International Journal of Computer Engineering and Technology (1JCET)
Volume 15, Issue 1, Jan-Feb 2024, pp. 101-106, Article ID: IJCET_15 01 011
Available online at https://iaeme.com/Home/issue/IJCET?Volume=15&Issue=1
ISSN Print: 0976-6367 and ISSN Online: 0976-6375

Impact Factor (2024): 18.59 (Based on Google Scholar Citation)

SCOPE
DATABASE B
. . INDEXED N i
© IAEME Publication G OPEN ACCESS

ENHANCING JAVA SERVERLESS
PERFORMANCE: STRATEGIES FOR
CONTAINER WARM-UP AND OPTIMIZATION

Ashutosh Tripathi
Senior Manager Engineering, Clara Analytics, United States

ABSTRACT

This whitepaper delves into the strategies and best practices for enhancing the
performance of Java-based serverless applications. Focused on the critical aspect of
serverless container warm-up, the document explores various methodologies to
minimize cold starts and optimize overall execution efficiency. Topics covered include
effective warm-up techniques utilizing YAML event bridges, manual event triggers, and
cron API calls, with insights into file structure considerations.

The paper emphasizes prudent dependency management by advocating the
avoidance of unnecessary library imports and favoring lightweight dependency
injection frameworks, exemplifying Dagger as a precompiled alternative to heavyweight
solutions like Spring. Custom logging practices are discussed, offering a dynamic
approach to log level control through environment variables.

Build optimization, an integral facet of performance enhancement, is addressed
through the Maven Shade Plugin, streamlining deployments by creating consolidated,
minimal-dependency JARs. Additionally, the role of the serverless container context is
highlighted for efficient value passing between function invocations, reducing reliance
on external storage and enhancing performance.

Lastly, the document advocates the implementation of Java Tiered Compilation at
level 1, empowering the Java Virtual Machine to swiftly compile methods into native
code, thereby optimizing execution speed by up to 30% faster. By adopting these
comprehensive strategies, developers can fortify their Java serverless applications
against performance bottlenecks, leading to improved responsiveness, reduced costs,
and an elevated user experience in serverless computing environments.

Keywords: Serverless Applications, Java Performance Optimization, Container Warm-
Up Strategies, Dependency Management, Java Tiered Compilation

https://iaeme.com/Home/journal/lJCET editor@iaeme.com

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

Cite this Article: Ashutosh Tripathi, Enhancing Java Serverless Performance:
Strategies for Container Warm-Up and Optimization, International Journal of Computer
Engineering and Technology (IJCET), 15(1), 2024, pp.101-106.
https://iaeme.com/Home/issue/IJCET?Volume=15&Issue=1

1. SERVERLESS CONTAINER WARM-UP

Serverless containers often face cold starts, impacting the initial execution time. Effective
warm-up strategies are crucial to mitigate this challenge.

\V2

YAML Event Bridge: Schedule periodic executions using YAML event bridges to
keep serverless containers warm.

Manual Event Bridge: Trigger manual invocations at regular intervals to maintain a
warm state.

Cron API Calls: Schedule API calls to simulate activity and prevent containers from
going idle.

File Structure Optimization: Consider the impact of file structure on cold starts. Favor
longer files over multiple smaller files to reduce container initialization time.

2. DEPENDENCY MANAGEMENT

Efficient dependency management is critical for optimizing the performance, reducing
deployment package size, and enhancing the scalability of applications. Here are some
strategies to expand on dependency management in serverless environments:

Minimize External Libraries: Serverless applications should strive to minimize the
number of external libraries they depend on. Each additional library increases the size
of the deployment package, which can impact cold start times and consume more
resources. Instead of importing entire libraries for single-use cases, developers can adopt
a more granular approach. For example, rather than importing an entire utility library
for a single function, developers can selectively copy and paste specific code snippets
(e.g., utility functions like isEmptyCheck()). This approach reduces unnecessary
dependencies and helps keep the deployment package lean and efficient.

Dependency Injection: Dependency injection (D) is a design pattern commonly used
in software development to manage dependencies between components. In serverless
applications, lightweight dependency injection frameworks are preferred over
heavyweight solutions to minimize overhead and improve performance. While
frameworks like Spring offer comprehensive dependency injection capabilities, they
may introduce unnecessary complexity and overhead in serverless environments.
Instead, developers can opt for lightweight DI frameworks that are specifically designed
for serverless architectures. One such framework is Dagger, which provides
precompiled, efficient dependency injection without the overhead of reflection-based
DI frameworks like Spring. By choosing lightweight DI frameworks, developers can
streamline dependency management and improve the overall efficiency of serverless
applications.

