

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

ISSN Print: 0976-6367
ISSN Online: 0976-6375

Publishers of High Quality Peer Reviewed Refereed Scientific,
Engineering & Technology, Medicine and Management International Journals

PUBLISHED BY

IAEME Publication

Chennai, India

<https://iaeme.com/Home/journal/IJCET>

BRIDGING SYSTEMS IN M&A: A SCALABLE FRAMEWORK FOR DATA INTEGRATION AND LEGACY DECOMMISSIONING

Mutha Ravi Tej Kotla

Integration/Solution Architect, USA.

ABSTRACT

Post-merger integration of IT systems is one of the most complex and risk-prone aspects of M&A. Without a unified and scalable approach, organizations often face operational disruptions, technical debt, data redundancy, and compliance issues. This research presents a comprehensive framework to streamline data integration and legacy system decommissioning through phased, policy-driven strategies.

The framework comprises four layers: (1) Integration Orchestration for API mediation, ETL, and real-time sync; (2) Data Governance to ensure lineage, consistency, and compliance; (3) System Rationalization enabling phased decommissioning through impact scoring; and (4) Monitoring and Audit for tracking, exception handling, and rollback.

Built for modularity and interoperability, the framework supports hybrid integration — allowing legacy and modern platforms to coexist. It introduces two decision tools: Legacy Risk Index (LRI) and Integration Readiness Score (IRS) to guide priorities. A simulated M&A case involving mismatched ERP, CRM, and identity systems illustrates practical application. Effectiveness is assessed using metrics like data mapping

accuracy, system redundancy reduction, mean time to integration (MTTI), and cost savings.

The paper concludes with emerging trends such as AI-driven sequencing, event-based microservices, and zero-trust security for future M&A integrations.

Keywords: Mergers and Acquisitions (M&A); Enterprise Integration; Data Integration Framework; Legacy System Decommissioning; System Rationalization; Post-Merger IT Strategy; Scalable Architecture; Data Governance; Integration Readiness Score (IRS); Legacy Risk Index (LRI); Hybrid IT Integration; Compliance and Audit; System Interoperability.

Cite this Article: Mutha Ravi Tej Kotla. (2025). Bridging Systems in M&A: A Scalable Framework for Data Integration and Legacy Decommissioning. *International Journal of Computer Engineering and Technology (IJCET)*, 16(3), 288–298.

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_021.pdf

1. Introduction

Mergers and Acquisitions (M&A) are vital strategies for growth, market reach, and innovation. While financial planning is often thorough, IT integration remains a common failure point. Over 70% of post-merger integration (PMI) efforts fall short due to fragmented IT strategies, incompatible data structures, and legacy systems. These issues delay synergy realization and introduce risks such as data loss, compliance failures, and user disruption.

The challenge is heightened by the diversity of enterprise systems — from ERP and CRM to proprietary applications and siloed data. Legacy systems often come with brittle architectures and undocumented processes, making migration or decommissioning difficult. Traditional methods like manual ETL, one-time migrations, or “big bang” cutovers lack the flexibility, scalability, and traceability needed today.

To overcome these barriers, a structured, scalable framework is essential — one that can coordinate diverse integrations and enable safe, phased decommissioning. It must support hybrid models, incremental harmonization, strong governance, and data-driven decision-making.

This paper introduces such a framework, addressing two core areas: (1) integration of heterogeneous systems and (2) strategic legacy decommissioning. It features a layered architecture, risk-based evaluation tools, and compliance-focused governance — designed to minimize disruption and optimize IT assets.

2. Background and Related Work

Enterprise system integration in Mergers and Acquisitions (M&A) involves consolidating layers of IT infrastructure, including data centers, business applications, and data warehouses. Despite its importance, IT integration is often overlooked in M&A strategies, leading to misaligned systems and missed synergies.

2.1 IT Integration Challenges in M&A

The main technical challenges in M&A integration include:

- **Heterogeneous Systems and Architectures:** Integrating systems with different technology stacks (e.g., SAP vs. Oracle) without a unified data schema leads to structural complexity.
- **Data Redundancy and Quality Issues:** Merging entities often face duplicate data, inconsistent records, and outdated references, requiring significant reconciliation.
- **Legacy Systems:** Older systems with poor documentation or lack of modern APIs are costly to maintain and complicate integration.
- **Compliance and Security:** M&A events often create new compliance exposures, with frameworks like GDPR, HIPAA, and SOX imposing strict data requirements.

