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| ABSTRACT  

The rapid expansion of deep learning applications has driven significant interest in 

optimizing the execution of convolutional neural networks (CNNs), particularly on edge and 

embedded devices. The convolutional layer, being the computational backbone of CNNs, is 

highly resource-intensive and requires efficient implementation strategies. This paper 

proposes a hardware-software co-optimization framework that jointly tunes computational 

graph mappings and hardware accelerator configurations to maximize throughput and 

minimize energy consumption. Design leverages parameter-aware scheduling and layer-

specific profiling to bridge the performance-efficiency gap observed in traditional 

accelerator deployments. Empirical results demonstrate up to 2.4 improvement in latency 

and 1.9 reduction in energy usage over baseline FPGA-based implementations. 
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1. Introduction  

Deep neural networks (DNNs), particularly convolutional neural networks (CNNs), have 

become the cornerstone of modern artificial intelligence applications including image 

recognition, object detection, and speech analysis. Despite their impressive performance, 

CNNs demand high computational and memory resources, making them challenging to 

deploy on edge devices with limited power and processing capability. 

While high-end GPUs provide one solution, they are not optimal for embedded contexts due 

to power, size, and thermal constraints. This has led to a growing interest in designing 

hardware accelerators and software optimizations that co-evolve to exploit CNN 

characteristics more effectively. This paper focuses on a co-optimization framework that 

simultaneously considers hardware design (e.g., resource allocation, memory hierarchies) and 

software scheduling (e.g., loop tiling, parallelization) for efficient convolutional execution. 

 

2. Literature Review 

2.1 Hardware Acceleration Techniques 

Several notable efforts were made to accelerate CNNs via dedicated hardware. Zhang et al. 

(2015) introduced a high-throughput FPGA-based CNN accelerator leveraging a systolic array 

to parallelize matrix operations. Their work illustrated the significant performance benefits of 

tailoring hardware to the structure of CNN computations. Similarly, Chen et al. (2016) 

presented Eyeriss, a spatial architecture supporting data reuse and compression for CNN 

workloads. These designs emphasized throughput and energy efficiency but often lacked 

adaptability across various CNN models. 

Other research by Qiu et al. (2016) introduced optimizations for FPGAs based on layer-wise 

quantization and tiling, showing that hardware-aware model pruning could yield significant 

gains. These approaches, however, did not dynamically adapt software routines or scheduling 

logic, which limited their generalizability and scalability across CNN architectures. 
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2.2 Software and Compilation Strategies 

Software-level strategies included loop optimization, layer fusion, and scheduling algorithms. 

TVM, an open-source deep learning compiler stack introduced by Chen et al. (2018), enabled 

end-to-end performance tuning of deep learning models by compiling models into device-

specific kernels. Though powerful, TVM’s hardware abstraction layer often failed to exploit 

low-level hardware-specific configurations effectively without manual tuning. 

Furthermore, Halide (Ragan-Kelley et al., 2013) and PolyMage (Sankaranarayanan et al., 2016) 

provided domain-specific languages that allowed optimizations in image processing 

pipelines, indirectly benefiting CNN tasks. However, their general-purpose design made them 

less effective when applied directly to CNN workloads on embedded platforms. 

 

3. Objective and Motivation 

The primary objective of this work is to create a co-optimization framework that bridges the 

gap between hardware efficiency and software adaptability in executing CNN convolutional 

layers. Rather than treating hardware and software design as separate optimization domains, 

we unify them to form a feedback-driven iterative loop. 

A key motivation lies in the observation that CNN layers vary significantly in shape, compute 

intensity, and memory requirements. Fixed hardware designs often perform suboptimally on 

general CNN workloads, while software-level optimizations alone cannot compensate for 

hardware limitations. A co-optimization framework that profiles each convolutional layer and 

adjusts hardware allocation and software scheduling dynamically can yield substantial gains 

in both latency and energy efficiency. 

 

4. Proposed Co-Optimization Framework 

The proposed framework integrates layer-wise profiling, tiling strategy selection, and 

hardware reconfiguration using FPGA primitives. At compile-time, the CNN model is analyzed 

to extract workload characteristics—filter sizes, strides, input/output dimensions—and assign 

them to best-fit execution kernels. 

A dynamic scheduler translates these kernel mappings into hardware constraints, optimizing 

tile sizes and buffer allocations. These parameters are then compiled into hardware 

configurations, enabling hardware synthesis tools (e.g., Vivado HLS) to generate custom logic 

blocks. The system iteratively refines the scheduling and hardware parameters through 

simulation feedback until convergence is achieved. 

 

 



https://iacse.org/         editor@iacse.org 

Page | 4   

Table 1: Hardware-Software Mapping Strategy 

Layer Type Input Size 
Kernel 

Size 

HW Module 

Used 

Tiling 

Strategy 

Buffer 

Size 

Conv 3×3 224×224×3 3×3 Systolic Core A 4×4 tiles 32 KB 

Conv 1×1 
112×112×6

4 
1×1 Streaming PE 8×8 tiles 16 KB 

Depthwise 

Conv 
56×56×128 3×3 DW Core Unit 2×2 tiles 24 KB 

 

5. Evaluation and Experimental Results 

To evaluate the effectiveness of the framework, we implemented several CNN models 

(AlexNet, VGG16, MobileNet) using the proposed methodology on a Xilinx ZCU102 platform. 

Baseline comparison was performed against a traditional FPGA deployment lacking dynamic 

tiling and profiling features. 

Results indicate that our co-optimized implementation improves performance across various 

metrics. In latency-sensitive scenarios, the framework achieved up to 2.4× speedup, while 

energy profiling showed up to 1.9× reduction in consumption. Resource utilization on FPGA 

remained below 80%, indicating efficient hardware allocation. 

Table 2: Performance Metrics Comparison 

Model Latency Reduction Energy Savings Resource Utilization 

AlexNet 2.1× 1.7× 74% 

VGG16 2.4× 1.9× 78% 

MobileNet 1.8× 1.6× 72% 

 

6. Limitations and Future Work 

Despite encouraging results, the proposed framework has certain limitations. First, it assumes 

a fixed set of FPGA primitives and does not extend easily to ASIC or GPU targets. Additionally, 

while the scheduling module adapts to most CNN models, edge cases with unconventional 

layer patterns may require manual intervention. 
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Future research should explore generalizing the framework to support heterogeneous 

platforms, including NPUs and custom SoCs. Moreover, incorporating reinforcement 

learning-based schedulers could allow automatic exploration of co-optimization spaces 

beyond human-designed heuristics. 

 

7. Conclusion 

Presents a co-optimization framework that jointly tunes hardware and software parameters 

for efficient execution of CNN convolutional layers. Through iterative feedback, tiling-aware 

scheduling, and resource-specific profiling, the system achieves significant improvements in 

latency and energy consumption. By aligning software flexibility with hardware specialization, 

the proposed approach sets the stage for more adaptive and intelligent deep learning 

accelerators on edge devices. 
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