
https://iaeme.com/Home/journal/IJCET 101 editor@iaeme.com

International Journal of Computer Engineering and Technology (IJCET)
Volume 15, Issue 1, Jan-Feb 2024, pp. 101-106, Article ID: IJCET_15_01_011

Available online at https://iaeme.com/Home/issue/IJCET?Volume=15&Issue=1

ISSN Print: 0976-6367 and ISSN Online: 0976–6375

Impact Factor (2024): 18.59 (Based on Google Scholar Citation)

© IAEME Publication

ENHANCING JAVA SERVERLESS

PERFORMANCE: STRATEGIES FOR

CONTAINER WARM-UP AND OPTIMIZATION

Ashutosh Tripathi

Senior Manager Engineering, Clara Analytics, United States

ABSTRACT

This whitepaper delves into the strategies and best practices for enhancing the

performance of Java-based serverless applications. Focused on the critical aspect of

serverless container warm-up, the document explores various methodologies to

minimize cold starts and optimize overall execution efficiency. Topics covered include

effective warm-up techniques utilizing YAML event bridges, manual event triggers, and

cron API calls, with insights into file structure considerations.

The paper emphasizes prudent dependency management by advocating the

avoidance of unnecessary library imports and favoring lightweight dependency

injection frameworks, exemplifying Dagger as a precompiled alternative to heavyweight

solutions like Spring. Custom logging practices are discussed, offering a dynamic

approach to log level control through environment variables.

Build optimization, an integral facet of performance enhancement, is addressed

through the Maven Shade Plugin, streamlining deployments by creating consolidated,

minimal-dependency JARs. Additionally, the role of the serverless container context is

highlighted for efficient value passing between function invocations, reducing reliance

on external storage and enhancing performance.

Lastly, the document advocates the implementation of Java Tiered Compilation at

level 1, empowering the Java Virtual Machine to swiftly compile methods into native

code, thereby optimizing execution speed by up to 30% faster. By adopting these

comprehensive strategies, developers can fortify their Java serverless applications

against performance bottlenecks, leading to improved responsiveness, reduced costs,

and an elevated user experience in serverless computing environments.

Keywords: Serverless Applications, Java Performance Optimization, Container Warm-

Up Strategies, Dependency Management, Java Tiered Compilation

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

https://iaeme.com/Home/journal/IJCET 102 editor@iaeme.com

Cite this Article: Ashutosh Tripathi, Enhancing Java Serverless Performance:

Strategies for Container Warm-Up and Optimization, International Journal of Computer

Engineering and Technology (IJCET), 15(1), 2024, pp.101-106.

https://iaeme.com/Home/issue/IJCET?Volume=15&Issue=1

1. SERVERLESS CONTAINER WARM-UP

Serverless containers often face cold starts, impacting the initial execution time. Effective

warm-up strategies are crucial to mitigate this challenge.

i. YAML Event Bridge: Schedule periodic executions using YAML event bridges to

keep serverless containers warm.

ii. Manual Event Bridge: Trigger manual invocations at regular intervals to maintain a

warm state.

iii. Cron API Calls: Schedule API calls to simulate activity and prevent containers from

going idle.

iv. File Structure Optimization: Consider the impact of file structure on cold starts. Favor

longer files over multiple smaller files to reduce container initialization time.

2. DEPENDENCY MANAGEMENT

Efficient dependency management is critical for optimizing the performance, reducing

deployment package size, and enhancing the scalability of applications. Here are some

strategies to expand on dependency management in serverless environments:

i. Minimize External Libraries: Serverless applications should strive to minimize the

number of external libraries they depend on. Each additional library increases the size

of the deployment package, which can impact cold start times and consume more

resources. Instead of importing entire libraries for single-use cases, developers can adopt

a more granular approach. For example, rather than importing an entire utility library

for a single function, developers can selectively copy and paste specific code snippets

(e.g., utility functions like isEmptyCheck()). This approach reduces unnecessary

dependencies and helps keep the deployment package lean and efficient.

ii. Dependency Injection: Dependency injection (DI) is a design pattern commonly used

in software development to manage dependencies between components. In serverless

applications, lightweight dependency injection frameworks are preferred over

heavyweight solutions to minimize overhead and improve performance. While

frameworks like Spring offer comprehensive dependency injection capabilities, they

may introduce unnecessary complexity and overhead in serverless environments.

