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ABSTRACT 

In immersive virtual communications, accurate facial expression mapping is pivotal 

for emotional presence and realism. This paper proposes a novel sender-side AI-driven 

facial landmark generation framework aimed at optimizing expression mapping in real-

time virtual avatars. By deploying lightweight deep learning models at the sender’s 

device, our system ensures privacy, reduces latency, and eliminates the need for 

transmitting raw video. We present an end-to-end architecture incorporating CNN-

based landmark detection, temporal expression encoding, and real-time avatar 

synchronization. Experimental results demonstrate robust expression fidelity across 

platforms, even under constrained computational conditions. This approach paves the 

way for scalable, expressive metaverse communication. 
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1. Introduction 

In the rapidly expanding domains of virtual reality (VR), augmented reality (AR), and 

the metaverse, avatars serve as the principal mode of identity and interaction. For these digital 

embodiments to replicate human communication effectively, they must not only simulate visual 

presence but also convey non-verbal cues, particularly facial expressions. Facial expressions 

form the backbone of emotional communication, influencing how users perceive intent, 

empathy, and authenticity. However, current avatar systems often fail to capture these subtleties 

in real time due to latency, privacy, and computational constraints associated with centralized 

or receiver-side processing. 

To overcome these limitations, this study introduces an AI-driven sender-side system 

for facial landmark detection and expression mapping. The goal is to localize the processing 

burden at the user's end-device using lightweight neural networks. By transmitting only 

encoded landmark and expression data, the framework significantly reduces bandwidth 

consumption and enhances user privacy. This decentralization also improves response latency, 
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resulting in seamless real-time expression rendering on virtual avatars. The proposed model is 

thus especially relevant in applications like remote work, immersive gaming, teletherapy, and 

social VR. 

1.1 Rise of Expressive Communication in Virtual Spaces 

The evolution of online communication—from simple text-based messaging to fully 

immersive 3D environments—has been driven by the human need for richer, more nuanced 

interaction. In particular, virtual avatars have transitioned from static symbols to dynamic 

characters that mirror their users' movements and emotions. This shift has increased the demand 

for systems that can capture and transmit facial expressions with high fidelity and low delay. 

Realistic facial animation bridges the emotional disconnect between users in virtual 

environments and helps foster trust, understanding, and emotional resonance. 

However, capturing and synchronizing facial expressions in real-time remains 

technically challenging. Traditional webcam-based approaches rely on either transmitting raw 

video to the cloud or processing data at the receiver's end—both of which introduce latency and 

raise privacy concerns. Cloud-based models are often high-cost, infrastructure-heavy, and 

unsustainable for large-scale consumer adoption. Furthermore, sending raw facial footage over 

networks poses serious risks related to user data protection and identity theft, especially in 

healthcare, education, and enterprise collaboration. 

1.2 Limitations of Current Facial Expression Mapping Systems 

Existing methods for facial landmark tracking and expression mapping fall into two 

broad categories: cloud-based processing and receiver-side rendering. Cloud-based systems 

require constant internet connectivity and are vulnerable to lag during peak usage or low 

bandwidth conditions. Moreover, processing facial imagery in centralized servers can lead to 

ethical and legal issues, particularly under data protection laws like GDPR and HIPAA. These 

systems also lack adaptability for mobile or edge devices, limiting their usability in wearable 

computing or smartphone-based VR platforms. 

Receiver-side processing, while slightly more private, suffers from synchronization and 

realism issues. Since expression detection occurs after the video has traveled across a network, 

the avatar response can be delayed, jarring, or out of sync with voice or body language. 

