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Abstract: Artificial Intelligence (AI) is rapidly growing into a driving force within mechanical design, 

providing capabilities much superior to those offered by traditional design engineering practices. Ranging 

from the refinement of structural geometry & failure mode prediction to facilitate real-time data-driven 

design iteration, AI tools such as—machine learning (ML),  networks have also been used to recognize 

topology patterns and control component geometry generation beyond traditional engineering intuition 

[5].One of the basic uses of AI in mechanical design is its ability to leverage historical information. Through 

the exploitation of historical design repositories, AI algorithms can extract geometric dimensioning and 

tolerancing (GD&T) schemes, surface texture data, & manufacturing tolerances on functionally equivalent 

components. This reuse of data enhances standardization, minimizes design redundancy, and encourages 

lean practices [6][7]. Probabilistic models learned from lifecycle performance data enable the forecasting of 

product failures and maintenance schedules, informing decisions on material choice, safety margins, and 

design complexity [9].Surrogate modeling methodologies like Gaussian process regression, radial basis 

functions, and polynomial chaos expansion enable real-time approximation of difficult, nonlinear 

simulations on thousands of design options [10][11]. These approximations significantly speed up 

optimization processes and minimize dependency on computationally expensive simulations. The 

incorporation of AI into computer-aided design (CAD) and simulation platforms is enabling a new 

generation of design automation. Internal AI agents can impose constraint satisfaction, suggest viable 

dimensions under cost or weight constraints, and dynamically change design settings based on system-level 

simulation [12]. Incorpoting learning algorithms can be programmed to continuously improve these scenes 

through feedback loops, minimizing human interference while maximizing design optimality [13]. 

Artificially intelligent interfaces now enable engineers to describe design objectives in conversational terms 

(e.g., "optimize the part for tensional stiffness with minimum weight"), with the systems generating and 

iterating on appropriate geometries automatically [14]. This conversational model style lowers the entry 

point for non-experts and accelerates ideation [15].AI provides effective exploration of high-dimensional 

design spaces and real-time responsiveness to shifting performance goals [16][17][18]. Such sophisticated 

tools are not only facilitating predictive and generative design but also aiding continuous monitoring and 

intelligent feedback on digital twins [19][20].. 

 

Index Terms - Artificial Intelligence, Mechanical Design, Machine learning & Natural Language 

Processing. 
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I. LITERATURE REVIEW 

The literature provides compelling evidence of AI's increasing impact on mechanical design. Early 

publications created foundation application areas for rule-based expert systems and neural networks for 

automatically carrying out diagnostics and parametric modeling [1][2]. Recent advancements demonstrate the 

optimization of performance, topology creation, and material prediction by supervised and unsupervised 

learning methods [3][4][5]. 

AI-driven generative design models generate light, high-efficiency geometries by iteratively optimizing 

against multiple goals including strength, cost, and manufacturability [12]. Classic reuse of GD&T and smart 

component lookup further accelerate design cycles and impose standardization [6][7]. AI-based modules 

integrated with CAD enable simulation-driven geometry modification and feasibility analysis on-the-fly 

[13][14].  

Recent research also focuses on cognitive collaboration in design, where smart systems assist in 

alleviating computational difficulty and augmenting designer ability [17][18][21]. Surrogate modeling 

strategies curb the computational cost and time required by high-fidelity simulations [26][27]. Reinforcement 

learning and generative adversarial networks are breaking new ground for inverse design and searching for 

out-of-the-box yet realizable solutions [29][30]. 

Such research confirms the position of AI as an indispensable collaborator in mechanical design—

enhancing exploration capacity, increasing reliability, and decreasing cost and cycle time. The results 

constitute a sound theoretical and practical foundation for the integration of AI systems within contemporary 

design environments. 

. 

II. TRADITIONAL PRODUCT DESIGN (CAD BASED) 

The traditional mechanical design process is typically characterized by linear, sequential phases: 

requirement analysis, concept, draft and detailed design as shown in Fig.1. While this approach is 

systematic and well-established in mechanical engineering practice, it often suffers from rigidity, & a lack 

of real-time adaptability to evolving requirements [1][2]. The workflow heavily on static tools and typically 

isolated analyses, which limits optimization potential and knowledge reuse [3]. 

 

To highlight the limitations of this approach, we have used  the example of designing a polyethylene 

terephthalate (PET) plastic bottle intended for commercial beverage use. This design case represents a 

common consumer product that must meet cost, manufacturing, ergonomic, and mechanical requirements 

under mass production conditions. 

