

Page | 1

IACSE - International Journal of Artificial Intelligence and Machine Learning (IACSE-

IJAIML)

Volume 3, Issue 1, January-December (2022), pp. 1-6

Journal Code: 1421-8930

Article ID: IACSE-IJAIML_03_01_001

Journal Homepage: https://iacse.org/journals/IACSE-IJAIML

 | RESEARCH ARTICLE

Design of a Hardware-Software Co-Optimization Framework for Efficient

Execution of Convolutional Layers in Deep Neural Networks

* Vivienne Sze

Embedded Systems Engineer, USA

Song Han

AI Hardware Architect, China

Luca Benini

Systems Research Scientist, Italy

Corresponding Author: Vivienne Sze

| ARTICLE INFORMATION

RECEIVED: 08 Jan 2022 ACCEPTED: 23 Jan 2022 PUBLISHED: 07 Feb 2022

| ABSTRACT

The rapid expansion of deep learning applications has driven significant interest in

optimizing the execution of convolutional neural networks (CNNs), particularly on edge and

embedded devices. The convolutional layer, being the computational backbone of CNNs, is

highly resource-intensive and requires efficient implementation strategies. This paper

proposes a hardware-software co-optimization framework that jointly tunes computational

graph mappings and hardware accelerator configurations to maximize throughput and

minimize energy consumption. Design leverages parameter-aware scheduling and layer-

specific profiling to bridge the performance-efficiency gap observed in traditional

accelerator deployments. Empirical results demonstrate up to 2.4 improvement in latency

and 1.9 reduction in energy usage over baseline FPGA-based implementations.

| KEYWORDS

Convolutional Neural Networks, Hardware Acceleration, Co-Optimization, Embedded AI,

FPGA, Layer Profiling, Deep Learning, Edge Computing.

https://iacse.org/ editor@iacse.org

Page | 2

Citation: Vivienne Sze, Song Han, Luca Benini. (2022). Design of a Hardware-Software Co-

Optimization Framework for Efficient Execution of Convolutional Layers in Deep Neural

Networks. IACSE - International Journal of Artificial Intelligence and Machine Learning (IACSE-

IJAIML), 3(1), 1–6.

Copyright: © 2022 the Author(s). This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution (CC-BY) 4.0 license

(https://creativecommons.org/licenses/by/4.0/). Published by International Academy for

Computer Science and Engineering (IACSE)

1. Introduction

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have

become the cornerstone of modern artificial intelligence applications including image

recognition, object detection, and speech analysis. Despite their impressive performance,

CNNs demand high computational and memory resources, making them challenging to

deploy on edge devices with limited power and processing capability.

While high-end GPUs provide one solution, they are not optimal for embedded contexts due

to power, size, and thermal constraints. This has led to a growing interest in designing

hardware accelerators and software optimizations that co-evolve to exploit CNN

characteristics more effectively. This paper focuses on a co-optimization framework that

simultaneously considers hardware design (e.g., resource allocation, memory hierarchies) and

software scheduling (e.g., loop tiling, parallelization) for efficient convolutional execution.

2. Literature Review

2.1 Hardware Acceleration Techniques

Several notable efforts were made to accelerate CNNs via dedicated hardware. Zhang et al.

(2015) introduced a high-throughput FPGA-based CNN accelerator leveraging a systolic array

to parallelize matrix operations. Their work illustrated the significant performance benefits of

tailoring hardware to the structure of CNN computations. Similarly, Chen et al. (2016)

presented Eyeriss, a spatial architecture supporting data reuse and compression for CNN

workloads. These designs emphasized throughput and energy efficiency but often lacked

adaptability across various CNN models.

Other research by Qiu et al. (2016) introduced optimizations for FPGAs based on layer-wise

quantization and tiling, showing that hardware-aware model pruning could yield significant

gains. These approaches, however, did not dynamically adapt software routines or scheduling

logic, which limited their generalizability and scalability across CNN architectures.

https://iacse.org/ editor@iacse.org

Page | 3

2.2 Software and Compilation Strategies

Software-level strategies included loop optimization, layer fusion, and scheduling algorithms.

TVM, an open-source deep learning compiler stack introduced by Chen et al. (2018), enabled

end-to-end performance tuning of deep learning models by compiling models into device-

specific kernels. Though powerful, TVM’s hardware abstraction layer often failed to exploit

low-level hardware-specific configurations effectively without manual tuning.

Furthermore, Halide (Ragan-Kelley et al., 2013) and PolyMage (Sankaranarayanan et al., 2016)

provided domain-specific languages that allowed optimizations in image processing

pipelines, indirectly benefiting CNN tasks. However, their general-purpose design made them

less effective when applied directly to CNN workloads on embedded platforms.

3. Objective and Motivation

The primary objective of this work is to create a co-optimization framework that bridges the

gap between hardware efficiency and software adaptability in executing CNN convolutional

layers. Rather than treating hardware and software design as separate optimization domains,

we unify them to form a feedback-driven iterative loop.

A key motivation lies in the observation that CNN layers vary significantly in shape, compute

intensity, and memory requirements. Fixed hardware designs often perform suboptimally on

general CNN workloads, while software-level optimizations alone cannot compensate for

hardware limitations. A co-optimization framework that profiles each convolutional layer and

adjusts hardware allocation and software scheduling dynamically can yield substantial gains

in both latency and energy efficiency.

4. Proposed Co-Optimization Framework

The proposed framework integrates layer-wise profiling, tiling strategy selection, and

hardware reconfiguration using FPGA primitives. At compile-time, the CNN model is analyzed

to extract workload characteristics—filter sizes, strides, input/output dimensions—and assign

them to best-fit execution kernels.

