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Abstract 

This article presents Jneopallium, a robust framework designed for modeling 

natural neuron networks with varying levels of detail. Drawing inspiration from 

historical advancements in neuropsychology and artificial neural networks, 

Jneopallium offers a modular and flexible approach to simulate neural structures. It 

allows for the definition of multiple signal types, neuron types, and processing logic, 

enabling detailed replication of natural cognitive processes. Utilizing Java for 

implementation, Jneopallium provides an intuitive interface for researchers to define 

neural architectures, processing rules, and inputoutput logic. This framework aims to 

bridge the gap between neurobiology and computer science, supporting applications 

in robotics, AI development, and neuroscience research. The paper details the 

functional, structural, and IO logic definition processes, showcasing the frameworks 

versatility and potential for advancing neural network modeling. 
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1. Introduction 

First theoretical attempt to describe learning algorithm based on natural neuron nets has 

been performed by psychologist Donald Olding Hebb in 1940s [1]. Hebbian network has been 

implemented in code in 1954 at MIT by Farley and Wesley Allison Clark [2].  Psychologist 

Frank Rosenblatt published idea of perceptron in 1958 [3]. In 1982 neurophysiologically 

inspired self-organizing maps have been described by  Teuvo Kohonen [4][5]. Neocognitron 

has been designed by Kunihiko Fukushima in 1980 [6]. This invention has been inspired by 

visual cortex research of neuropsychologists David Hunter Hubel and Torsten Nils Wiesel work 

[7]. 

It is safe to say that a lot of core artificial neuron network algorithms are low detailed 

models of natural neuron networks and/or it parts. 

 

2. Problem formalization 

Accordingly to previous section it seems logically to have some unified framework for 

building custom depth detalization natural neuron networks modelling framework. After high 

level research of neurobiology and comparison with current artificial neuron network 

algorithms I have formed next statements: 

1. Neurons can process 2 classes of signals: biochemical and bioelectrical. Difference in 

bioelectrical and biochemical signals propagation is significant. 

2. Different signals has different propagation time. 

3. The set of neuron receptors defines signals it can process and structure. The set of 

receptors in different neuron types are different. 

4. Cognitive processes is time related. 

The modelling framework should be able: 

1. Define different types of signals. 

2. Define neuron that able to process multiple signal types with different processing logic 

for each signal type.  

3. Define different types of neurons. 

4. Define relative processing rates for 2 classes of signals. 

5. Define relative processing rate for each type of signal. 
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These requirements have been used for jneopallium implementation. 

 

3. Natural neuron net modelling process 

High level architecture 

Jneopallium is set of interfaces and implementations that separate neuron network 

processing logic from actual neuron and signal types in similar way collections separates 

storage logic from actual object types that it stores with the help of generics. I have chosen java 

for implementation because it is suitable for interfaces and generic usage and provides some 

sort of type safety. All jneopallium code placed in github[8] and gitlab[9] repositories are 

distributing by BSD 3 – Clause License.  

In order to build model user should define signal types, neuron types, input sources and 

output collector classes. Then describe neuron network structure, specify technical information 

in configuration file and launch jneupallium with specified path to user defined code jar, neuron 

network structure and configuration file. The second reason why I have chosen java for 

implementation is because it can load user defined code in runtime. Jneopallium can work in 3 

modes: local, cluster http and cluster grpc. Grpc allows to run jneopallium on FPGAs. For this 

article I have split modelling process on 3 parts: functional logic definition, structural logic 

definition and io logic definition. Following 3 sub sections describes modelling process. 

Functional logic definition 

Modelling process starts from signal definition. User should define all signals in system 

and weight object that will be used for learning. Next step is neuron interfaces definitions. Each 

processing mechanism should have separate neuron interface that extends basic INeuron 

interface. The third step is signal processors implementation. Signal processor should 

implement ISignalProcessor interface parametrized by signal it process and neuron interface 

that has suitable mechanisms for processing.   Then user should implement neurons by 

extending Neuron.class and implementing interface or interfaces defined on step 2. Multiple 

inheritance via interfaces implementation allows user to implement neurons with multiple 

processing mechanism that can process different signal types. Also, neuron has Axon.class and 

Dendrites.class. Dendreties incapsulate input addresses (input source name or layer id and 

neuron id), signal types and weights. These weights apply to input signals and should be used 

in the learning process. Axon incapsulate output addresses (layer id and neuron id) signal type 
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and weight. These weights apply to output signals and also should be used in the learning 

process. 

To show example of modelling process I have defined 4 signals and 3 neurons in the 

separate test branch [10].  IntSignal.class represents signal described with integer value. 

