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ABSTRACT 

Generative AI usage has increased exponentially since start of the year and has 

created tremendous opportunities from startups to large enterprises. As more and more 

LLMs are released for research and commercial use, it becomes complex for enterprises 

to adopt the LLMs either using a managed service offering or even hosting it in-house 

as the cost is extremely high. This paper will focus on helping companies to optimize 

LLM, provide examples of use cases and solutions on fine tuning, cost optimizations, 

hosting LLM models internally in Kubernetes to solve data privacy, security and 

governance risks. 
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1. INTRODUCTION  

Generative AI refers to algorithms that create new content from a variety of inputs, such as 

code, text, images, soumds, animation, 3D, etc. GPTs (Generative pre-trained transformers) are 

created based on foundational models which are successors to Transformer models, a type of 

deep learning model that are commonly used in NLP and other applications of generative AI. 

Examples of foundational models are GPT-3 and Stable diffusion. 

As enterprises start to use LLMs, they often run into large bills from managed service 

providers, sometimes more than their cloud cost. There are various ways this can be avoided 

by using optimizing the models and running it in-house. This will provide the data security, 

flexibility to choose any model, optimize the model and use as needed. 

Running LLMs in-house can be challenging, expensive without the right optimization 

techniques. Over the next few sections, using the quantization techniques, 6x compression of 

GPU requirements is achieved and able to run Llama-2 models in just 4 GPUs. 
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2. GENERATIVE AI USE CASES 

It has been shown that LLMs perform well in NL applications such as summarization, 

information extraction, language translation, Natural language to SQL and entity 

disambiguation. 

Most of the enterprises will be using above features to build an application for their 

customer base. Below are some of the ideas that can be used by enterprises to develop 

applications: 

• Help assist - Train LLMs on internal or external domain knowledge base to accurately 

respond to customers queries. 

• Summarization of operational incidents to provide quick context of incident based on 

correlation of alerts and events. 

• Creation of documentations like technical manuals for users 

• Multilingual translation to help customer care representatives 

• Multilingual sentiment analysis to help customer care reps/agents 

• Develop interactive learning materials, quizzes, and simulations. 

• Create realistic human-like voices for virtual assistants, audiobooks, etc 

• Automated report writing, generating summaries, and answering user queries in customer 

support. 

• Generate custom visual content for branding and advertising 

• A personalized product recommendation system based on a customer's preferences, 

purchase history and behavior 

3. POPULAR OPEN SOURCE LLM MODELS 

To build Generative AI applications, enterprises will need to use LLMs. There are many open 

source LLMs available to run them inhouse or use preoperatory LLMs like Open AI’s GPT3, 

GPT3.5 and GPT4 models. 

Hugging face leaderboard is a good start to see current list of top performing LLMs based 

on Massive Multitask Language Understanding (MMLU), HellaSwag (a challenge dataset for 

evaluating commonsense NLI), Abstraction and Reasoning Corpus (ARC) and TruthfulQA 

(test measures how well models mimic human  

falsehoods). Below are the current popular open-source models as of Aug 2023. 

• Llama-2 7B, 13B and 70B - META AI 

• Falcon 40B, TII 

• StableBeluga2 - Stability AI derivative of Llama-2) 

• Alpaca – Stanford (derivative of Llama) 

• Lazarus 30 B - Caldera AI 

The leaderboard changes rapidly as new LLM models are introduced, while evaluating 

LLM for use cases at enterprise, it is important to check the leaderboard and take informed 

decisions.  

To understand how the most popular Llama-2 model is built, below image provides 

information on pretraining, fine-tuning and human feedback to build the model. 
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Figure [1] Training Llama-2 Chat [12] 

Training Llama 2-Chat process begins with pretraining the model using publicly available 

online sources, supervised fine-tuning, RLHF method is used to iteratively refine the model, 

specifically through rejection sampling and PPO. Throughout the RLHF stage. 

4. WHY USE IN-HOUSE LLM MODELS 

Organizations can have limitations to use managed LLMs such as Open AI, Google Generative 

AI studio due to cost or security reasons. Below are some of the benefits of Hosting LLM 

models internally: 

• Security 

• Data Privacy 

• Lower Cost 

• Ability to deploy any region, any cloud 

• Scalable, no constraint due to capacity with Cloud vendors 

Cost calculation of Open AI vs running LLMs inhouse: 

OpenAI Pricing (Aug 2023) 

Model 

  

Context 

  