 

 

Fig.1. PRODUCT DESIGN PROCESS FLOW 
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II. DESIGN REQUIREMENT ANALYSIS 

This first stage establishes performance requirements and product limitations. For the PET bottle example: 

• Volume: 1 liter 

• Material: PET, tensile strength ~50 MPa 

• Operating Conditions: 1 atm internal pressure, compressive stacking force ~100 N 

• Compliance Requirements: BPA-free, food-grade, recyclable 

The specifications are obtained from reference handbooks, without usually simulation validation at this 

stage [5].  

 

A. Conceptual & Draft Design 

• Cap Compatibility: PCO 1881 threads 

• Grip Features: Finger recesses, waist contour 

• Volume Control: Vertical rib patterns to improve stiffness without material excess 

Concept alternatives are created and selected through experience-based heuristics, with minimal 

computational guidance [6].to enhance stiffness without material wastage 

 

B. Final Design & Drafting 

This phase finalizes structural geometry & dimensional features. Example parameters include: 

• Wall Thickness: 0.25 mm average; critical to withstand internal pressure [7] 

• Dome Radius (Base): 30 mm for buckling stability 

• Ribbing Pattern: Vertical ribs every 15 mm, 5 mm depth 

A basic finite element analysis (FEA) is carried out for vertical compressive load resistance: 

 

Table. I (Requirement Definition) 

Wall Thickness (mm) Max Compressive Load (N) 

0.20 55 

0.25 75 

0.30 95 

 

Table 1 shows the overview of the requirement , While this analysis can verify structural integrity, only a 

limited number of geometry permutations are tested due to time constraints [8][9]. 

CAD models are finalized and exported. At this point: 

• GD&T is applied manually based on designer discretion 

• Draft Angles: ~1.5° for blow molding 

• Tolerances: ±0.05 mm at the neck and threads [10] 

No automated feedback is provided from simulation results to update the design; integration between 

modeling, simulation, and documentation tools is often fragmented [11][12]. 

 

Table. II (Requirement Time Estimation) 

Phase Est. Time 

(hrs) 

Personnel 

Involved 

Requirement 

Analysis 

4–8 hrs PM, engineer 

Conceptual 

Design 

8–16 hrs CAD designer,  

Final Design 8–16 hrs Engineer 

FEA Simulation 6–8 hrs Simulation eng. 

Detailed CAD  4–8 hrs CAD engineer 

Review and 

Iteration 

8–16 hrs All stakeholders 

Documentation  2–4 hrs Documentation  

The Table. II illustrates that even a basic PET bottle design takes approx 40–76 hours across various experts 

and tools from scratch. Every activity is performed in silo, with potential delays resulting from handoffs and 

rework. Most activities rely on manual interpretation and provide little reuse of earlier designs. In the absence 

of smart feedback or real-time validation, design revisions are slower, and mistakes linger longer. This 
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inefficiency suggests the possibility of lead-time reduction through AI-based design automation, diminishing 

redundancy, and enhancing design quality. 

 

C. Limitation 

• Iteration Delays: Every change/update requires CAD rework and repeated simulation setup [13] 

• Knowledge Isolation: Prior bottle designs and data are rarely reused effectively [14] 

• Manual Optimization: Trade-offs among weight, strength, and cost are explored only heuristically 

[15] 

• Lack of Optimization: Decisions on trade-offs (e.g., weight vs. strength, cost vs. performance) are 

primarily based on experience and intuition 

 

III. AI-INTEGRATED MECHANICAL DESIGN PROCESS 

The incorporation of artificial intelligence (AI) into mechanical design ramps the conventional engineering 

process into an intelligent, data-driven system. AI technologies not only accelerate monotonous and labor-

intensive tasks but also bring in intelligent decision-making capabilities across the design life cycle—ranging 

from requirement interpretation and conceptualization to simulation, validation, and documentation. Contrary 

to the linear and manual nature of conventional processes, AI-powered systems provide parallel, adaptive, 

and intelligent processes backed by data-driven algorithms as shown in FIG 2. 

 
Fig. 2. AI INTEGARTED DESIGN APPROACH 

 

Artificial intelligence helped enhancing this design with the inclusion of advanced technologies such as 

Natural Language Processing (NLP), Convolution Neural Networks (CNNs), Generative Adversarial 

Networks (GANs), Reinforcement Learning (RL), and Knowledge Graphs. These applications function 

together with cloud-based Product Lifecycle Management (PLM) platforms and smart CAD systems to 

develop an integrated digital thread during the product development process. 