DoubleSignal.class represents signal described with double value. IntProcessor and 

DoubleProcessor classes describe processing logic for these signals. NeuronIntField and 

NeuronWithDoubleField interfaces describe neuron with internal structure that allows process  

IntSignal and DoubleSignal respectively.  NeuronC and NeuronB are neuron implementations 

that process just one type of signal. NeuronA is neuron that can process both signals i.e. it has 

2 receptors.  

Structural logic definition 

After all functional model parts have been defined user should define structure of neural 

network. I recommend to use statistical approach i.e. find probability appearance of each neuron 

on each layer. It allows to model horizontal structure.  In order to define what neuron order on 

layers can be user should implement NeighboringRules interface. This feature allows to model 

vertical neuron structure. 

Structure modelling examples are placed here [11]. Structure modelling performed with 

the help of NeuronNetStructureGenerator. It requires hash map with layer sizes, hash map with 

statistical properties for each neuron type, list of NeighboringRules and class that implements 

IConnectionGenerator. IConnectionGenerator describes how to connect neurons. 

I/O logic definition 

I/O logic describes input sources and output destination. The neuron net can have multiple 

inputs. To define input source user should implement interface IInitInput. Each input has default 

processing frequence that shows how often signals from input will be propagated to neurons. 

Processing frequency can be modified with the help of signal sending to CycleNeuron (more 

details about it will be in the next sub section). The way how input signals propagate to neurons 

should be described with the help of implementation of InputInitStrategy inteface. Each input 

source can have separate InputInitStrategy. If the input is other neuron network output, signals 

can be send to the neuron network. In this case input should be implement INeuronNetInput 

interface. This feature can be useful to build modular models in order to simplify learning. To 
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define output destination user should implement IOutputAggregator interface. The example of 

i/o logic definition placed in this package [12]. 

Signals processing frequency 

The signals processing frequency defined by 2 processing loops. Fast loop process every 

processing iteration and slow loop process once in n iterations of fast loop. The n defined in 

CycleNeuron and can be changed with the help of sending signal to layer with id –2147483648 

and neuron with id 0. Each signal type and input source has ProcessingFrequency that described 

with integer field loop and long field epoch. Signal with ProcessingFrequency loop 1 will be 

processed each time of fast loop processing, with value 2 once in 2 processing, with value 3 

once in 3 processing etc. ProcessingFrequency epoch use the same logic but for slow loop. The 

following code describes all possible signal to CycleNeuron and processing logic [13]. 

Layer sizing 

Layer can be sized with the help of signal sending to LayerManipulatingNeuron. It 

situated on each layer with id –9 223 372 036 854 775 808 and can create and delete neurons. 

Here You can find the list of signal and processing logic [14]. 

Additional features 

There exists ability to define any number of discriminators for neuron network. It can be 

used to implement GAN. Also, user can store and extract parameters in layer. 

Configuration files 

Examples of configuration files You can find here [15]. 

 

4. Application, monetization, competitors 

Application 

Models built with the help of jneopallium can be used for robotics. The output and input 

are defined by user so it can directly communicate with controllers. I expect that general AI can 

be implemented with such approach.  

Also, such models can be used for company management in environment with different 

volatility signals and metrics. 
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It can be used for natural neuron network modelling especially when should be modeled 

control structure and structure with different deviations. 

It can be used for autonomous mission control when the connection latency to high and 

exists high conditions and mission flow uncertainty.  

Monetization 

Jneopallium has few scenarios of monetization. First one is through building models for 

different products. The other way of monetization is providing hosting services the same way 

cloud providers do with Spark. The third way is FPGAs optimization for model. 

Competitors 

The closest competitor for jneopallium is NEURON Simulator [16][17] and 

CoreNeuron[18]. It allows to build highly detailed models of natural neuron networks. The 

main difference that jneopallium allows user to choose level of detalization. Jneopallium's main 

purpose is to be a bridge between neurobiology and computer science.   NEURON Simulator 

and CoreNeuron main purpose is to build exact copy of natural neuron network. 

 

5. Conclusion 

Jneopallium represents a significant step forward in the modeling of natural neuron 

networks, offering a versatile and scalable framework that integrates the complexities of 

neurobiology with the precision of computer science. By allowing users to define various 

neuron and signal types, processing logic, and neural structures, Jneopallium facilitates the 

creation of detailed and functional neural models. Its potential applications span across robotics, 

artificial intelligence, and neuroscience research, providing a valuable tool for exploring and 

understanding cognitive processes. As a bridge between the fields of neurobiology and 

computer science, Jneopallium stands out for its ability to simulate natural neural networks with 

customizable levels of detail, promising advancements in both theoretical and practical 

domains. 
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