓 ≤
𝑐

4𝑅𝑚𝑎𝑥
         (24) 

 

𝑅𝑚𝑎𝑥 is the maximum target range, ∆𝑓 is the required frequency sampling interval 

Invariably, the number of frequency samples for a bandwidth, 𝐵 must be equivalent to 

the expression in (25) [24]. 

 

𝑁𝑓 >
2𝑅𝑚𝑎𝑥

(𝑐 2𝐵⁄ )
         (25) 

 

Equation (25) highlights that two frequency samples are needed for each range-

resolution cell, where the range resolution is given as 𝑐 2𝐵⁄ . 
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3. MATERIALS AND METHODS 

3.1 Experimental Setup 

A picture of the experimental setups showing the different obstructions concealing the 

targets is presented in Fig. 3. A monostatic image setup consisting of an ultrawideband horn 

antenna with a resonance frequency between 15 𝐺𝐻𝑧  and 22 𝐺𝐻𝑧  was used as both the 

transmitting and receiving antenna. The measurement setup also includes a Vector Network 

Analyzer which the horn antenna is connected. The VNA generates a stepped frequency, and it 

is configured to obtain measurements within 15 𝐺𝐻𝑧  and 22 𝐺𝐻𝑧  frequency bands. 

Additionally, the setup features an automated 2-D scanner that enables the 𝑋 and 𝑌 coordinates 

of the scanning range for the microwave imaging monostatic system. The targets, as shown in 

Fig. 4, consist of copper materials sculptured from capital letters of the alphabet “NCAT.”  The 

targets are of varying heights and sizes; this enables us to determine how small the targets can 

reach without being detected and producing a distinguished spatial resolution. The target used 

for this work consists of multiple copper letters spelling ‘NCAT’ fabricated in varying sizes (as 

shown in Fig. 3). The first row of target alphabets is 12 cm in height and width, the second row 

of targets is 7 cm in height and width while the first two letters of the third row is 3.5 cm in 

height and width. Due to Copper’s high conductivity, the letters act as strong reflectors to the 

incident microwave signals. The presence of multiple letters, each with unique dimensions and 

orientations, introduces complex scattering effects, resulting in multiple reflections observed 

in the cross-range profiles. 

 

 

(a)     (b) 

Figure 3: Alphabetical letter target (a) Physical depiction (b) Dimensions 
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The targets are attached to a hard paper board, which serves as the imaging plane for 

the monostatic MWI setup. The range resolution of the target to the antenna is 0.94 𝑚. To 

perform the monostatic imaging process, the horn antenna is moved along the 𝑋  and 𝑌 

coordinates of the scanner with a dimension of 50 𝑐𝑚 ×  50 𝑐𝑚. The step size used along each 

of the coordinates is 1 𝑐𝑚. This makes the total imaging aperture discretized 𝑁 points (𝑁𝑥 and 

𝑁𝑦  ) to be 2500 points. The 𝑆11  scattering parameters are obtained at each point for each 

frequency. 

 

 

Figure 4: Wet cloth concealing the targets 

 

The first experimental setup consists of a wet cloth covering the target as the barrier, as 

shown in Fig. 5. The water-soaked wet cloth helped to determine how lossy the reflected 

microwave signals are and if it can detect the targets covered by the wet cloth. The second 

experimental (Fig. 6) setup replaced the wet cloth with a flexible granite wall, which has a 

thickness of 3 𝑚𝑚  to conceal all the targets. All the experimental parameters remained 

constant. 

 

 

Figure 6: Targets covered with granite wall 

 

Automated X – Y 

Scanner 
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For the third experiment setup, a rectangular wood was used to cover the targets, as 

illustrated in Fig. 7. The thickness of the wood is one and a half inches, and all the parameters 

of the experiment remained constant. 

 

 

Figure 7: Targets covered with wood 

 

For the fourth experiment setup, a thick granite tile with a thickness of 12.7 mm was 

used to cover the targets, as illustrated in Fig. 8. The experiment was performed with all other 

system parameters constant. 