For example, AI-based PLM systems leveraged historical performance feedback and past performance 

data to enhance existing design recommendations. Deep learning algorithms embedded in Computer-Aided 

Engineering (CAE) software allow simulation surrogates to significantly minimize computational analysis 

time. Real-time design parameter tuning by reinforcement learning agents, based on stress and thermal 

feedback from simulated tests, optimizes designs in response to changing conditions. Generative design 

software, fueled by GANs and topology optimization algorithms, generates lightweight structures that are 

optimized in multiple performance goals 

 

In addition, dimensional tolerance and GD&T could be automated through supervised learning models 

that have been trained on manufacturing quality data. AI can also enables augmented reality (AR) and digital 

twin integration, which enables the engineer to visualize and tweak design features in mixed-reality spaces, 

enhancing collaboration and early error detection. 

AI can be embedded throughout the mechanical design process as mentioned below and outlined in FIG 3: 
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• Requirement Interpretation: NLP models can extract structured data from design [2]. 

• Concept Generation: Generative AI tools create multiple CAD-ready design variations [12][21]. 

• Simulation: Surrogate models replace full FEA for rapid validation [25][28]. 

• Design Recommendation: ML algorithms can suggest optimal features based on prior outcomes 

[4][22]. 

• Real-Time Feedback: AI modules embedded in CAD environments auto-correct infeasible 

geometry [13][36]. 

 

 
Fig.3. (AI INTEGARTED DESIGN PROCESS FLOW) 

 

The detailed steps of A.I based integration and its system architecture followed in this paper are as 

mentioned below 

A.AI-Based Conceptual and Final Design 

• Input Requirements → Natural Language Parser → Structured Design Targets [2] 

• Generative Model → Produce Multiple Concepts With Integrated Constraints [12][21] 

• Fast Simulation via Surrogates → Evaluate Stress, Strain, and Fatigue Behavior [25][27] 

• Ranking System → Optimal Geometry Suggested  

 

 

Based on Multivariate Fitness Criteria [24][26] 

 

B. AI-Assisted Optimization and Learning 

• Design History Archive → Feature Extraction of Past GD&T & Geometry [6][14] 

• Clustering Models → Suggest Matching Topologies for Similar Applications [4][18] 

• Reinforcement Learning → Improve Performance Through Reward Feedback [3][19] 

• Final Validation → AI Tool Confirms Compliance with Regulatory and Functional Criteria 

[29][35] 

 

C. Full Loop AI-Integrated Workflow 

• Import Requirements → Auto-fill CAD Templates 

• Generate Initial Designs → Surrogate-Based Evaluation → AI Reranks Results 

• Select Best Variant → Push to Documentation → Automated BOM & GD&T Tags 

D. AI System Architecture Highlights 

The following fig.4. Illustrates the integrated architecture of an AI-driven mechanical design system and 

its key functional elements: 
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Fig.4. (AI SYSTEM ARCHITECTURE) 

 

• Centralized Data Loop: Historical design repositories are continuously mined and updated with per-

formance outcomes to enhance model predictions & recommendations. 

• Parallel Design and Simulation Pipelines: Generative models and surrogate simulations work con-

currently to reduce bottlenecks and speed up concept validation. 

• AI Decision Engine: Positioned at the core of the system, this module uses reinforcement learning 

and multi-objective optimization to rank and refine design. 

These components allow for a high level of automation, knowledge reuse, & dynamic learning 

throughout the mechanical design lifecycle. 

Integration of AI technologies into the mechanical design cycle realizes measurable time savings in almost 

all stages. Transcending from manual iteration and standalone tools to predictive, generative, and learning-

based systems enables teams to improve product development speed while enhancing design accuracy and 

consistency. The following table contrasts the average estimated time incurred in each stage of design when 

following traditional versus AI-enabled workflows. These values are based on the observation of engineering 

practice and peer-reviewed publications describing AI-assisted design studies [2][12][25][41][48]. 

 

E. Time Comparison Table: Traditional vs AI-Based Design 

Implementation of AI technologies into the mechanical design cycle realizes measurable time savings in 

almost all stages. The following Table.III contrasts the average estimated time incurred in each stage of 

design when following traditional versus AI-enabled workflows. These values are based on the observation 

of engineering practice and peer-reviewed publications describing AI-assisted design studies 

[2][12][25][41][48]. 

For example: 

• Requirement Analysis with AI leverages NLP to instantly extract functional specifications from re-

quirement documents, reducing interpretation time. 

