
 https://ijcserd.com 106 ijcserd@gmail.com

International Journal of Computer Science and Engineering Research and

Development (IJCSERD)
ISSN Print: 2248-9363, ISSN Online: 2248-9371

Volume 15 Issue 2, March-April (2025), pp. 106-113.

DOI: https://doi.org/10.63519/IJCSERD_15_02_008

© PRJ Publication

NATURAL NEURON NETWORKS MODELING

Dmytro Rakovskyi *,

Jneopallium, Kharkiv, Ukraine.

* Corresponding author: Dmytro Rakovskyi

Abstract

This article presents Jneopallium, a robust framework designed for modeling

natural neuron networks with varying levels of detail. Drawing inspiration from

historical advancements in neuropsychology and artificial neural networks,

Jneopallium offers a modular and flexible approach to simulate neural structures. It

allows for the definition of multiple signal types, neuron types, and processing logic,

enabling detailed replication of natural cognitive processes. Utilizing Java for

implementation, Jneopallium provides an intuitive interface for researchers to define

neural architectures, processing rules, and inputoutput logic. This framework aims to

bridge the gap between neurobiology and computer science, supporting applications

in robotics, AI development, and neuroscience research. The paper details the

functional, structural, and IO logic definition processes, showcasing the frameworks

versatility and potential for advancing neural network modeling.

Key words: Natural neuron networks, Neural modeling, Jneopallium, Cognitive

simulation, Java framework.

Cite this Article: Dmytro Rakovskyi. (2025). Natural neuron networks modeling.

International Journal of Computer Science and Engineering Research and

Development (IJCSERD), 15(2), 106-113.

DOI: https://doi.org/10.63519/IJCSERD_15_02_008

https://doi.org/10.63519/IJCSERD_15_02_008
https://doi.org/10.63519/IJCSERD_15_02_008

https://ijcserd.com 107 ijcserd@gmail.com

1. Introduction

First theoretical attempt to describe learning algorithm based on natural neuron nets has

been performed by psychologist Donald Olding Hebb in 1940s [1]. Hebbian network has been

implemented in code in 1954 at MIT by Farley and Wesley Allison Clark [2]. Psychologist

Frank Rosenblatt published idea of perceptron in 1958 [3]. In 1982 neurophysiologically

inspired self-organizing maps have been described by Teuvo Kohonen [4][5]. Neocognitron

has been designed by Kunihiko Fukushima in 1980 [6]. This invention has been inspired by

visual cortex research of neuropsychologists David Hunter Hubel and Torsten Nils Wiesel work

[7].

It is safe to say that a lot of core artificial neuron network algorithms are low detailed

models of natural neuron networks and/or it parts.

2. Problem formalization

Accordingly to previous section it seems logically to have some unified framework for

building custom depth detalization natural neuron networks modelling framework. After high

level research of neurobiology and comparison with current artificial neuron network

algorithms I have formed next statements:

1. Neurons can process 2 classes of signals: biochemical and bioelectrical. Difference in

bioelectrical and biochemical signals propagation is significant.

2. Different signals has different propagation time.

3. The set of neuron receptors defines signals it can process and structure. The set of

receptors in different neuron types are different.

4. Cognitive processes is time related.

The modelling framework should be able:

1. Define different types of signals.

2. Define neuron that able to process multiple signal types with different processing logic

for each signal type.

3. Define different types of neurons.

4. Define relative processing rates for 2 classes of signals.

5. Define relative processing rate for each type of signal.

https://ijcserd.com 108 ijcserd@gmail.com

These requirements have been used for jneopallium implementation.

3. Natural neuron net modelling process

High level architecture

Jneopallium is set of interfaces and implementations that separate neuron network

processing logic from actual neuron and signal types in similar way collections separates

storage logic from actual object types that it stores with the help of generics. I have chosen java

for implementation because it is suitable for interfaces and generic usage and provides some

sort of type safety. All jneopallium code placed in github[8] and gitlab[9] repositories are

distributing by BSD 3 – Clause License.

In order to build model user should define signal types, neuron types, input sources and

output collector classes. Then describe neuron network structure, specify technical information

in configuration file and launch jneupallium with specified path to user defined code jar, neuron

network structure and configuration file. The second reason why I have chosen java for

implementation is because it can load user defined code in runtime. Jneopallium can work in 3

modes: local, cluster http and cluster grpc. Grpc allows to run jneopallium on FPGAs. For this

article I have split modelling process on 3 parts: functional logic definition, structural logic

definition and io logic definition. Following 3 sub sections describes modelling process.