Input/ 1K 

tokens 

Output/ 1K 

tokens 

GPT-4 8K $0.03 $0.06 

GPT-4 32K $0.06 $0.12 

GPT-3.5 4K $0.0015 $0.002 

GPT-3.5 16K $0.003 $0.004 

OpenAI’s Davinci API has same parameter count as GPT 3.5 model. Cost of using this model 

costs ~$0.02 per 750 words ($0.02 per 1000 tokens/ ~750 words. With information available 

publicly, the cost comes to $0.010/query.  But usually, in application development 2-Stage 

Search Summarizer is what will be used, and this cost comes to around $0.066/query [14]  

https://twitter.com/sama/status/1599671496636780546?lang=en
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The estimated cost of $0.0035 per 1000 tokens are ~20% of Open Ai’s API pricing of $0.02 

per 1000 tokens, implying ~80% gross margins. 

As you can see without fine tuning or optimizations, using LLM managed service offerings 

can be very expensive. Companies spend millions of dollars, sometimes more than the public 

cloud providers bill as many teams in the organizations start to use the models without any 

optimizations.  

 

 

 

 

Anthropic pricing for Claude and Claude 2 LLMs 

 

 

 

 

With cloud provisioned instances AWS A100 (P4 Instance) or GCP TPU v4, provides 312 

TFLOPS (teraFLOPs/second), the cost comes to $0.0035/1000 tokens. This is based on 21% 

model utilization (FLOPS), which is in-line with GPT-3.5’s during training. Thus, for a 175B 

parameter model like GPT-3: [14] 

LLMs use a consumption pricing model based on Figure [2] AWS Cost calculation for 

hosting LLMs tokens (amount of text characters). Each model has a fixed “token window” for 

the context length used by the model for a given task. For example, Llama-2 can use 4k tokens 

to store conversation history of a chat session. Due to high cost due to unpredictable prompts, 

new cost-optimization techniques are being used by developers working with Large Language 

Models. Some of these cost-optimization techniques include, Fine tuning, summarization of 

chat history, prompt engineering, use of vector stores and chains. In coming sections of this 

paper, these techniques will be discussed in detail. 

5. DEPLOYING LLM MODELS IN-HOUSE USING KUBERNETES 

To demonstrate deploying LLM models in-house, Llama-2 7B and Llama-2 70B modes used. 

The Llama-2 is pretrained and fine-tuned LLMs consists of 7B, 13B, 70B models. The 

pretrained models are trained on 40% more tokens compared to Llama-1 and has a context 

length of 4k tokens.  

 

 

Model Training/ 1K tokens Usage/ 1K tokens 

Ada $0.0004 $0.0016 

Babbage $0.0006 $0.0024 

Curie $0.0030 $0.0120 

Davinci $0.0300 $0.1200 

Model Context window Prompt cost Completion cost 

Claude 

Instant 
100,000 tokens 

$1.63/ million 

tokens 
$5.51/ million tokens 

Claude 2 100,000 tokens 
$11.02/ million 

tokens 

$32.68/ million 

tokens 
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Llama-2 models requires GPUs, the Kubernetes worker nodes should be provisioned with 

GPU AWS Cost/1000 token [13] nodes. In below diagram, AWS instance type p3.8xlarge is 

used to run the 70B model. This instance types provides 4 GPUs and using GGML quantization 

technique  this can be run with lesser GPUs than 46 GPUs. But, going further than just using 4-

bits quantization, we were able to deploy with 16-bits. This helped to run with much less 

resources, 1 GPU using AWS p3. xlarge instance type, than using p3.8xlarge instance type with 

8 GPUs 

 

Figure [3] High level architecture of how Open-Source models can be deployed within internal K8s 

cluster 

To gain access to Llama-2 modes, visit this site to request access and get the token. Once 

token is available, replace “ACCESSTOKENVALUEHERE” with the token provided. Then, 

use the code in this link to run the Llama-2 70 B model in Kubernetes cluster. 

Once the Kubernetes pod is running, it can be made accessible outside the cluster using a 

proxy (nginx) or adding load balancer to the service or ssh into the pod to run below curl 

command to test the output 

Request: 

curl --location 'http://<url?.elb.us-west-2.amazonaws.com:8080/v1/models/model:predict' --

header 'Content-Type: application/json' --data '{"prompt": "What is mechanics?"}' 

Response: 

{"data": {"generated_text": "What is mechanics?\nMechanics is a branch of physics which 

deals with motion of objects and the forces that act upon them. It is a fundamental subject that 

is essential for understanding the behavior of the physical world around us.\nMechanics is 

divided into two main branches: statics and dynamics. Statics deals with objects that are at rest 

or moving at a constant velocity, while dynamics deals with objects that are accelerating or 

changing their velocity.\nSome of the key concepts in mechanics include:\n* Forces: A force 

is a push or pull that acts on an object. Forces can be"}}%   

Now, we have successfully run Llama-70B model in Kubernetes using a single GPU node. 