Instead, developers can opt for lightweight DI frameworks that are specifically designed

for serverless architectures. One such framework is Dagger, which provides

precompiled, efficient dependency injection without the overhead of reflection-based

DI frameworks like Spring. By choosing lightweight DI frameworks, developers can

streamline dependency management and improve the overall efficiency of serverless

applications.

iii. Static Analysis: Static analysis tools can help identify and remove unused dependencies

from serverless applications. These tools analyze the codebase and detect dependencies

that are imported but not actually used. By removing unused dependencies, developers

can further reduce the size of the deployment package and optimize resource utilization

in serverless environments. Continuous integration (CI) pipelines can be set up to

automatically run static analysis tools as part of the build process, ensuring that

unnecessary dependencies are detected and removed before deployment.

Ashutosh Tripathi

https://iaeme.com/Home/journal/IJCET 103 editor@iaeme.com

iv. Dependency Scanning: Dependency scanning tools can help identify security

vulnerabilities in third-party dependencies used in serverless applications. These tools

analyze the dependencies listed in the project's configuration files (e.g., pom.xml for

Maven projects) and check for known security vulnerabilities and outdated versions. By

regularly scanning dependencies for security issues, developers can proactively mitigate

potential risks and ensure the security of serverless applications.

v. Version Management: Keeping dependencies up-to-date is essential for maintaining

the security and stability of serverless applications. Dependency management tools like

Maven and npm provide features for managing dependencies and updating them to the

latest compatible versions. By regularly updating dependencies, developers can leverage

bug fixes, performance improvements, and security patches provided by the library

maintainers, ensuring that serverless applications remain secure and reliable over time.

3. CUSTOM LOGGING

i. Custom Logger Implementation: To enable dynamic logging levels, developers can

implement a custom logger tailored to the requirements of their serverless application.

This custom logger should provide functionality for logging messages at different levels

of severity, such as DEBUG, INFO, WARN, and ERROR. Additionally, the logger

should support dynamic adjustment of logging levels based on configuration changes,

typically facilitated through environment variables or configuration files.

ii. Configuration via Environment Variables: Serverless platforms often allow

configuration settings, including environment variables, to be specified at deployment

time. Developers can leverage environment variables to control the logging behavior of

their serverless functions dynamically. For example, a configurable environment

variable like "LOG_LEVEL" can be used to specify the desired logging level (e.g.,

DEBUG, INFO, WARN) for a particular function or environment.

iii. Dynamic Logging Level Adjustment: Within the custom logger implementation, logic

should be included to dynamically adjust the logging level based on the value of the

configured environment variable. This logic typically involves comparing the specified

logging level with the severity of each log message before emitting it. Messages with

severity lower than the configured logging level can be filtered out to reduce verbosity

and conserve resources, while messages with severity equal to or higher than the

configured level are logged as usual.

4. BUILD OPTIMIZATION

The Maven Shade Plugin is a build tool commonly used in Java projects to create a single,

standalone "uber-JAR" (Java ARchive) that contains all dependencies and classes needed to run

the application. This plugin is particularly useful in serverless environments, where minimizing

the deployment package size and reducing the number of external dependencies are critical for

faster cold start times and efficient resource utilization.

Here's how the Maven Shade Plugin helps optimize serverless builds:

i. Dependency Management: In serverless applications, minimizing the number of

dependencies and their sizes is essential to reduce deployment package size. The Maven

Shade Plugin merges all project dependencies and their transitive dependencies into a

single JAR file, eliminating the need to include multiple external libraries in the

deployment package. This reduces the overall size of the package and improves

performance during deployment and execution.

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

https://iaeme.com/Home/journal/IJCET 104 editor@iaeme.com

ii. Classpath Optimization: When deploying serverless applications, reducing the

number of classes and resources loaded at runtime can significantly improve cold start

times. The Maven Shade Plugin allows developers to relocate classes and resources,

avoiding conflicts and ensuring that only the necessary classes are loaded at runtime.