• Conceptual and Final Design processes use GANs & topology optimization to generate & refine 

multiple geometry variants. 

• Simulation with surrogate models (e.g., Gaussian Processes/Neural Network approximations) exe-

cutes in seconds. 

• CAD Documentation tools with final AI recommend tolerances, auto-tag GD&T, and populate the 

bill of materials (BOM) based on part geometry and prior designs 
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Table.III (Time Comparison Traditional vs AI-Based) 

Design Phase Traditional Time (hrs) AI-Based Time (hrs) Reduction (%) 

Requirement  

Analysis 

4–8 1–2 ~75% 

Conceptual Design 8–16 2–4 ~75% 

Final Design 8–16 2–4 ~70% 

FEA Simulation 6–8 1–2 ~75% 

Detailed Modeling 4–8 1–2 ~70% 

Review & Iteration 8–16 2–3 ~80% 

Documentation  2–4 1 ~60% 

 

These savings can be reconciled with evidence-based enhancements in AI-encompassing workflows also 

reported in [41] through [50]. 

Leveraging AI technologies in the mechanical design process derives measurable time savings across 

virtually every stage. These figures are based on observations of engineering practice and peer-reviewed 

articles reporting AI-empowered design studies [2][12][25][41][48]. 

Table.III numbers show that AI is more than a productivity aid—it transforms the speed and accuracy of 

engineering choices. Aside from time benefits, AI supports early error detection, eliminates design 

redundancy, and allows multi-disciplinary integration that is hardly possible with conventional means. With 

products increasing in complexity and customization, these benefits become essential. It supports scalable 

design engineering with improved predictive control, intelligent reuse of legacy data, and interactive 

collaboration between human intent and machine intelligence. 

 

F. Advantages of AI-Integrated Design 

The integration of AI in mechanical design delivers multifaceted advantages that go beyond speed 

• AI reduces design cycle times by up to 75%, enabling rapid iteration. 

• Data-driven simulation & validation tools decrease potential errors in early phases. 

• Repetitive actions such as tolerance assignment, BOM generation, and geometric adjustments are 

handled autonomously. 

• Real-time feedback & integration. 

• Historical design data and performance outcomes are continuously mined to inform and improve 

current and future designs. 

• AI systems adapt to growing product complexity and variant requirements. 

 

IV. TIME COMPARISION TABLE: TRADIIONAL VS AI BASED DESIGN 

These savings are in line with recorded enhancements in AI-enabled workflows cited in [41] through [50]. 

Incorporation of AI technology into the mechanical design process has quantifiable time gains in nearly 

every stage. Shifting away from manual iteration & stand-alone tools to predictive, generative, & learning-

enabled systems allows teams to speed up product development with enhanced design accuracy and 

consistency. The following table 3 contrasts the average estimated time devoted to each design stage with 

traditional workflows and workflows using AI. These figures are taken from observations of engineering 

practice and peer-reviewed reports describing AI-assisted design studies [2][12][25][41][48]. 

These numbers referring Table.III show that AI is not merely a tool for efficiency—it redefines the speed 

and accuracy of engineering judgments. Along with saving time, AI allows for the detection of errors early 

on, elimination of design redundancy, and multi-disciplinary integration that is infrequently possible in 

conventional approaches. 

• Traditional design is linear and sequential, whereas AI-based design is parallel and adaptive. The lat-

ter enables multiple design alternatives and simulations to be developed and evaluated simultaneous-

ly. 

• AI-driven workflows rapidly process variations and feedback loops, reducing iteration time from 

days to hours. In contrast, traditional workflows 

• While traditional design depends heavily on individual experience, AI tools leverage organization-

wide data through predictive modeling and learning systems. 
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• AI enables faster customization and scalability, making it suitable for high-mix, low-volume produc-

tion environments. 

 

V. RESULTS & DISCUSION 

The research showed significant improvements in terms of speed, consistency, and innovation capability 

when integrating AI-based design methodologies. Time reduction of about 75% was witnessed during key 

design stages as shown in fig 4, particularly in conceptualization, simulation, and documentation. The 

workflow with AI support also showed less human error, improved documentation quality, and more reuse of 

certified design templates. 

In addition, AI brought a change in the way design teams operate—favoring an interaction between 

human knowledge and computational insights. AI systems made it possible to expand design space 

exploration without adding complexity, allowing engineers to explore more extreme design possibilities 

while remaining within engineering feasibility. 

