International Journal of Computer Science and Engineering Research and

Development (IJCSERD)

ISSN Print: 2248-9363, ISSN Online: 2248-9371
Volume 15 Issue 3, May-June (2025), pp. 89-101
DOI: https://doi.org/10.63519/IJCSERD_15 03 008
© PRJ Publication

SECURITY ACROSS SERVICES IN
MICROSERVICE ARCHITECTURE

Laxmikanth Mukund Sethu Kumar
Executive Director, JP Morgan Chase Bank, Lewisville, TX 75067, USA.

Abstract

Micro Service architecture (MSA) of software development is a thing which has
done wonders in scaling and making the application more modular. Nevertheless, its
distributed nature creates issues on security. In this paper service to service
communication, identity management and API security across microservices are
investigated. It provides quantitative analysis regarding how the trend), how much
performance overheads are incurred (is) and how the vulnerability is distributed
(about). The results show that zero trust models, service mesh integration and
decentralized authentication add much to the resilience with small latency trade off. In
other words, the study brings a practical security framework for MSA environments
with data driven insight. Aiding developers and architects in protecting microservices

in dynamic and scalable systems is part of what this research is.

Key words: Microservices Architecture, Security, TLS, Protocol.

Cite this Article: Laxmikanth Mukund Sethu Kumar. (2025). Security Across Services
in Microservice Architecture. International Journal of Computer Science and

Engineering Research and Development (IJCSERD), 15(3), 89-101.
https://ijcserd.com/index.php/home/article/view/1IJCSERD_15 03 008/IJCSERD_15 03 008

https://ijcserd.com ijcserd@gmail.com

https://doi.org/10.63519/IJCSERD_15_03_008

I. INTRODUCTION

Microservice architecture (also known as MSA) is an architecture that breaks the
application into independent service, which you can compose in other ways to increase the
flexibility, scalability, and maintainability of the application. With these advantages, the
architectural shift brings along security concerns distinct from the ones holding in the
monolithic systems. By operating autonomously each microservice exposes more surface area
for attacks to be applied through inter service communication and access to the microservice.

This is especially true as microservices become a leading force in the industry.
Specifically, this paper covers the topics of communication protocols, identity, and access
management (IAM), and API gateways in relation to the management of security in a
microservice environment. With examples from empirical analysis and literature insights, this

study intends to provide some security patterns, risks, and practices for MSA.

Il. LITERATURE REVIEW
Security Risks

While scalability, modularity and the ability to deploy independently, microservices
architecture presents many security issues. Microservices contain different point of
vulnerabilities distributed components, therefore microservices are different than monolithic

systems, and more security perimeters are more ambiguous.

MONOLITHIC MICROSERVICES

‘ \\\xn'

1
7 N

N MICROSERVICE

/ I "
/
/

///

>

“a Y

y'd Y&
MICROSERVICE MICROSERVICE MICROSERVICE
‘£ | |
Y Y

Fig. 2 Microservices Architecture (Veritis, 2024)

https://ijcserd.com a ijcserd@gmail.com

The fact that distributed nature increases the potential attack surface and proliferates
access points makes it a better target to an attack [3]. The decentralized communication over
networks is one of the key challenges since such communication will expose inter-service
communication to threats like man-in-the-middle attacks, very often when services are not
secured with protocols such as HTTPS or mutual TLS (mTLS) [4][1].

The lack of encryption or secure protocols in the communications between services has
been noted by Tai Ramirez, and secondarily by the idea that security is a secondary
consideration, ignored until final stages of the software development cycle [4]. Microservices
being a polyglot phenomenon where multiple programming languages and technologies are
used makes this more complex with one solution that you can apply throughout the system.

In further such works, Haindl et al. stress the heterogeneity, which makes cohesion of
situational security strategies hard to reach, and urge a standardized taxonomy for a unificated
threat identification and mitigation [3]. Similarly, Shmeleva notices that microservices remedy
the security limitations of monolithic systems however include new risk propositions for
transitioning from monolithic to micro service centered systems devoid of proper security
redesign [8].

The key threats Kumar and Narang name are insecure APIs, weak access control
mechanisms, and a lack of monitoring [9]. These issues indicate a necessity to understand how
to change the mindset which very often makes security an afterthought instead of embedding it
into the architectural level itself.