Functional logic definition

Modelling process starts from signal definition. User should define all signals in system

and weight object that will be used for learning. Next step is neuron interfaces definitions. Each

processing mechanism should have separate neuron interface that extends basic INeuron

interface. The third step is signal processors implementation. Signal processor should

implement ISignalProcessor interface parametrized by signal it process and neuron interface

that has suitable mechanisms for processing. Then user should implement neurons by

extending Neuron.class and implementing interface or interfaces defined on step 2. Multiple

inheritance via interfaces implementation allows user to implement neurons with multiple

processing mechanism that can process different signal types. Also, neuron has Axon.class and

Dendrites.class. Dendreties incapsulate input addresses (input source name or layer id and

neuron id), signal types and weights. These weights apply to input signals and should be used

in the learning process. Axon incapsulate output addresses (layer id and neuron id) signal type

https://ijcserd.com 109 ijcserd@gmail.com

and weight. These weights apply to output signals and also should be used in the learning

process.

To show example of modelling process I have defined 4 signals and 3 neurons in the

separate test branch [10]. IntSignal.class represents signal described with integer value.

DoubleSignal.class represents signal described with double value. IntProcessor and

DoubleProcessor classes describe processing logic for these signals. NeuronIntField and

NeuronWithDoubleField interfaces describe neuron with internal structure that allows process

IntSignal and DoubleSignal respectively. NeuronC and NeuronB are neuron implementations

that process just one type of signal. NeuronA is neuron that can process both signals i.e. it has

2 receptors.

Structural logic definition

After all functional model parts have been defined user should define structure of neural

network. I recommend to use statistical approach i.e. find probability appearance of each neuron

on each layer. It allows to model horizontal structure. In order to define what neuron order on

layers can be user should implement NeighboringRules interface. This feature allows to model

vertical neuron structure.

Structure modelling examples are placed here [11]. Structure modelling performed with

the help of NeuronNetStructureGenerator. It requires hash map with layer sizes, hash map with

statistical properties for each neuron type, list of NeighboringRules and class that implements

IConnectionGenerator. IConnectionGenerator describes how to connect neurons.

I/O logic definition

I/O logic describes input sources and output destination. The neuron net can have multiple

inputs. To define input source user should implement interface IInitInput. Each input has default

processing frequence that shows how often signals from input will be propagated to neurons.

Processing frequency can be modified with the help of signal sending to CycleNeuron (more

details about it will be in the next sub section). The way how input signals propagate to neurons

should be described with the help of implementation of InputInitStrategy inteface. Each input

source can have separate InputInitStrategy. If the input is other neuron network output, signals

can be send to the neuron network. In this case input should be implement INeuronNetInput

interface. This feature can be useful to build modular models in order to simplify learning. To

https://ijcserd.com 110 ijcserd@gmail.com

define output destination user should implement IOutputAggregator interface. The example of

i/o logic definition placed in this package [12].

Signals processing frequency

The signals processing frequency defined by 2 processing loops. Fast loop process every

processing iteration and slow loop process once in n iterations of fast loop. The n defined in

CycleNeuron and can be changed with the help of sending signal to layer with id –2147483648

and neuron with id 0. Each signal type and input source has ProcessingFrequency that described

with integer field loop and long field epoch. Signal with ProcessingFrequency loop 1 will be

processed each time of fast loop processing, with value 2 once in 2 processing, with value 3

once in 3 processing etc. ProcessingFrequency epoch use the same logic but for slow loop. The

following code describes all possible signal to CycleNeuron and processing logic [13].

Layer sizing

Layer can be sized with the help of signal sending to LayerManipulatingNeuron. It

situated on each layer with id –9 223 372 036 854 775 808 and can create and delete neurons.

Here You can find the list of signal and processing logic [14].

Additional features

There exists ability to define any number of discriminators for neuron network. It can be

used to implement GAN. Also, user can store and extract parameters in layer.

Configuration files

Examples of configuration files You can find here [15].

4. Application, monetization, competitors

Application

Models built with the help of jneopallium can be used for robotics. The output and input

are defined by user so it can directly communicate with controllers. I expect that general AI can

be implemented with such approach.

Also, such models can be used for company management in environment with different

volatility signals and metrics.

https://ijcserd.com 111 ijcserd@gmail.com

It can be used for natural neuron network modelling especially when should be modeled

control structure and structure with different deviations.