Merging resources such as NLP, GANs, surrogate modeling, and reinforcement learning makes 

mechanical design a dynamic, smart loop of ongoing development. 

 

 
Fig.4. (DESIGN TIME COMPARISION) 

 

VI. CONCLUSION  

AI integration into mechanical design is a paradigm shift from inflexible, linear processes to adaptive, 

data-rich engineering. Not only does the application of AI speed development and improve accuracy, but it 

also makes access to sophisticated design capabilities available across teams and organizations. 

From self-interpreting requirements to real-time simulation and optimized documentation, AI software 

redefines the design process as an intelligent loop, enabling engineers to get more out of fewer resources and 

in less time. 

This paper reiterates the feasibility and urgency of embracing AI technologies towards future-proofed 

Mechanical design, coupling innovation and efficiency, and ensuring AI becomes a strategic ally for 

engineering greatness. 

 

REFERENCES 

[1] Khayyat, H. A. (2018). ANN based intelligent mechanical engineering design: A review. Indian Journal 

of Science and Technology, 11(27). 

[2] Artkin, F. (2022). Applications of artificial intelligence in mechanical engineering.European Journal of 

Science and Technology, 45, 159–163. 

[3] Magomedov, I., Belashova, E., &Bersanov, M.-D. (2023). Enhancing the power of artificial intelligence 

in mechanical design. E3S Web of Conferences, 402, 03042. 

[4] Guo, K., Yang, Z., Yu, C.-H., & Buehler, M. J. (2021). AI and machine learning in design of mechanical 

materials.Materials Horizons, 8, 1153–1172. 

[5] Faridmehr, I., et al. (2021). Application of component-based mechanical models and artificial 

intelligence to bolted joints. Applied Sciences, 11(5), 2297. 

[6] Han, T., & Xu, Y. (2021). Mechanical automation design and manufacturing using AI.Journal of 

Physics: Conf. Series, 1852, 022034. 

[7] Ajuzieogu, C., et al. (2025). AI for process optimization in mechanical engineering.Int. J. of Modern 

Tech. and Eng. Research, 3(1). 

http://www.ijcrt.org/


www.ijcrt.org                                                          © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT25A5911 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org q635 
 

[8] AnushLakshman, S., & Ebenezer, D. (2020).AI in mechanical engineering.IOP Conf. Series: Materials 

Science and Engineering, 912, 032075. 

[9] Dudukalov, E. V., et al. (2021). AI in automation systems.Journal of Physics: Conf. Series, 1889, 

052011. 

[10] Forster, J., Cartmell, M., & Fothergill, P. (1990). AI in mechanical engineering design.Proc. ACM 

Conf. on AI Applications, 819–825. 

[11] Jiao, P., &Alavi, A. H. (2021). AI-enabled smart mechanical metamaterials.International Materials 

Reviews, 66(6), 365–393. 

[12] Toptas, E. (2020). Generative design via AI.Journal of Mechatronics and AI in Engineering, 1(1), 14–

17. 

[13] Li, W., &Meng, F. (2021). AI in mechanical automation.Journal of Physics: Conf. Series, 1885, 

042015. 

[14] Lee, K., et al. (2020). AI methods for predicting mechanical properties.IOP Conf. Series: Materials 

Science and Engineering, 967, 012031. 

[15] Liu, T.-I., & Oh, C. (2005). Expert system for MEMS design.Int. Journal of Knowledge-based and 

Intelligent Systems, 9, 159–171. 

[16] Jenis, J., et al. (2023). Engineering applications of AI in mechanical optimization.Machines, 11, 577. 

[17] Noor, A. K. (2017). AI and the future of machine design. Mechanical Engineering Magazine, October, 

36–41. 

[18] Special Issue Editors. (2021). Artificial Intelligence and Engineering Design. Journal of Mechanical 

Design, 144(2), 020301. 

[19] Mascarenhas, W. N., et al. (2004). Design criteria for plastic components. Materials and Design, 25(3), 

257–261. 

[20] Gero, J. S., & Yu, R. (2020). Cognitive design computing: A future paradigm. Design Science, 6, e20. 

[21] Oyekan, J. O., et al. (2019). Human–AI collaborative design for additive manufacturing.Journal of 

Manufacturing Systems, 51, 40–47. 

[22] Bhatti, A. I., &Dhamija, R. (2021). Intelligent systems in mechanical design: A review. Materials 

Today: Proceedings, 45, 7200–7205. 

[23] Hassan, A., &Ayad, N. (2022). Machine learning approaches in CAD automation: A survey. Journal of 

Computational Design and Engineering, 9(1), 1–15. 