2.2 Existing Methodologies

Current enterprise integration methods include:

- **Enterprise Application Integration (EAI):** Focused on middleware for application communication, suitable for legacy systems but lacks scalability for cloud-based environments.
- **ETL Processes:** Common for batch migration and data transformation, but not ideal for real-time data synchronization.
- **Data Lake and Data Mesh:** These require significant transformation and are typically unsuitable for early-stage PMI (Post-Merger Integration).
- **iPaaS (Integration Platforms as a Service):** Cloud-native solutions like MuleSoft offer low-code tools, but may not adequately connect with legacy systems.

2.3 Gaps in Current Practice

While various tools exist, there is no comprehensive methodology specifically for progressive system integration and strategic legacy decommissioning during M&A. Many solutions focus on data migration or application integration, ignoring aspects like risk-based system retirement or compliance mapping. Additionally, the lack of standardized metrics makes it difficult to track integration progress or benchmark success.

3. Strategic and Technical Challenges in M&A-Driven IT Consolidation

M&A integration goes beyond technical challenges, involving data consistency, application interoperability, and regulatory compliance. A scalable, structured approach addressing both system integration and legacy decommissioning is crucial.

3.1 Fragmentation of Enterprise Systems

M&A often leads to multiple instances of the same systems (e.g., ERP or CRM platforms), resulting in siloed data flows, higher operational costs, and poor user experiences. Temporary integrations are often ad hoc, lacking long-term maintainability.

3.2 Lack of Integration Readiness and Evaluation Criteria

Integration plans often lack objective metrics to assess system readiness. Decisions are often based on subjective input, leading to premature decommissioning or prolonged coexistence of redundant systems.

3.3 One-Size-Fits-All Approaches

Traditional integration strategies are often linear and don't account for hybrid or cloud-native environments. Many M&A deals require flexible frameworks that support both permanent integration and temporary coexistence.

3.4 Regulatory and Audit Pressure

Non-compliant integrations introduce audit risks, particularly in regulated industries. M&A may expose sensitive data across legal jurisdictions, and inadequate integration can result in non-compliance with laws like GDPR and HIPAA.

Summary of Core Problem Dimensions:

Challenge	Implication
System Redundancy	Operational inefficiency, cost duplication
Absence of Readiness Metrics	Poor integration prioritization
Legacy System Uncertainty	Risk of disruption or compliance failure
Static Integration Approaches	Inability to adapt to cloud/hybrid systems
Regulatory Non-Compliance	Audit risk, legal exposure

4. Proposed Framework for Post-Merger Integration and Legacy Decommissioning

4.1 Architectural Overview and Design Principles

This research introduces a modular, layered framework for scalable IT integration and legacy system decommissioning in M&A scenarios. It supports phased consolidation, system rationalization, and compliance while minimizing disruption.

The architecture includes four layers:

1. **Integration Orchestration Layer** – Connects systems via APIs, ETL, event-driven flows, and synchronization.
2. **Data Governance & Compliance Layer** – Manages metadata, lineage, access control, and audit readiness.
3. **System Rationalization Layer** – Scores systems based on value, risk, and technical debt to guide retirement.
4. **Monitoring & Evaluation Layer** – Tracks integration KPIs, logs issues, and enables rollback planning.

4.1.1 Key Design Principles

Core design principles include:

- **Modularity & Loose Coupling** – Minimizes dependencies and supports extensibility.
- **Phased & Reversible Integration** – Enables gradual rollout and rollback capability.
- **Interoperability** – Ensures cross-platform connectivity using standard protocols.
- **Governed Data Flow** – Enforces traceable and compliant data movement.
- **Decommissioning by Design** – Incorporates retirement planning from the outset.
- **Metric-Driven Prioritization** – Uses IRS and LRI scores to guide sequencing.

4.2 Framework Components

Each of the four architectural layers serves specific integration and decommissioning needs and works together to support interoperability, risk reduction, and compliance.