A dynamic scheduler translates these kernel mappings into hardware constraints, optimizing

tile sizes and buffer allocations. These parameters are then compiled into hardware

configurations, enabling hardware synthesis tools (e.g., Vivado HLS) to generate custom logic

blocks. The system iteratively refines the scheduling and hardware parameters through

simulation feedback until convergence is achieved.

https://iacse.org/ editor@iacse.org

Page | 4

Table 1: Hardware-Software Mapping Strategy

Layer Type Input Size
Kernel

Size

HW Module

Used

Tiling

Strategy

Buffer

Size

Conv 3×3 224×224×3 3×3 Systolic Core A 4×4 tiles 32 KB

Conv 1×1
112×112×6

4
1×1 Streaming PE 8×8 tiles 16 KB

Depthwise

Conv
56×56×128 3×3 DW Core Unit 2×2 tiles 24 KB

5. Evaluation and Experimental Results

To evaluate the effectiveness of the framework, we implemented several CNN models

(AlexNet, VGG16, MobileNet) using the proposed methodology on a Xilinx ZCU102 platform.

Baseline comparison was performed against a traditional FPGA deployment lacking dynamic

tiling and profiling features.

Results indicate that our co-optimized implementation improves performance across various

metrics. In latency-sensitive scenarios, the framework achieved up to 2.4× speedup, while

energy profiling showed up to 1.9× reduction in consumption. Resource utilization on FPGA

remained below 80%, indicating efficient hardware allocation.

Table 2: Performance Metrics Comparison

Model Latency Reduction Energy Savings Resource Utilization

AlexNet 2.1× 1.7× 74%

VGG16 2.4× 1.9× 78%

MobileNet 1.8× 1.6× 72%

6. Limitations and Future Work

Despite encouraging results, the proposed framework has certain limitations. First, it assumes

a fixed set of FPGA primitives and does not extend easily to ASIC or GPU targets. Additionally,

while the scheduling module adapts to most CNN models, edge cases with unconventional

layer patterns may require manual intervention.

https://iacse.org/ editor@iacse.org

Page | 5

Future research should explore generalizing the framework to support heterogeneous

platforms, including NPUs and custom SoCs. Moreover, incorporating reinforcement

learning-based schedulers could allow automatic exploration of co-optimization spaces

beyond human-designed heuristics.

7. Conclusion

Presents a co-optimization framework that jointly tunes hardware and software parameters

for efficient execution of CNN convolutional layers. Through iterative feedback, tiling-aware

scheduling, and resource-specific profiling, the system achieves significant improvements in

latency and energy consumption. By aligning software flexibility with hardware specialization,

the proposed approach sets the stage for more adaptive and intelligent deep learning

accelerators on edge devices.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do

not necessarily represent those of their affiliated organizations, or those of the publisher, the

editors and the reviewers.

References

[1] Zhang, Chen, et al. “Optimizing FPGA-Based Accelerator Design for Deep

Convolutional Neural Networks.” Proceedings of the 2015 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2015, pp. 161–170.

[2] Chen, Yu-Hsin, et al. “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for

Deep Convolutional Neural Networks.” IEEE Journal of Solid-State Circuits, vol. 52,

no. 1, Jan. 2017, pp. 127–138.

[3] Qiu, Jiantao, et al. “Going Deeper with Embedded FPGA Platform for Convolutional

Neural Network.” Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, 2016, pp. 26–35.

[4] Chen, Tianqi, et al. “TVM: An Automated End-to-End Optimizing Compiler for Deep

Learning.” 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), 2018, pp. 578–594.

[5] Ragan-Kelley, Jonathan, et al. “Halide: A Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines.” ACM

SIGPLAN Notices, vol. 48, no. 6, June 2013, pp. 519–530.

https://iacse.org/ editor@iacse.org

Page | 6

[6] Sankaranarayanan, Pradeep, et al. “Compile-Time Performance and Energy

Optimization for Image Processing Pipelines.” ACM Transactions on Architecture

and Code Optimization (TACO), vol. 13, no. 4, Dec. 2016, pp. 1–25.

[7] Han, Song, et al. “Deep Compression: Compressing Deep Neural Networks with

Pruning, Trained Quantization and Huffman Coding.” International Conference on

Learning Representations (ICLR), 2016.

[8] Iandola, Forrest N., et al. “SqueezeNet: AlexNet-Level Accuracy with 50× Fewer

Parameters and <0.5MB Model Size.” arXiv preprint arXiv:1602.07360, 2016.

[9] Jouppi, Norman P., et al. “In-Datacenter Performance Analysis of a Tensor

Processing Unit.” Proceedings of the 44th Annual International Symposium on

Computer Architecture, 2017, pp. 1–12.

[10] Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. “Eyeriss: A Spatial Architecture for

Energy-Efficient Dataflow for Convolutional Neural Networks.” ACM SIGARCH

Computer Architecture News, vol. 44, no. 3, 2016, pp. 367–379.

[11] Venieris, Stylianos I., and Christos-Savvas Bouganis. “fpgaConvNet: A Toolflow for

Mapping Diverse Convolutional Neural Networks on FPGAs.” 2016 IEEE 24th Annual

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), IEEE, 2016, pp. 40–47.

[12] Abdelouahab, Karim, et al. “Tactics to Directly Map CNN Graphs on Embedded

FPGAs.” 2017 IEEE International Symposium on Field-Programmable Custom

Computing Machines (FCCM), IEEE, 2017, pp. 36–43.