[24] Cagan, J., &McComb, C. (2019). Design cognition: An AI perspective. AI EDAM, 33(3), 239–250. 

[25] Ahmed, M., & Shaikh, A. (2022). AI-driven simulation pipelines for intelligent mechanical design. 

Simulation Modelling Practice and Theory, 115, 102437. 

[26] Sobester, A., & Forrester, A. (2008). Design optimization using surrogate models. Engineering 

Optimization, 40(6), 537–556. 

[27] Zhang, Y., et al. (2021). Machine learning-assisted parameter tuning for design robustness.Computers in 

Industry, 127, 103397 

[28] Rao, Z., & Dutta, D. (2018). Deep learning meets surrogate modeling: Design applications. Journal of 

Mechanical Design, 140(11), 111411. 

[29] Chen, T., et al. (2020). AI-based microstructure design using generative models.Computational 

Materials Science, 183, 109826. 

[30] Jiao, P., &Alavi, A. H. (2021). Artificial intelligence-enabled smart mechanical metamaterials: Advent 

and future trends. International Materials Reviews, 66(6), 365–393. 

[31] Li, W., et al. (2021). Application of AI in vocational technology and mechanical training.Journal of 

Physics: Conf. Series, 1885, 042017. 

[32] Lee, C., & Kwon, H. (2022). AI-driven decision-making systems in mechanical component design. 

Computational Design Journal, 8(4), 201–218. 

[33] Gero, J. S., & Yu, R. (2020). Cognitive design computing: A future paradigm for design. Design 

Science, 6, e20. 

[34] Oyekan, J. O., et al. (2019). Human–AI collaborative design for additive manufacturing.Journal of 

Manufacturing Systems, 51, 40–47. 

[35] Zhang, Y., et al. (2021). Machine learning-assisted parameter tuning. Computers in Industry, 127, 

103397. 

[36] Rao, Z., & Dutta, D. (2018). Deep learning in optimization workflows.Journal of Mechanical Design, 

140(11), 111411. 

[37] Chen, T., et al. (2020). Generative adversarial networks for material prediction.Computational 

Materials Science, 183, 109826. 

http://www.ijcrt.org/


www.ijcrt.org                                                          © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT25A5911 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org q636 
 

[38] Ahmed, M., & Shaikh, A. (2022). Simulation pipelines in mechanical design. Simulation Modelling 

Practice and Theory, 115, 102437. 

[39] Bhatti, A. I., &Dhamija, R. (2021). Role of intelligent systems in mechanical design.Materials Today: 

Proceedings, 45, 7200–7205. 

[40] Toptas, E. (2020). Design optimization using AI techniques. Journal of Mechatronics and AI in 

Engineering, 1(1), 14–17. 

[41] Wang, J., et al. (2023). Intelligent CAD feature recognition using deep learning.Advanced Engineering 

Informatics, 57, 101163. 

[42] Kapoor, A., & Goyal, M. (2022). Comparative analysis of CAD automation frameworks.Computer-

Aided Design and Applications, 19(4), 783–797.  

[43] Wang, Y., et al. (2022). Design of shape-optimized mechanical parts using GANs.Additive 

Manufacturing, 55, 102857. 

[44] Sun, S., & Xu, X. (2021). Cognitive product modeling using AI knowledge graphs. Robotics and 

Computer-Integrated Manufacturing, 68, 102086. 

[45] Kim, J., et al. (2022). AI-enabled generative design for mechanical housing systems.Journal of 

Mechanical Science and Technology, 36(3), 1211–1220.  

[46] Zhou, Q., et al. (2023). Human–AI interaction for early-stage mechanical design.AI EDAM, 37(1), 15–

28.  

[47] Rojas, S., et al. (2022). Lightweight structural design using hybrid AI-topology methods.Structural and 

Multidisciplinary Optimization, 66(4), 689–702.  

[48] Al-Turki, A., &Alarifi, S. (2022). Real-time feedback integration in CAD using AI.Engineering 

Applications of Artificial Intelligence, 113, 104996. 

[49] Biswas, P., & Sinha, A. (2021). Automation of dimensional tolerancing using deep reinforcement 

learning.Journal of Computing and Information Science in Engineering, 21(2), 021004. 

[50] Hsu, P., et al. (2023). Adaptive design optimization using evolutionary-AI hybrids.Knowledge-Based 

Systems, 271, 110252. 

 

http://www.ijcrt.org/