This can be repeated to run for 70B, 13B models or even Falcon 40B model. The response time 

for the model is under 5 seconds, but this can further be improved with techniques discussed in 

below sections. 

https://huggingface.co/TheBloke/Llama-2-70B-Chat-GGML
https://huggingface.co/TheBloke/Llama-2-70B-Chat-GGML
https://huggingface.co/settings/tokens
https://medium.com/microsoftazure/is-possible-to-run-llama2-with-70b-parameters-on-azure-kubernetes-service-with-langchain-agents-and-e6664ea52723
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6. LLM MODEL COMPRESSION TECHNIQUES 

Below are model compression techniques that can be used to reduce the cost of training and 

hosting LLMs. 

 

• Pruning – Given an optimized model f, you must produce a compressed version f that 

maximizes the performance of the previous model. Pruning helps to remove redundant 

weights from pretrained models. 

There are many types of pruning approaches available for LLMs such as BERT-Large, 

Wanda (Pruning by Weights and activations), LLM-Pruner and SparseGPT. Below we will be 

discussing 2 types of pruners - LLM-Pruner and SparseGPT. Each of these techniques have 

produced promising results. 

 

LLM-Pruner: It accomplishes by iteratively examining each neuron within the model as a 

trigger for identifying dependency groups, thereby constructing the LLM’s dependency graph. 

Subsequently, LLM-Pruner assesses the importance of these groups using both parameter-wise 

and weight-wise estimation. Utilize LoRA for fast recovery and adjustment of the pruned 

model. The experimental results indicate that LLM-Pruner successfully prunes the model, 

reducing computational burden while retaining its zero-shot capabilities. [4] 

 

SparseGPT: SparseGPT is a post-training pruning method for compressing LLMs such as 

GPTs. It works by first identifying a set of important weights in the LLM by their contribution 

to the model's loss function. The unimportant weights are pruned, which helps to reduce the 

size of the model. SparseGPT has been shown to be effective in compressing LLMs while 

maintaining or even improving their accuracy. For example, SparseGPT was able to compress 

GPT-3 by 50% without any loss in accuracy. 

 

• Fewer computations: LoRa stands for Low-Rank Adaptation of Large Language Models, 

which is a method to reduce the model size and computational requirements by 

approximating large matrices using low-rank decomposition. Faster fine-tuning, and you 

can share the LoRa weights only (orders of magnitude smaller than a fine-tuned model). 

Used often in Stable Diffusion. [11] 

Low-Rank Adaptation (LoRA) is a technique for fine-tuning LLMs, which reduces the size 

and complexity of the model while maintaining or even improving its accuracy. LoRA works 

by first decomposing the LLM into a low-rank matrix and a sparse matrix. The sparse matrix 

captures less important features, but the low-rank matrix captures the most important features, 

then fine-tuned on a downstream task. This is done by adding a small number of parameters to 

the low-rank matrix. The sparse matrix is not fine-tuned. LoRA is effective in various tasks, 

such as text classification, question answering, and summarization. LoRA has been able to 

reduce the size of LLMs by up to 90% without any loss in accuracy. 
 

• Quantization - reducing the precision of weights 
 

o Quantization is the process of converting a continuous signal or variable into a discrete 

set of values. This can be done for a few reasons, such as to reduce the amount of data 

that needs to be stored or transmitted, or to make the signal easier to process. In 

machine learning, quantization is often used to reduce the size (lower precision like 

8-bit integers) and complexity of neural networks.  
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This can make the networks faster to train and deploy, and it can also make them more 

energy efficient. 

Benefits of quantization includes reduced size, complexity, improved performance, 

increased portability and energy efficiency of neural networks, without impacting model 

accuracy when successful. 