It can be used for autonomous mission control when the connection latency to high and

exists high conditions and mission flow uncertainty.

Monetization

Jneopallium has few scenarios of monetization. First one is through building models for

different products. The other way of monetization is providing hosting services the same way

cloud providers do with Spark. The third way is FPGAs optimization for model.

Competitors

The closest competitor for jneopallium is NEURON Simulator [16][17] and

CoreNeuron[18]. It allows to build highly detailed models of natural neuron networks. The

main difference that jneopallium allows user to choose level of detalization. Jneopallium's main

purpose is to be a bridge between neurobiology and computer science. NEURON Simulator

and CoreNeuron main purpose is to build exact copy of natural neuron network.

5. Conclusion

Jneopallium represents a significant step forward in the modeling of natural neuron

networks, offering a versatile and scalable framework that integrates the complexities of

neurobiology with the precision of computer science. By allowing users to define various

neuron and signal types, processing logic, and neural structures, Jneopallium facilitates the

creation of detailed and functional neural models. Its potential applications span across robotics,

artificial intelligence, and neuroscience research, providing a valuable tool for exploring and

understanding cognitive processes. As a bridge between the fields of neurobiology and

computer science, Jneopallium stands out for its ability to simulate natural neural networks with

customizable levels of detail, promising advancements in both theoretical and practical

domains.

Authors’ contributions:

Architecture design, code implementation, testing – Dmytro Rakovskyi

https://ijcserd.com 112 ijcserd@gmail.com

References

[1] Hebb D (1949). The Organization of Behavior. New York: Wiley. ISBN 978-1-135-

63190-1.

[2] Farley B, W.A. Clark (1954). "Simulation of Self-Organizing Systems by Digital

Computer". IRE Transactions on Information Theory. 4 (4): 76–84.

doi:10.1109/TIT.1954.1057468.

[3] Rosenblatt F (1957). "The Perceptron—a perceiving and recognizing automaton".

Report 85-460-1. Cornell Aeronautical Laboratory.

[4] Kohonen T (1982). "Self-Organized Formation of Topologically Correct Feature

Maps". Biological Cybernetics. 43 (1): 59–69. doi:10.1007/bf00337288. S2CID

206775459.

[5] Von der Malsburg C (1973). "Self-organization of orientation sensitive cells in the

striate cortex". Kybernetik. 14 (2): 85–100. doi:10.1007/bf00288907. PMID 4786750.

S2CID 3351573.

[6] Fukushima, Kunihiko (1980). "Neocognitron: A Self-organizing Neural Network

Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position" (PDF).

Biological Cybernetics. 36 (4): 193–202. doi:10.1007/BF00344251. PMID 7370364.

S2CID 206775608. Archived (PDF) from the original on 3 June 2014. Retrieved 16

November 2013.

[7] Hubel, D. H.; Wiesel, T. N. (1968-03-01). "Receptive fields and functional architecture

of monkey striate cortex". The Journal of Physiology. 195 (1): 215–243.

doi:10.1113/jphysiol.1968.sp008455. ISSN 0022-3751. PMC 1557912. PMID

4966457.

[8] https://github.com/rakovpublic/jneopallium

[9] https://gitlab.com/rakovpublic/jneopallium

[10] https://github.com/rakovpublic/jneopallium/tree/test/alfaTestAndGettingStarted

https://ijcserd.com 113 ijcserd@gmail.com

[11] https://github.com/rakovpublic/jneopallium/tree/test/alfaTestAndGettingStarted/worke

r/src/main/java/com/rakovpublic/jneuropallium/worker/test/definitions/structurallogic

[12] https://github.com/rakovpublic/jneopallium/tree/test/alfaTestAndGettingStarted/worke

r/src/main/java/com/rakovpublic/jneuropallium/worker/test/definitions/ioutils

[13] https://github.com/rakovpublic/jneopallium/tree/master/worker/src/main/java/com/rak

ovpublic/jneuropallium/worker/net/neuron/impl/cycleprocessing

[14] https://github.com/rakovpublic/jneopallium/tree/master/worker/src/main/java/com/rak

ovpublic/jneuropallium/worker/net/neuron/impl/layersizing

[15] https://github.com/rakovpublic/jneopallium/tree/test/alfaTestAndGettingStarted/worke

r/src/main/resources

[16] https://github.com/neuronsimulator/nrn

[17] https://nrn.readthedocs.io/en/8.2.4/

[18] https://github.com/BlueBrain/CoreNeuron