Static Analysis: Static analysis tools can help identify and remove unused dependencies
from serverless applications. These tools analyze the codebase and detect dependencies
that are imported but not actually used. By removing unused dependencies, developers
can further reduce the size of the deployment package and optimize resource utilization
in serverless environments. Continuous integration (CI) pipelines can be set up to
automatically run static analysis tools as part of the build process, ensuring that
unnecessary dependencies are detected and removed before deployment.

https://iaeme.com/Home/journal/lJCET e editor@iaeme.com

Ashutosh Tripathi

Dependency Scanning: Dependency scanning tools can help identify security
vulnerabilities in third-party dependencies used in serverless applications. These tools
analyze the dependencies listed in the project's configuration files (e.g., pom.xml for
Maven projects) and check for known security vulnerabilities and outdated versions. By
regularly scanning dependencies for security issues, developers can proactively mitigate
potential risks and ensure the security of serverless applications.

Version Management: Keeping dependencies up-to-date is essential for maintaining
the security and stability of serverless applications. Dependency management tools like
Maven and npm provide features for managing dependencies and updating them to the
latest compatible versions. By regularly updating dependencies, developers can leverage
bug fixes, performance improvements, and security patches provided by the library
maintainers, ensuring that serverless applications remain secure and reliable over time.

3. CUSTOM LOGGING

Custom Logger Implementation: To enable dynamic logging levels, developers can
implement a custom logger tailored to the requirements of their serverless application.
This custom logger should provide functionality for logging messages at different levels
of severity, such as DEBUG, INFO, WARN, and ERROR. Additionally, the logger
should support dynamic adjustment of logging levels based on configuration changes,
typically facilitated through environment variables or configuration files.
Configuration via Environment Variables: Serverless platforms often allow
configuration settings, including environment variables, to be specified at deployment
time. Developers can leverage environment variables to control the logging behavior of
their serverless functions dynamically. For example, a configurable environment
variable like "LOG_LEVEL" can be used to specify the desired logging level (e.g.,
DEBUG, INFO, WARN) for a particular function or environment.

Dynamic Logging Level Adjustment: Within the custom logger implementation, logic
should be included to dynamically adjust the logging level based on the value of the
configured environment variable. This logic typically involves comparing the specified
logging level with the severity of each log message before emitting it. Messages with
severity lower than the configured logging level can be filtered out to reduce verbosity
and conserve resources, while messages with severity equal to or higher than the
configured level are logged as usual.

4. BUILD OPTIMIZATION

The Maven Shade Plugin is a build tool commonly used in Java projects to create a single,
standalone "uber-JAR" (Java ARchive) that contains all dependencies and classes needed to run
the application. This plugin is particularly useful in serverless environments, where minimizing
the deployment package size and reducing the number of external dependencies are critical for
faster cold start times and efficient resource utilization.

Here's how the Maven Shade Plugin helps optimize serverless builds:

Dependency Management: In serverless applications, minimizing the number of
dependencies and their sizes is essential to reduce deployment package size. The Maven
Shade Plugin merges all project dependencies and their transitive dependencies into a
single JAR file, eliminating the need to include multiple external libraries in the
deployment package. This reduces the overall size of the package and improves
performance during deployment and execution.

https://iaeme.com/Home/journal/lJCET editor@iaeme.com

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

Classpath Optimization: When deploying serverless applications, reducing the
number of classes and resources loaded at runtime can significantly improve cold start
times. The Maven Shade Plugin allows developers to relocate classes and resources,
avoiding conflicts and ensuring that only the necessary classes are loaded at runtime.
This classpath optimization helps streamline the execution environment in serverless
platforms, leading to faster startup times and more efficient resource utilization.
Resource Exclusion: Serverless applications often require specific configurations and
resources tailored to the execution environment. The Maven Shade Plugin enables
developers to exclude unnecessary resources, such as configuration files,
documentation, or test files, from the deployment package. By removing these
extraneous resources, the size of the deployment package is further reduced, resulting
in faster deployment and improved performance in serverless environments.