 

 

Figure 8: Targets covered with Tile 

 

For all four monostatic experimental setups, in each antenna position, the measured 

scattering parameters are stored in the VNA memory as an s1p file and then transferred to a PC 

for processing in MATLAB using the BPA and holographic algorithm to reproduce the images 

of the concealed targets. The depth of the spatial resolution of the images reconstructed from 

each algorithm was compared, and the computational time of the algorithms was also 

determined to assess their computational efficiency. Table 1 also highlights the various 

Horn Antenna 

VNA 
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scientific properties of the materials used to conceal the targets. The permittivity and loss 

tangent values are shown as this allows us to understand the effect of the materials on the 

reflection, absorption and attenuation of the reflected microwave signals. 

 

Table 1:  The Characteristics of the Materials Concealing the Targets 

Material Thickness (mm)  Permittivity, ε Loss Tangent, tan δ 

Wet Cloth 0.3  10    0.1 - 0.5 

Flexible Granite Wall 3  4   0.02 - 0.05 

Dry Wood 12.7 3   0.01 - 0.05 

Granite Tile 12.7 7  0.01 – 0.05 

             Source: [25] 

 

3.2 Calibration Procedure 

In this study, the one-port calibration method—short, open, load (SOL) was applied to 

measure errors and calibrate the VNA measurement system. This step is important because it 

helps to correct the phase and amplitude errors resulting from measurement setup. Initially, the 

VNA system assumed no measurement error, and then measurements were taken using the SOL 

calibration kit. The reference plane of the VNA was set to the end of the VNA cables by 

performing the SOL calibration with a mechanical calibration kit. 

 

4. RESULTS AND DISCUSSION 

4.1 BPA and Holographic with Target Concealed with Wet Cloth 

The BPA and Holographic algorithms have been used to reconstruct the scenario from 

scattering parameters obtained after the microwave signals were reflected from the targets. The 

images of the target reproduced by the BPA are shown in Fig. 9 (a). From the image, it can be 

seen that the spatial resolution of the images of the target is high. This is so because the target 

details and edges can be perfectly defined. Also, the exact positions of the targets align perfectly 

with the positions of the targets. The image reconstructed also showed how small the targets 

can be in order to achieve a perfect spatial resolution, as the smaller letters on the last row were 

not highly defined. A drawback of the BPA is the simulation time is quite high when compared 
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to that of the holographic algorithm. Hence, it has a very low computational efficiency, and it 

is not suitable for large data set imaging. On the other hand, the image reproduced when we 

applied the holographic algorithm (Fig. 9 (b)) has a very low spatial resolution. The images 

cannot be clearly defined even though the overall shape of the targets is quite conspicuous. The 

images are blurry and contain artifacts. 

 

 

(a)    (b) 

Figure 9: Reconstructed images of wet concealed targets (a) 2D – BPA (b) 2D –Holographic 

 

4.2 BPA and Holographic Algorithm with Targets Concealed with Granite Wall 

A 3-mm-thick flexible granite wall obscured the targets. As illustrated in Fig. 10 (a), 

the BPA effectively reconstructed high-resolution images of the targets despite the presence of 

the obscuring obstacle. This demonstrates the capability of microwave signals to penetrate 

certain materials and detect concealed objects. The BPA achieved sharp spatial resolution, with 

target edges and fine details clearly defined, owing to its coherent summation of reflected 

signals to highlight regions of high reflectivity. In contrast, Fig. 10 (b) reveals that the 

holographic algorithm produced images with significantly lower resolution, characterized by 

blurring and artifacts. While the holographic method underperformed in image clarity, it offers 

advantages in computational efficiency, processing speed, and reduced resource requirements. 

Thus, BPA is preferable for applications demanding precision, whereas the holographic 

algorithm may suffice in scenarios prioritizing rapid, low-cost imaging. 
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(a)    (b) 

Figure 10: Reconstructed images of granite-wall concealed targets (a) 2D – BPA (b) 2D –

Holographic 

 

4.3 BPA and Holographic Algorithm with Targets Concealed with Wood 

The targets were concealed behind a 12.7-mm-thick wooden barrier. As shown in Fig. 

11 (a), the BPA successfully reconstructed images of the targets on the second row and first 

row. However, the spatial resolution was notably lower compared to results from wet cloth and 

granite wall barriers. This also can be attributed to the large amount of attenuation suffered by 

the reflected signals from the targets. The reconstructed images exhibited blurring, with target 

edges and poorly defined details. In contrast, the holographic algorithm (Fig. 11 (b)) produced 

even less clarity than the BPA, with significant artifacts further degrading resolution. These 

distortions rendered the holographic images indistinct, underscoring the BPA’s superior ability 

to resolve obscured targets despite its reduced performance relative to other obstacle materials. 