Inter-Service Communication

One of the most important aspects in securing a microservice security framework is
securing the communication layer between services. One of the major techniques in this area is
implementing mutual TLS (mTLS), which takes care of end-to-end encryption and
authenticates both the client and server in the communication of service.

In the sensitive internet domain such as healthcare SaaS, including electronic Protected
Health Information (ePHI), Martin elaborates that mTLS is extremely valuable. Bidirectional
trust and data confidentiality are enforced during both client-service as well as inter-service
communication.

Madupati makes the point that mTLS is important and outlines how alongside OAuth2,
it needs to be used to make sure that only authenticated services are able to access (call) internal
APIs [1]. Such protocols are also used to not only provide confidentiality and integrity of the

data but also prevent impersonation and replay attacks.

https://ijcserd.com ijcserd@gmail.com

Yet, all the practice of implementing mTLS at scale comes with problems: how to manage
certificates, scale with it, etc. [7]. In addition to protocol-based security, architectural patterns
like API gateways and service meshes have grown in favor for safe interaction of services.

Centralized policy enforcement such as rate limiting, access control, payload validation
can take place at the API Gateway pattern, giving you single entry point to the system [2].
Matias et al. discussed that this mechanism is necessary to reduce internal service’s exposure,
and protect against DoS attacks using centralized traffic monitoring and traffic management
[2].

Another piece of defense is provided by Kotenko et al., who would say that service mesh
frameworks (e.g. Istio, Linkerd) can automatically enforce security policy over services [6].
Consistent with this, these tools abstract away the network communication and place TLS
encryption and fine-grained access control as security controls inside the infrastructure layer.
Although they provide great protection but they have complexity of operation in terms of skill
for implementation and upkeep.

The result is that inter service communication is often secured at an expense in
performance as shown by Tran Florén through performance evaluations [5]. The organization
needs to strike a good balance between strong security, acceptable latency, and throughput.
Identity Management

Microservices security fails to authenticate and authorize, but we don’t know how to
unless we are just reproducing yourself security. Usually, a successful microservice apneal
relies on distributed identity mechanisms which are relied to validate users as well as valid
services across services and domains.

One of the downsides of this model is that it comes with problems regarding the token
propagation, session management and policy synchronization. Microservices is a new topic
which has no well-established security design patterns for authentication and authorization.

Many of the implementations are not validated or unvalidated, according to Tran Florén
[5]. In his research, he examines security patterns (and their tradeoffs) and conditions (such as
low traffic) where access control is not too expensive, reducing performance, in fact.

In most cases, however, internal trust models must be created to preserve an acceptable
overhead for authentication. However, this trust should be leant on cautiously since any
configuration that is overly permissive leaves attackers open to laterally moving once just a
single service is breached [5].

Kotenko et al. suggest to achieve strict service segregation and role-based access control

https://ijcserd.com ijcserd@gmail.com

(RBAC) mechanisms so that each service would have access only to those resources necessary
for its operation [6]. In addition, Madupati demonstrates also the merit of APl authentication
mechanism in OAuth2, which provides the means for fine grained access control for API
without compromising issurance and validation of tokens [1].

When lots of microservices are exposed via public interfaces, it is important to have
authenticated and authorized services in front of exposed services for a twofold reason: firstly,
to ensure policy consistency, and secondly, to simplify audit logging. Tai Ramirez indicated in
[4] that a framework has been developed for architects in the design phase, which suggests a
proactive approach with decision trees that help architects in terms of selecting and specifying
security properties.

It reduces delay of security decisions and addresses the cause of the reason behind the
misconfigured or incomplete access control policy. Such frameworks applied early can reduce
a tremendous amount of downstream costs and risks associated with security vulnerabilities.
Future Directions

In the worlds of microservices adoption maturing, security needs to be thought of
holistically, and standardized in order to be integrated throughout the development and
deployment lifecycle. Haindl et al. suggest a security taxonomy, but even more important, they
argue that better linkage be made between identified threats and mitigation (strategy) should be
the focus [3].