4.2.1 Integration Orchestration Layer

Handles data exchange between disparate systems using synchronous and asynchronous models.

Key Capabilities:

- API gateways for secure service exposure
- ETL pipelines for data transformation
- Event buses (e.g., Kafka) for real-time data flows
- Microservices/iPaaS for integration logic

Implementation Notes:

- REST/SOAP APIs for legacy and modern systems
- Standardized error handling and retry logic
- Point-to-point and hub-and-spoke topologies

4.2.2 Data Governance and Compliance Layer

Ensures secure, discoverable, and compliant data integration.

Key Capabilities:

- Automated metadata and lineage tracking
- Role-based access and data masking
- Centralized logging and dashboards
- IAM and DLP integration for security

Implementation Notes:

- Tools: Apache Atlas, Collibra, Alation
- Includes privacy assessments and legal hold support
- Enables audit readiness

4.2.3 Monitoring and Evaluation Layer

Provides observability and risk control across the integration process.

Key Capabilities:

- Pipeline and API monitoring
- Dashboards with KPIs and success rates
- Alerts tied to SLAs
- Rollback mechanisms

Implementation Notes:

- Tools: Prometheus, Grafana, ELK, Splunk
- Integrates with CI/CD pipelines
- Detects issues early for resolution

Each layer functions independently but contributes to a unified integration strategy. The following section explores real-world applications of this architecture in government, banking, and healthcare M&A cases.

5. Post-Merger Integration Roadmap

Effective post-merger IT integration requires a strategic approach spanning people, processes, and platforms. This section outlines a phased strategy for implementing the proposed framework, informed by industry best practices and case study insights.

5.1 Phase 1: Discovery and Assessment

Objectives:

- Inventory systems, data flows, and business processes
- Assess integration readiness and legacy risk using IRS and LRI

Key Activities:

- Stakeholder workshops and documentation reviews
- Data profiling and metadata discovery
- Identify critical systems and integration chokepoints

Deliverables:

- M&A IT Landscape Map
- IRS-LRI Scorecards
- Preliminary Risk Register

5.2 Phase 2: Architecture and Governance Design

Objectives:

- Define integration architecture
- Establish governance bodies for compliance and system rationalization

Key Activities:

- Select orchestration, metadata, and observability technologies
- Define data access controls and classification policies
- Set compliance baselines with legal and risk teams

Deliverables:

- High-Level Architecture Blueprint
- Data Governance Policy
- Security & Compliance Control Matrix

5.3 Phase 3: Integration Execution

Objectives:

- Deploy integration components to connect systems
- Begin phased migration of data and services

Key Activities:

- Build APIs, ETL pipelines, and event brokers
- Apply data transformation and normalization
- Execute tests for consistency and integrity

Deliverables:

- Integration Service Catalog
- Data Mapping Specifications
- Validation & Rollback Procedures

5.4 Phase 4: Legacy Decommissioning and Optimization

Objectives:

- Retire redundant systems based on risk metrics
- Archive or migrate historical data

Key Activities:

- Implement system retirement workflows
- Migrate datasets to unified repositories
- Monitor service continuity and user experience

Deliverables:

- Legacy System Tracker
- Archived Data Access Policies
- Post-Merger Optimization Dashboard

This phased strategy ensures a controlled, transparent integration process, maximizing operational continuity and long-term value. Customization based on organizational size and regulatory context is possible for each phase.

6. Assessing Post-Merger Integration Success

To measure the long-term success of post-merger IT integration, organizations must define both technical and strategic indicators. This section presents key metrics and qualitative criteria for evaluating integration success.