It can be observed that the first row of targets was ghostly reproduced; this is probably due to 

the wearing out of the adhesive holding down the antenna as the experiment progresses thereby 

not giving accurate reflected signals from the targets of the first row. 
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(a)    (b) 

Figure 11: Reconstructed images of wood concealed targets (a) 2D – BPA (b) 2D –

Holographic 

 

4.4   BPA and Holographic Algorithm with Targets Concealed with Tile 

The targets were concealed behind a 12.7-mm-thick tile barrier. As shown in Fig. 12 

(a), the BPA successfully reconstructed images of the first-row targets (the largest targets) this 

can be attributed to the less attenuation suffered by reflected signals. However, reflected signals 

from the other smaller targets were seen to be attenuated because the images of these sets of 

targets were not reconstructed. But rather shows as clutter and artifacts. However, the spatial 

resolution was notably lower compared to results from wet cloth and granite wall barriers. The 

reconstructed images exhibited blurring, with target edges and details poorly defined. In 

contrast, the holographic algorithm (Fig. 12 (b)) produced even less clarity than the BPA, with 

significant artifacts further degrading resolution. These distortions rendered the holographic 

images indistinct, underscoring the BPA’s superior ability to resolve obscured targets despite 

its reduced performance relative to other obstacle materials. 

 

 

(a)    (b) 

Figure 12: Reconstructed images of tile concealed targets (a) 2D – BPA (b) 2D –Holographic 
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The time taken for the BPA to run for all four experimental setups is 7065 seconds, and 

the time taken by the holographic algorithm is 115 seconds on average. This accentuates that 

the computational efficiency of the holographic algorithm is better than the BPA. 

The first step is to determine the frequency step size, ∆𝑓. The frequency of operation of 

my horn antenna is 15 𝐺𝐻𝑧 to 22𝐺𝐻𝑧. The frequency step size, ∆𝑓 is evaluated as follows: 

 

∆𝑓 =
22𝐺𝐻𝑧 − 15𝐺𝐻𝑧

2001 − 1
= 3.5 𝑀𝐻𝑧 

 

The maximum range that can be constructed depends on the total bandwidth and 

frequency step size evaluated as follows: 

 

𝑅𝑚𝑎𝑥 =
3 × 108

2 × (3.5 × 106) × 2001
= 21.4𝑚 

 

In order to ensure the Nyquist criterion is satisfied along the spatial sampling interval 

aloing the scanning aperture. The wavelength at the highest operating frequency of 22𝐺𝐻𝑧 is 

0.0136𝑚. 

 

∆𝑥 ≤
0.0136 × 0.94

0.5
= 0.0256 𝑚 (2.56 𝑐𝑚) 

 

Since the chosen scanning step size is 1𝑐𝑚, which is smaller than the required 2.56𝑐𝑚, 

the Nyquist criterion is achieved. This ensures the accuracy of image reconstruction and 

prevents spatial aliasing. 

 

5. CONCLUSION 

In this work, a portable, low-cost monostatic microwave imaging system and algorithm 

were presented. It was shown that the BPA demonstrated superior spatial and cross-range 

resolution, effectively reconstructing concealed targets’ fine structural details compared to the 

holographic algorithm, which exhibited limited resolution under identical experimental 

conditions. While BPA achieved enhanced image fidelity through point-wise phase 

compensation and coherent summation across spatial and frequency domains, it incurred 
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significantly higher computational complexity and processing time. In contrast, holographic 

algorithms prioritized computational efficiency through spectral-domain processing and fast 

convolution, enabling rapid large-scale imaging at the expense of resolution. Also, the 

holographic algorithm tends to reproduce the images of the targets with a higher number of 

antenna scan positions, which is one of the limitations encountered in this research. The antenna 

scanned positions were limited to 50 × 50 with a total point of 2500. The cost of system 

complexities associated with  BPA is higher and hence results in longer simulation time. 

Consequently, algorithm selection was application-specific: holographic methods were suited 

to real-time, low-latency applications like ultrasound imaging and wide-area surveillance, 

whereas BPA excelled in high-resolution detection tasks such as security screening, non-

destructive evaluation, and biomedical diagnostics. Although holographic-based approaches 

offered scalability and speed, they underperformed relative to BPA in resolving fine spatial 

features, particularly in complex or high-attenuation environments.  
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