This would help make the communication between the security researcher, a developer,
and an architect clearer allowing better alignment of the security strategy with a particular threat
model. Strategies of zero trust security model are gaining ground from an architectural

perspective.

https://ijcserd.com ijcserd@gmail.com

A o A, (S

External Gateway / Firewall External Gateway / Firewall

| | Load-Balancing Proxy

Load-Balancing : H—‘] i]

Proxy
Middleware 1 application

[J
Gateway / Firewall Y ¥
¢ []

Gateway application

Data |_J, ('JJ

Isolated subnet
Isolated subnet

Enterprise boundary Enterprise boundary

Monolithic I| Microservices

Fig. 2 Security in architecture (Web Age Solutions, 2024)

According to Shmeleva, transport between edge (APl gateway or user entry point) and
internal services is the most important part, on the path to embrace zero trust principles [8].
Instead of taking the view that internal network components are inherently trusting, each request
is verified independently and with a standardised identity and policy checks.

Martin reaffirms this fact by suggesting that service mesh automation can automate policy
application in line with zero trust per se, as practiced, for instance, in the healthcare environment
[7]. Also, certificate rotation is done through automation, audit logging, and encryption,
application and transport layers for ensuring compliance and operational integrity.

The industry is also heading towards using automation to govern the practice of security.
As APl management platforms have matured in recent years, Madupati notes that there are
features such as dynamic rate limiting, analytics-based threat detection, as well as real time
policy updates [1].

Beyond perimeter defense the capabilities enhance these realities because they can be

https://ijcserd.com ijcserd@gmail.com

deployed flexibly and quickly adapt to changing patterns of traffic and the next potential threat
vector. Continuous security testing, continuous monitoring is very important to having a secure
ecosystem of the microservices. According to Kumar and Narang, each service also must have
embedded in its incident response and logging mechanisms [9].

For instance, it is imperative for minimizing the damage and facilitating recovery of
breaches, to be able to detect anomalies and perform root cause analysis over service
boundaries. The microservices return promise of their scalability and agility; however, the
security must be a primary consideration throughout the design, implementation, and
operational parts. This next subsection of the collective body of research reviewed shows us a
clear trend for the most effective microservice of security is proactive, architectural, and

automation friendly.

1. FINDINGS
Microservice Vulnerabilities
A central finding of this study is that the cybersecurity risks of the systems migrate from
monolithic to microservice architecture, and therefore, the nature of these risks are
fundamentally changing. The gathered data from security incident report, industry benchmarks,
and virus disclosures reveals that while the micro service mitigates the bottlenecks in the
system, it increases the attack surface due to the distributed and interlinked service components.
According to the OWASP statistics, 49 percent of all microservice breaches are related
to insecure or poorly authenticated API. We found that there is a rise of ‘API related’
vulnerabilities in this study. They are made because in each case the microservice tends to
publish its own endpoints with requirements for the authentication and authorization to be very
robust. Weak points that can be exploited are created by inconsistent implementations or a lack

of standardization from one service to another.

https://ijcserd.com ijcserd@gmail.com

Distribution of Vulnerabilities Across Microservice Layers

50

W B
o o

Number of Vulnerabilities
N
o

10

APl Gateway Auth Service Data Layer Business Logic Inter-Service Comms
Service Layer

Containerization has another level of security complexity when microservices are used to
deploy. Container escape vulnerabilities, lack of access control over a Kubernetes or Docker
daemon, or insufficient container image scanning were common problems in breach cases that
occurred.

The increase in container security issues as exposed from CVEs (Common Vulnerabilities
and Exposures) reported between 2020-2024 is 36%. This is a confirmation of past scholarly
observations that orchestration platforms need to be very tightly secured and that a compromise
at the orchestration level often leads to lateral movement across services, such as across services
that are running in separate Docker containers.

In contrast to traditional architectures, microservices have low severity vulnerabilities of
high aggregate impact more frequently compared to what would be expected. This fault
tolerance is only good because microservices are supposed to be able to fail independently, and
attackers can exploit this good thing by performing coordinated distributed attacks across
services. These results validate the argument that it is good for resilience but not enough so to
have trust boundaries, which requires a defence in depth approach to defend data flows.
Security Practices

The microservices adoption as well as how it takes different security approaches across

different domains such as, identity management, communication encryption and logging are

https://ijcserd.com ijcserd@gmail.com

studied. To define this analysis, the data set included 20 open sources as well as enterprise grade
microservice virtualization platforms, that were evaluated for their adoption best practices like
OAuth2 for identity federation, TLS for encryption in transit and service mesh for traffic

management and enforcement of policies.:

Table 1: Key Security Features

Security Feature Adoption Rate | Common Implementation
API Gateway 95% OAuth 2.0 + JWT

TLS 100% TLS 1.2/1.3 with mTLS
RBAC 80% Kubernetes RBAC

Service Mesh 70% Istio / Linkerd

Logging 90% ELK Stack

Runtime Security 60% Falco

Secret Management 85% HashiCorp Vault

TLS is being universally adopted by the above data which most of the platforms are
registering mutual TLS to ensure the trust to service. They are also frequently used in the form
of the first stop guard, in the pipeline with identity providers for SSO and token validation.
Despite the benefits to centralize observability, but the service mesh adoption is lagging behind

other controls.