Challenges of quantization include Loss of accuracy, Increased complexity and limited 

support in ML frameworks 

o GPTQ: GPTQ stands for Gaussian Process Quantized Transformers. It is a quantization 

technique for generative pre-trained transformers also known as GPTs. GPTQ uses a 

Gaussian process to approximate the distribution of the weights and then uses the 

approximation to quantize the weights. GPTQ has achieved good accuracy and 

performance on a various task, while also being significantly smaller and faster than its 

floating-point counterparts. GPTQ Uses a Gaussian process to approximate the 

distribution of the weights, uses a one-shot quantization method and can be used to 

quantize GPTs of all sizes 

o GGML: It is a quantization technique focuses on CPU optimization and supports 4-bit 

and 8-bit quantization with different tradeoffs between efficiency and performance. It 

uses Gaussian techniques to approximate the gradient of the model and uses the 

approximation to quantize the weights of the model. Despite being significantly smaller, 

it faster, more accurate and performant than its floating-point counterparts. Few 

differences between GPTQ and GGML:  

o GPTQ uses a Gaussian process to approximate the distribution of the weights, 

while GGML approximates the gradient of the model. This makes GPTQ more 

accurate for tasks with small changes in the weights, while GGML is more 

accurate for large changes in the weights.  

o GPTQ uses a one-shot quantization method, whereas GGML uses either a one-

shot or a multi-shot quantization method (more accurate, but slower than one-shot) 

o GPTQ can be used to quantize GPTs of all sizes, while GGML is primarily 

designed for GPTs of small to medium size, since GGML is more computationally 

expensive than GPTQ.  

• Mixed precision — Using a combination of lower (e.g., float16) and higher (e.g., 

float32) precision arithmetic to balance performance and accuracy. 

• Model ensembles — Combining the outputs of multiple smaller models, each 

specialized in a sub-task, to improve overall performance. Might use a similarity 

search on embeddings or some other heuristic to figure out what models to call. 

• Knowledge distillation is a ML technique that transfers knowledge from a large, 

complex model to a smaller, simpler model. The larger model is trained on a large 

dataset and has learned to perform a task well, but the smaller model is trained on a 

smaller dataset and is not as accurate as the larger model. KD process involves 

training the smaller model to replicate the predictions of the larger model. This can 

be achieved by feeding the smaller model the outputs of the larger mode. It gradually 

becomes more accurate by feeding outputs of the larger model. 

Knowledge distillation has been shown to be effective in a lot of machine learning tasks, 

like image classification, NL processing, and speech recognition. It can be used to reduce the 

size and complexity of machine learning models, while maintaining or even improving their 

accuracy. The benefits are reduced size and complexity, improved accuracy and transfer of 

knowledge. 
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7. FINE-TUNING LLMS 

LLMs are pre-trained with extensive data gathered on various sources available publicly. The 

accuracy of the results will significantly drop if the requests are specific to a domain or a 

company’s internal knowledge. Fine-tuning or embeddings of LLMs becomes important to 

ensure accuracy of the models are good to ensure customer requests are rightly responded. 

Below is a flow chart that can help to determine what strategy can be used while using LLMs 

in applications. 

 

Figure [4] Choosing the right LLM Strategy [13] 

Below are some of various fine-tuning methods that can be used to improve accuracy of LLM 

responses: 

o Fine-tuning with PEFT - Parameter-Efficient Fine-Tuning (PEFT) is a library for efficiently 

fine-tuning LLMs without touching all of the LLM’s parameters. PEFT supports the QLoRa 

method to fine-tune a small fraction of the LLM parameters with 4-bit quantization.  
 

• QLoRA stands for Quantized Low Rank Adapters. It is a new approach to fine-tuning large 

language models that uses quantization and knowledge distillation  
 

• techniques. QLoRA achieves good accuracy and performance on a variety of tasks, while 

being significantly smaller and faster than traditional fine-tuning methods. QLoRA is a 

promising new approach to fine-tuning LLMs that can be used to improve the performance, 

portability, and energy efficiency of LLMs. QLoRA Uses quantization, knowledge 

distillation and low rank adapters to reduce size and complexity, improve accuracy, 

robustness and transfer learning to LLMs. QLoRA is still under development, but it has the 

potential to revolutionize the way that LLMs are fine-tuned. 
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• Supervised fine-tuning (SFT) vs Unsupervised fine-tuning Unsupervised fine-tuning and 

Supervised fine-tuning (SFT) are two approaches to fine-tuning large language models 

(LLMs). 

Supervised fine-tuning is the process of fine-tuning an LLM using a labeled dataset. The 

dataset contains pairs of inputs and outputs, and the output is the desired output for the input. 

The LLM is then fine-tuned to predict the outputs for the inputs in the datasets. 

Unsupervised fine-tuning is a process of fine-tuning an LLM without using a labeled 

dataset. In this case, the dataset does not contain pairs of inputs and outputs compared to SFT. 

The LLM is then fine-tuned to predict the next word in a sequence, or to generate text that is 

like the text in the dataset. 

Benefits of SFT is higher accuracy and can be used for transfer learning, whereas 

unsupervised fine-tuning benefits from robustness and efficiency. 