Plugin Customization: The Maven Shade Plugin offers various configuration options
and customization features to fine-tune the build process according to specific project
requirements. Developers can configure various parameters such as relocation rules,
resource filtering, and package inclusion/exclusion criteria to optimize the deployment
package for serverless execution. This flexibility allows developers to balance between
package size, performance, and functionality based on the needs of their serverless
applications.

5. SERVERLESS CONTAINER CONTEXT:

Context Objects: Serverless platforms often provide context objects that encapsulate
information about the current invocation, such as event metadata, function parameters,
and execution environment details. These context objects can be augmented with
additional data by functions during execution and passed along to subsequent
invocations. By leveraging context objects for value passing, developers can efficiently
transfer relevant information between function invocations without relying on external
storage mechanisms.

Cache Layers: Serverless containers can incorporate in-memory caching mechanisms
to store frequently accessed data or computation results. By caching data within the
container context, subsequent function invocations can retrieve the cached values
directly, eliminating the need to access external storage services. This approach reduces
latency and improves performance by leveraging the low-latency access times of in-
memory caches.

6. JAVA TIERED COMPILATION

In the context of serverless Java applications, leveraging Java Tiered Compilation can
significantly enhance performance and optimize execution speed. Java Tiered Compilation is a
feature of the Java Virtual Machine (JVM) that dynamically compiles Java bytecode into native
machine code, improving the performance of Java applications. Enabling Tiered Compilation
at level 1 specifically focuses on optimizing compilation levels to balance between startup time
and long-term performance, making it particularly suitable for serverless environments where
fast cold start times are crucial.

Tiered Compilation Overview: Java Tiered Compilation operates in multiple phases
or tiers, each aimed at optimizing the performance of the application. In the initial tiers,
methods are compiled quickly into machine code, allowing for faster startup times. As
the application continues to run, more aggressive optimization techniques are applied to
further improve performance.

https://iaeme.com/Home/journal/lJCET editor@iaeme.com

Ashutosh Tripathi

ii. Compilation Level Optimization: Enabling Tiered Compilation at level 1 instructs the
JVM to prioritize quickly compiling methods into native code while still applying basic
optimizations. This ensures that the application can start up rapidly, which is essential
in serverless environments where functions need to respond to events quickly. By
striking a balance between compilation speed and optimization, level 1 Tiered
Compilation optimizes the overall performance of serverless Java applications.

iii. Dynamic Optimization: One of the key advantages of Tiered Compilation is its ability
to adapt dynamically to the application's runtime behavior. As the application continues
to run and specific code paths become hotspots, Tiered Compilation gradually applies
more aggressive optimizations to those areas, further enhancing performance. This
dynamic optimization capability is particularly beneficial in serverless environments
where workloads can vary widely and unpredictably.

iv. Resource Efficiency: Despite focusing on quickly compiling methods, Tiered
Compilation at level 1 still achieves significant performance improvements compared
to interpreting bytecode directly. By efficiently utilizing serverless resources and
optimizing startup times, Tiered Compilation contributes to overall resource efficiency
in serverless Java applications.

Inlined into
compiled

CONCLUSION

Optimizing serverless performance in Java involves a multifaceted approach. Strategies such as
container warm-up techniques, dependency management, custom logging, build optimization,
and Java tiered compilation contribute to a more efficient and responsive serverless application.
By implementing these best practices, developers can achieve faster response times, reduced
costs, and an overall enhanced user experience in serverless environments.

https://iaeme.com/Home/journal/lJCET editor@iaeme.com

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

REFERENCE

[1] Compilation modes: https://www.oracle.com/technical-resources/articles/java/architect-
evans-ptl.html

[2] Maven Shade: https://maven.apache.org/plugins/maven-shade-plugin/

Citation: Ashutosh Tripathi, Enhancing Java Serverless Performance: Strategies for Container Warm-Up and
Optimization, International Journal of Computer Engineering and Technology (IJCET), 15(1), 2024, pp.101-
106.

Article Link:
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15 ISSUE_1/IJCET _15 01 011.pdf

Abstract Link:
https://iaeme.com/Home/article_id/IJCET_15 01 011

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0 @' BY

& editor@iaeme.com

https://iaeme.com/Home/journal/lJCET editor@iaeme.com

mailto:editor@iaeme.com