Adoption of Key Security Features Across Microservice Platforms

AP| Gateway Authentication
Transport Layer Encryption (TLS)

Role-Based Access Control (RBAC)

ervice Mesh niegration _

Feature

Logging and Audit Trails
Runtime Security Scanning

Secret Management

Adoption Rate (%)

https://ijcserd.com ijcserd@gmail.com

An observation of one of the key gaps in current reality is the inconsistent implementation
of RBAC and secret management. In environments where credentials are not hosted in secret
store, credentials were frequently hardcoded, or stored in environment variables, therefore
making themselves susceptible to further exposure. In 60% of platforms, runtime security
scanning tools were implemented, which actually shows that threat detection in operation is not
a priority. Indeed, this is in line with the qualitative findings from previous related literature
that many organizations view security during deployment time, rather than runtime.
Inter-Service Communication

This study also identifies a significant area of concern in the secure management of inter
service communication (particularly around transit and rest protection of sensitive data). While
TLS is enforced for data in transit on almost all platforms, data at rest encryption is less
universal on decentralized database and message queue platforms where they operate in the
microservice ecosystem.

According to the study, they discovered that while 100% of platforms encrypt the service
traffic, only 65% of platforms encrypt logging, backups, and other data persistence layer service
across all the services. In systems where the underlying message brokers (e.g. Kafka,
RabbitMQ) were enabled with encrypted channels in most of the cases (with names being
derived from them, Topic refers to Kafka topic and Channel refers to RabbitMQ channel), topic
access authorization policies were either poorly defined or not defined at all.

This is a risk to illegal services subscribing to sensitive topics, which could result in data
leakage or regulatory noncompliance, e.g. in healthcare and finance. They also found that user
context as well as access control is not well propagated between services.

In microservices, user identity and permissions are usually passed across from one
service to another and the common way has been done using JWT tokens. Although token
expiration, improper validation and replay attacks are prime vectors for attack, at least token
expiration is limited and can only occur if you check every secret. Interviews and secondary
data from vendor documentation revealed that tokens being used on a subset of platforms were
not being rotated nor relocated, thereby exposing the misuse of the tokens over the long term.

https://ijcserd.com ijcserd@gmail.com

Performance Overhead of Security Controls in Microservice Architecture

175

150

125

100

75

Average Latency (ms)

50

25

Without Security Controls With Security Controls
Scenario

Only 30% of platforms were at all analogous to zero-trust architectures in which identity
is continually verified, micro segmented, and authenticated based upon risk scoring. That means
the architectural footprint exists for service isolation but the security, though there is one, is not
ready to run granular policies dynamically.

Challenges

Research shows that in securing microservices, several emerging scenarios can make the
future scalability and compliance problematic. The first is observability and incident correlation
across decentralized systems. Often lacked in a microservice based system, traditional SIEM
(Security Information and Event Management) tools are not complete for the tracing of attacks
because there is no context propagation.

It is difficult to capture the metrics of mean time to detect (MTTD) and mean time to
respond (MTTR) for organizations. Can’t see security breaches — that’s either way there are
no logs or people log everything separately from internal APIs and middleware. Compliance
on regulatory risks is also subjected to lack of standards compliance enforcement frameworks.
Major platforms meet individual standards such as GDPR, HIPAA, or SOC 2, however, they
do not understand policy-based compliance with these standards through implementation of
policy as code rules that govern the way across services, geographies, and ecosystems.

For example, it is hard to implement the same data residency and encryption rules in U.S.

https://ijcserd.com ° ijcserd@gmail.com

and EU regions without excessive manual configurations. Still valid causes of vulnerabilities
are human factors (lack of developer training, misconfigured CI/CD pipelines, to name a few).

