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Abstract 

The increasing heterogeneity in modern computing architectures introduces 

significant complexity in design validation, especially as diverse hardware 

accelerators proliferate across domains. This paper investigates the application of 

cross-domain transfer learning (CDTL) to accelerate the validation process of 

heterogeneous systems by reusing knowledge from similar validation tasks across 

different architectural domains. We explore how models trained on one domain (e.g., 

GPU-based systems) can support validation efforts in another (e.g., FPGA-based 

systems) and identify key enablers, bottlenecks, and optimization strategies. Our 

findings suggest that CDTL significantly reduces validation time and resource usage, 

maintaining high accuracy in bug detection. We provide experimental results, discuss 

challenges, and present a comparative literature review highlighting the promise of 

CDTL in hardware-software co-design. 
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I. INTRODUCTION 

The growing diversity of computing architectures—including CPUs, GPUs, FPGAs, and 

AI accelerators—has revolutionized computing capabilities but brought unprecedented 

challenges in system design validation. Traditional validation approaches are often domain-

specific, time-consuming, and require substantial human effort to adapt for new platforms. As 

a result, the need for automated, scalable, and adaptive validation strategies has never been 

more critical. 

Transfer learning, especially cross-domain variants, has emerged as a compelling strategy 

in machine learning for addressing data-scarce and domain-shift scenarios. When applied to 

validation, cross-domain transfer learning (CDTL) enables the reuse of learned representations 

and validation models from one hardware architecture to another. This can be particularly 

beneficial for accelerating validation cycles in early-stage designs or new architecture 

deployments where labeled failure data is sparse. This paper explores the viability and 

effectiveness of CDTL in heterogeneous validation workflows, identifying optimal scenarios 

and constraints for its practical deployment. 
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2. Problem Definition and Research Objectives 

The core problem addressed is the prolonged validation time and inefficiency in adapting 

verification models across varied hardware platforms. Conventional validation techniques fail 

to generalize across architectures due to structural and behavioral differences.  

Our research objectives are: 

 To investigate the feasibility of using CDTL in heterogeneous validation environments.  

 To identify architectures and conditions under which transfer learning yields 

performance gains. 

 To propose a baseline evaluation framework for quantifying validation acceleration 

across domains. 

 

3. Literature Review 

Lee et al. (2019) demonstrated deep learning for functional bug localization in CPUs, 

highlighting the potential for learned models in validation tasks. Zhang et al. (2020) explored 

cross-platform bug prediction using feature representation transfer, underscoring architectural 

adaptability. 

Lu et al. (2018) proposed hierarchical learning for post-silicon validation, enabling 

knowledge reuse across chip designs. These methods showed promise but lacked cross-

architecture generalization. Work by Wan et al. (2020) on domain adaptation in RTL validation 

was among the first to consider CDTL across FPGA and ASIC platforms. 

Other notable contributions include: 

 Choi et al. (2019) introducing transfer neural networks for GPU testing. 

 Garg et al. (2017) using SVM transfer methods in FPGA fault detection. 

 Huang et al. (2018) integrating unsupervised domain adaptation into validation 

workflows. 

Overall, the literature confirms the feasibility of CDTL but also highlights open questions 

about model generalizability and domain alignment strategies. 
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Table 1. Summary of Related Works on Transfer Learning in System Validation 

Study 
Target 

Domain 

Source 

Domain 

Transfer 

Type 
Key Outcome 

Lee et al. (2019) CPU CPU Intra-domain 
Accurate bug 

localization 

Zhang et al. 

(2020) 
GPU FPGA 

Cross-

platform 
12% gain in recall 

Lu et al. (2018) SoC Prior SoCs Hierarchical Faster model adaptation 

Choi et al. 

(2019) 
GPU GPU Feature-based 

Reduced validation 

time 

Wan et al. 

(2020) 
RTL ASIC Adversarial 

9% accuracy gain in 

testing 

 

4. Methodology 

Our approach includes a layered transfer learning pipeline wherein a base model trained 

on a labeled source domain (e.g., CPU/GPU bugs) is transferred to a target domain (e.g., 

FPGA/ASIC) with minimal retraining. The main steps include feature extraction, domain 

alignment, and revalidation. 

We constructed a dataset of hardware validation logs from three architectural families. 

The models were trained using convolutional neural networks (CNNs) and domain-adapted 

using Maximum Mean Discrepancy (MMD). Performance was assessed by time-to-validation 

and bug detection F1 score. 

Table 2. Experimental Setup Overview 

Architecture Dataset Size Source Domain Target Domain Validation Metric 

CPU-GPU 10,000 logs GPU CPU Bug detection accuracy 

GPU-FPGA 12,500 logs GPU FPGA Validation time (hours) 

ASIC-SoC 9,000 logs SoC ASIC F1 Score 
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5. Results and Discussion 

The experimental evaluation focused on measuring the validation time and bug detection 

performance across three architecture pairs using cross-domain transfer learning (CDTL). As 

shown in Figure 1, all three domain pairs—GPU→CPU, GPU→FPGA, and ASIC→SoC—

benefited from CDTL, with varying degrees of acceleration in validation workflows. 

The GPU→FPGA scenario demonstrated the most significant improvement, with 

validation time dropping from 15 hours to 10.2 hours—a 32% reduction. This performance gain 

can be attributed to architectural similarities in memory behavior and processing logic, which 

allowed feature representations from the GPU domain to transfer effectively. In the GPU→CPU 

case, validation time decreased by 33% from 12 to 8 hours, while in the ASIC→SoC pair, the 

reduction was more modest, suggesting that deeper architectural differences and mismatched 

data formats limit transfer effectiveness. 

Beyond time reduction, CDTL maintained high bug detection performance, as reflected 

in F1 scores. Models transferred from GPU to FPGA retained an F1 score of 91.3%, compared 

to 93.6% when trained directly on the FPGA dataset. This small drop indicates robust 

generalization. However, the ASIC→SoC transfer resulted in a slightly larger F1 decline, 

reinforcing that transferability is highly dependent on domain alignment. These results support 

the notion that CDTL is highly effective when architectural domains share operational 

semantics, while additional tuning or hybrid models are needed for structurally divergent 

domains. 

 

6. Conclusion and Future Work 

This study confirms the potential of cross-domain transfer learning to accelerate 

validation processes in heterogeneous computing systems. While results are promising, 

limitations exist in cases of extreme domain divergence. Future work will focus on automated 

feature adaptation, hybrid training pipelines, and integration with formal verification.  

We also plan to release a benchmark suite for CDTL validation tasks across popular 

architectures to facilitate reproducibility and future research. 
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