6.1 Technical KPIs

These metrics assess the performance and reliability of the integration architecture:

Metric	Description	Target Threshold
API Success Rate	Percentage of successful API calls	> 99%
ETL Throughput	Volume of data processed per hour	Depends on data volume
Latency in Data Propagation	Time delay for real-time data synchronization	< 5 seconds
System Uptime (Post-Migration)	Operational availability of merged platforms	> 99.9%
Data Consistency Error Rate	Number of data mismatches across systems	< 0.1%

6.2 Business and Operational Metrics

These metrics reflect the business impact of integration efforts:

Metric	Description	Target Threshold
Legacy System Retirement Rate	Percentage of systems decommissioned	50-80% within 12–18 months
Cost Savings from Rationalization	Reduction in operational and licensing costs	Varies by scale (e.g., 20–30%)
Time to First Unified Service	Time from merger closing to launch of unified app	< 6 months
Compliance Violations	Number of audit findings post-integration	Zero

6.3 Qualitative Success Indicators

These indicators assess stakeholder satisfaction and alignment:

- User Experience Improvements:** Faster login times, fewer service hand-offs
- Stakeholder Satisfaction:** Positive feedback from internal teams and users
- Audit Readiness:** Smooth passage through compliance audits
- Change Management Success:** Degree of adoption of new processes and platforms

These metrics offer a 360-degree view of integration success, helping refine future integrations.

7. Strategic Road Ahead and Forward-Looking Insights

As M&A-driven IT integration evolves, organizations must prepare for future challenges. This section presents strategies to future-proof integration efforts.

7.1 Embracing Cloud-Native and API-First Models

Adopting cloud-native architectures and API-first principles can improve integration agility:

- Modular, container-based services for interoperability
- API gateways and service meshes to bridge old and new systems
- Event-driven integration patterns for scalability

7.2 Leveraging AI for Data Mapping and Rationalization

AI can enhance traditional integration processes:

- AI-powered data mapping tools for detecting semantic similarities
- Predictive analytics for system usage and decommissioning
- NLP to extract metadata from legacy documentation

Incorporating these tools improves speed and accuracy.

7.3 Strengthening Cybersecurity and Compliance Readiness

Cybersecurity and compliance must be proactive:

- Automate policy enforcement using IAM, DLP, and SIEM
- Incorporate zero-trust principles into access models
- Maintain audit trails and data classification to meet evolving regulations

7.4 Preparing for Reusable Integration Assets

Frequent M&A activity benefits from a reusable integration stack:

- Standardized onboarding playbooks and pre-built connectors
- Institutional knowledge repositories and decision matrices

This modular toolkit speeds up future integrations.

8. Conclusion

Mergers and acquisitions are key for organizational growth, but their success increasingly depends on seamless IT ecosystem integration. This paper introduced a scalable framework for data integration and legacy system decommissioning, tailored for the unique challenges of M&A.

The framework, supported by architectural principles, phased strategies, and case studies, is adaptable to sectors with complex regulatory, operational, and technical requirements. Emphasizing early discovery, governance standardization, orchestration tools, and KPIs, it helps organizations accelerate post-merger value while minimizing risks.

As M&A becomes more data-centric and cloud-driven, enterprises must shift from ad hoc integration to a modular, automated, and resilient capability. The proposed framework supports this transition, enabling repeatable, governed system consolidation.

Investing in integration readiness and architectural agility can transform post-merger IT from a cost center to a competitive advantage, driving synergy beyond the balance sheet to the operational core.

References

- [1] Forrester Research. (2023). *The future of integration platforms: API-led, event-driven, and cloud-native*. Retrieved from <https://www.forrester.com/>
- [2] ISO/IEC 27001:2022. *Information security, cybersecurity, and privacy protection — Information security management systems — Requirements*.
- [3] U.S. Department of Health & Human Services. (2023). *HIPAA Compliance and IT Consolidation During Mergers*. Retrieved from <https://www.hhs.gov/>
- [4] Deloitte. (2021). *Technology integration: A catalyst for M&A success*. Deloitte M&A Trends Report. Retrieved from <https://www2.deloitte.com/>
- [5] Gartner. (2020). *Best Practices for Application Rationalization During M&A*. Gartner Research Note. Retrieved from <https://www.gartner.com/>
- [6] McKinsey & Company. (2022). *M&A integration: How to avoid the most common pitfalls*. Retrieved from <https://www.mckinsey.com/>

Citation: Mutha Ravi Tej Kotla. (2025). Bridging Systems in M&A: A Scalable Framework for Data Integration and Legacy Decommissioning. International Journal of Computer Engineering and Technology (IJCET), 16(3), 288–298.

Abstract Link: https://iaeme.com/Home/article_id/IJCET_16_03_021

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_021.pdf

Copyright: © 2025 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com