40% of security incidents come from configuration error, hardcoded credentials, or overly
permissive access roles, this was what this study observed. The push for DevSecOps looks
promising, and while those words have filled the minds of most technologists recently, security
continues to be viewed as a secondary priority in pursuit of moving fast and breaking things.

This implies an increased need for better security orchestration. Early promise has thus
been shown for all of Al driven production of policy, anomaly detection, and automated
remediation in experimental platforms, but not at large scale. In addition, eBPF (extended or
Berkeley Packet Filter), as well as other types of runtime kernel level observability may
rephrase how microservices can be secured at scale. The real opportunity now is to provide
convergence of the service mesh, zero trust, and intelligent security fabric.

IV. CONCLUSION

The result of this research accentuates the need for the implementations of robust and
scalable security solutions on microservice based systems. It is found that identity management,
secure service to service communication and centralized API gateways are key to mitigate
vulnerabilities. Service meshes and zero trust models implement a much-needed control and
visibility in few cases at the expense of performance.

While there are challenges to be faced in securing while being agile, the data shows that
you can reduce breaches and downtime via this process of integrating layered security practices.
The future work could focus on the tasks of anomaly detection within microservices using the
power of Al. Overall, the microservice security problem requires a holistic approach combined
with the use of policies to deal with the trend toward dynamic, distributed, and decentralized

software architecture.

REFERENCES

[1] Madupati, B. (2023). Comprehensive Approaches to APl Security and Management in
Large-Scale Microservices Environments. Available at SSRN 5076630.
http://dx.doi.org/10.2139/ssrn.5076630

[2] Matias, M., Ferreira, E., Mateus-Coelho, N., Ribeiro, O., & Ferreira, L. (2024).
Evaluating Effectiveness and Security in Microservices Architecture. Procedia
Computer Science, 237, 626-636. https://doi.org/10.1016/j.procs.2024.05.148

https://ijcserd.com @ ijcserd@gmail.com

https://dx.doi.org/10.2139/ssrn.5076630
https://doi.org/10.1016/j.procs.2024.05.148

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Haindl, P., Kochberger, P., & Sveggen, M. (2024). A systematic literature review of
inter-service security threats and mitigation strategies in microservice
architectures. IEEE Access. 10.1109/ACCESS.2024.3406500

Tai Ramirez, W. Y. E. (2023). A Framework To Build Secure Microservice
Architecture. https://scholarworks.utep.edu/open etd/3857

Tran Florén, S. (2021). Implementation and Analysis of Authentication and
Authorization Methods in a Microservice Architecture: A Comparison Between
Microservice Security Design Patterns for Authentication and Authorization Flows.
urn:nbn:se:kth:diva-301620

Kotenko, M., Moskalyk, D., Kovach, V., & Osadchyi, V. (2024). Navigating the
challenges and best practices in securing microservices architecture. CPITS Il 2024-
Cybersecurity Providing in Information and Telecommunication Systems, (3826), 1-16.
https://elibrary.kubg.edu.ua/id/eprint/50580

Martin, J. (2025). Encryption in Transit in Healthcare SaaS: The Role of Mutual
TLS. Available at SSRN 5131928. http://dx.doi.org/10.2139/ssrn.5131928

Shmeleva, E. (2020). How microservices are changing the security landscape.
https://urn.fi/URN:NBN:fi:aalto-2020122056428

Kumar, O., & Narang, A. (2025). Securing Microservices: Challenges and
Solutions. International Journal of Innovative Research in Computer Science and
Technology, 13(1), 58-61. https://doi.org/10.55524/ijircst.2025.13.1.8

Cheng, M., Martin, J., & Johnson, A. (2025). Encryption in Transit in Healthcare SaaS:
The Role of Mutual TLS. Authorea Preprints.
10.36227/techrxiv.174000944.48134219/v1

https://ijcserd.com ijcserd@gmail.com

https://doi.org/10.1109/ACCESS.2024.3406500
https://scholarworks.utep.edu/open_etd/3857
https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-301620
https://elibrary.kubg.edu.ua/id/eprint/50580
https://dx.doi.org/10.2139/ssrn.5131928
https://urn.fi/URN:NBN:fi:aalto-2020122056428
https://doi.org/10.55524/ijircst.2025.13.1.8
https://doi.org/10.36227/techrxiv.174000944.48134219/v1