 
• RLHF stands for Reinforcement learning from human feedback - It is a machine learning technique 

that combines reinforcement learning (RL) and human feedback. Popular example of RLHF is 

ChatGPT. In RL, an agent learns to perform a task by trial and error, receiving rewards for taking 

actions that lead to desired outcomes and punishments for taking actions that lead to undesired 

outcomes. In RLHF, the agent also receives feedback from humans, which can be used to improve 

the agent's learning process. Human reviewers are recruited to rate the output of the model on 

various prompts. The human feedback can be in the form of ratings, comments, or demonstrations. 

The agent uses the feedback to learn which actions are more likely to be rewarded by reviewers, and 

which actions are more likely to be punished. This will help the agent to learn more quickly and 

efficiently and avoid making mistakes leading to negative feedback. RLHF is effective in a variety 

of tasks, such as playing games, controlling robots, and generating text. It is a promising technique 

that can be used to train agents to perform a wide range of tasks. 

8. WHEN NOT TO FINE-TUNE LLMS 

Several challenges exist while fine-tuning a large language model such as GPTs affecting its 

efficiency, scalability, and effectiveness. Below are the main challenges associated with fine-

tuning LLMs: 

• Computational Costs - Fine-tuning can become very expensive with limited budgets 

• Training Data Quality - Sourcing can be time consuming and expensive 

• Overfitting, resulting in poor generalization to new examples 

• Confabulation and Hallucination, leading to untrustworthy and unreliable responses 

• Adaptability, when updated knowledge or new information becomes available 

• Ethical Considerations, such as bias, misinformation or stereotypes  

Below we discuss retrieval augmentation and embeddings as alternatives to fine tuning. 

• In-context learning or retrieval augmentation – When data in the application might change 

frequently or not enough data is not available for finetuning or creating a personalized 

chatbot for each user, it can be used, when the model is provided with context during 

inference time. This is a better option than fine tuning LLMs which can produce inaccurate 

responses. 

This can be achieved by using vector database which stores embeddings of company 

documents. When a user enters a prompt, relevant documents is retrieved from vector DB and 

the output is added as context to the model. A hybrid approaches can also be used, where fine-

tuning the model on a specific dataset and respond with user-specific context as output. Below 

is the diagram depicting how to use vector databases with LLMs. 
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Figure [5] Retrieval Augmentation using Vector DB [8] 

Step 1&2: Query remotely deployed vector database storing proprietary data to retrieve the 

documents relevant to the prompt.  

Step3&4: Combine the returned documents with the prompt to the remote LLM; which it will 

then use to generate a custom response. 

 

• Semantic Embeddings: Are a type of vector representation of words or phrases that captures 

the meaning. Semantic embeddings are used in neural network models to predict the 

surrounding words in a sentence, predicting co-occurrence of words in a text, improve the 

accuracy of translation systems, using embeddings to create a knowledge base, search 

efficient retrieval of relevant information and as question answering systems. Benefits of 

using Semantic embeddings are improved accuracy, improved interpretability and reduced 

dimensionality. The knowledge-based method is also a cost-effective approach as it 

removes the need for fine-tuning, cutting down on expenses and making AI adaptation more 

economically viable.  

9. FUTURE WORK 

There are more techniques using retrieval augmentation methods such as LangChain library, 

LlamaIndex (GPT Index) that can be used to improve the accuracy of the results. More work in 

this area needs to be done to evaluate these options to improve accuracy of model response.  

Running transformer models on non-GPU VMs needs more research, as an example AWS 

offers Inferentia accelerator [24] as an alternate to GPUs, which can save infrastructure cost by 

75% needs to be done once transformer models are supported in these instances. Additional 

optimization of running with 32-bits quantization can also be done to save more resources but 

need to evaluate on accuracy of the models. 

10. CONCLUSION 

Large language models (LLMs) are promising in various tasks, including NLP understanding, 

generation, and translation. However, important challenges such as bias present in the data that 

is being trained on and computationally expensive training cycles needs to be optimized before 

it is released to the real-world. Hence, it is important for the engineers, pm and architects to 

understand the use case, determine the right optimization techniques, fine-tune or not to fine 

tune. Building your own LLM is another option, but pre-training the model can be extremely 

costly, but it can be cost effective if domain based LLMs are created, like Salesforce’s XGen-

7B model. 

LLMs have the potential to revolutionize, become even more powerful and versatile. LLMs 

can be used to create more natural and engaging user interfaces, and to provide us with access 

to information and services that were previously unavailable. As LLMs continue to develop and 

will play an increasingly important role in our lives and have the potential to make a positive 

contribution to society. 
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