This classpath optimization helps streamline the execution environment in serverless

platforms, leading to faster startup times and more efficient resource utilization.

iii. Resource Exclusion: Serverless applications often require specific configurations and

resources tailored to the execution environment. The Maven Shade Plugin enables

developers to exclude unnecessary resources, such as configuration files,

documentation, or test files, from the deployment package. By removing these

extraneous resources, the size of the deployment package is further reduced, resulting

in faster deployment and improved performance in serverless environments.

iv. Plugin Customization: The Maven Shade Plugin offers various configuration options

and customization features to fine-tune the build process according to specific project

requirements. Developers can configure various parameters such as relocation rules,

resource filtering, and package inclusion/exclusion criteria to optimize the deployment

package for serverless execution. This flexibility allows developers to balance between

package size, performance, and functionality based on the needs of their serverless

applications.

5. SERVERLESS CONTAINER CONTEXT:

i. Context Objects: Serverless platforms often provide context objects that encapsulate

information about the current invocation, such as event metadata, function parameters,

and execution environment details. These context objects can be augmented with

additional data by functions during execution and passed along to subsequent

invocations. By leveraging context objects for value passing, developers can efficiently

transfer relevant information between function invocations without relying on external

storage mechanisms.

ii. Cache Layers: Serverless containers can incorporate in-memory caching mechanisms

to store frequently accessed data or computation results. By caching data within the

container context, subsequent function invocations can retrieve the cached values

directly, eliminating the need to access external storage services. This approach reduces

latency and improves performance by leveraging the low-latency access times of in-

memory caches.

6. JAVA TIERED COMPILATION

In the context of serverless Java applications, leveraging Java Tiered Compilation can

significantly enhance performance and optimize execution speed. Java Tiered Compilation is a

feature of the Java Virtual Machine (JVM) that dynamically compiles Java bytecode into native

machine code, improving the performance of Java applications. Enabling Tiered Compilation

at level 1 specifically focuses on optimizing compilation levels to balance between startup time

and long-term performance, making it particularly suitable for serverless environments where

fast cold start times are crucial.

i. Tiered Compilation Overview: Java Tiered Compilation operates in multiple phases

or tiers, each aimed at optimizing the performance of the application. In the initial tiers,

methods are compiled quickly into machine code, allowing for faster startup times. As

the application continues to run, more aggressive optimization techniques are applied to

further improve performance.

Ashutosh Tripathi

https://iaeme.com/Home/journal/IJCET 105 editor@iaeme.com

ii. Compilation Level Optimization: Enabling Tiered Compilation at level 1 instructs the

JVM to prioritize quickly compiling methods into native code while still applying basic

optimizations. This ensures that the application can start up rapidly, which is essential

in serverless environments where functions need to respond to events quickly. By

striking a balance between compilation speed and optimization, level 1 Tiered

Compilation optimizes the overall performance of serverless Java applications.

iii. Dynamic Optimization: One of the key advantages of Tiered Compilation is its ability

to adapt dynamically to the application's runtime behavior. As the application continues

to run and specific code paths become hotspots, Tiered Compilation gradually applies

more aggressive optimizations to those areas, further enhancing performance. This

dynamic optimization capability is particularly beneficial in serverless environments

where workloads can vary widely and unpredictably.

iv. Resource Efficiency: Despite focusing on quickly compiling methods, Tiered

Compilation at level 1 still achieves significant performance improvements compared

to interpreting bytecode directly. By efficiently utilizing serverless resources and

optimizing startup times, Tiered Compilation contributes to overall resource efficiency

in serverless Java applications.

CONCLUSION

Optimizing serverless performance in Java involves a multifaceted approach. Strategies such as

container warm-up techniques, dependency management, custom logging, build optimization,

and Java tiered compilation contribute to a more efficient and responsive serverless application.

By implementing these best practices, developers can achieve faster response times, reduced

costs, and an overall enhanced user experience in serverless environments.

Enhancing Java Serverless Performance: Strategies for Container Warm-Up and Optimization

https://iaeme.com/Home/journal/IJCET 106 editor@iaeme.com

REFERENCE

[1] Compilation modes: https://www.oracle.com/technical-resources/articles/java/architect-

evans-pt1.html

[2] Maven Shade: https://maven.apache.org/plugins/maven-shade-plugin/

Citation: Ashutosh Tripathi, Enhancing Java Serverless Performance: Strategies for Container Warm-Up and

Optimization, International Journal of Computer Engineering and Technology (IJCET), 15(1), 2024, pp.101-

106.

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_ISSUE_1/IJCET_15_01_011.pdf

Abstract Link:

https://iaeme.com/Home/article_id/IJCET_15_01_011

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com

mailto:editor@iaeme.com