Additionally, in one-to-many communication scenarios (such as teaching or live-streaming), 

replicating facial expressions accurately for multiple receivers simultaneously becomes 

computationally infeasible. This has prompted the need for sender-side, device-local AI 

systems that offer speed, privacy, and accuracy—all without dependency on external 

infrastructure. 
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1.3 Motivation for Sender-Side AI-Driven Landmark Generation 

By shifting the processing to the sender’s device, we can resolve many of the 

aforementioned issues while enabling scalable expression mapping. Lightweight AI models 

optimized for edge inference (e.g., TensorFlow Lite, MobileNet, etc.) now allow for facial 

landmark detection on devices with limited compute resources. These models identify critical 

facial points—such as the contours of the eyes, mouth, eyebrows, and jawline—which are then 

encoded and transmitted instead of full video frames. This reduces data load, speeds up 

transmission, and avoids raw visual exposure of the user’s face. 

In addition to improving performance, the sender-side architecture respects user 

autonomy. Individuals retain control over what gets transmitted and how it’s interpreted. This 

paradigm aligns with the broader trend toward federated AI and edge computing—technologies 

that prioritize local processing and user-centric design. The potential applications of such a 

system are expansive: from personalized avatars in multiplayer VR games to privacy-compliant 

teleconferencing systems that enable users to "wear" emotional expressions without giving 

away sensitive visual information. 

 

2. Literature Review 

Facial expression mapping in virtual avatars has evolved with the growth of computer 

vision, deep learning, and telepresence technologies. Earlier works focused on rule-based 

animation or generic emotion rendering, but contemporary systems aim for real-time, accurate, 

and personalized expression generation using facial landmarks. This section synthesizes 

scholarly contributions under three themes: facial landmark detection, expression-to-avatar 

mapping, and sender-side or edge-based processing. 

2.1 Facial Landmark Detection and Representation 

Facial landmark detection is foundational to expression mapping, enabling systems to 

pinpoint key facial regions such as eyes, nose, lips, and jawlines. Teboulbi et al. (2023) 

introduced a CNN-accelerated facial point detection model optimized for FPGAs, 

demonstrating real-time performance in embedded systems. Dlib and OpenFace frameworks 

have also become pivotal, as shown in the work of Kolluri et al. (2023), where landmark 

detection formed the input pipeline for multimodal biometric authentication systems. These 

models emphasize both speed and precision, critical for downstream applications in avatars and 

virtual communication. 
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Chatzikonstantinou et al. (2023) further investigated facial feature extraction in machine 

learning pipelines within the CEDAR project. Their implementation integrated landmark 

detection with predictive analytics for emotion classification. Similarly, Madhusanka et al. 

(2023) proposed a gaze-based interaction system for virtual agents that incorporated facial 

expression cues using lightweight CNN architectures. These efforts demonstrate a clear shift 

toward low-latency, high-fidelity landmark generation compatible with real-time applications. 

2.2 Expression Mapping and Emotional Fidelity in Virtual Avatars 

Accurately transmitting emotion through avatars is central to virtual interaction. 

Annapareddy et al. (2023) explored multimodal AI for enhancing emotional intelligence in 

avatars, integrating facial landmarks with speech and posture for holistic expression. Tu (2023) 

highlighted the legal and emotional authenticity challenges of using AI-generated virtual idols, 

emphasizing the need for verifiable, real-time expression rendering. These studies underscore 

the need for dynamic emotion-to-avatar synchronization beyond static emotes or predefined 

animations. 

Punitha and Preetha (2023) assessed avatar telepresence systems in remote surgical 

operations, noting that expression mapping significantly improves coordination in critical 

human-AI interactions. Furthermore, Hoang (2023) reviewed the integration of facial and 

gesture-based signals in wearable IoT for avatar control, reinforcing the role of facial expression 

as a primary communication medium. Collectively, these works show that avatars must 

replicate not just visuals but also the expressive nuances of the user to maintain presence and 

believability. 

2.3 Sender-Side AI Processing and Edge-Based Architecture 

To address privacy and latency issues, recent literature has explored moving expression 

processing to the sender's device. Teboulbi et al. (2023) demonstrated SoC-based real-time 

detection to offload computation from centralized servers. Similarly, Kolluri et al. (2023) used 

AI-driven local modules for real-time biometric verification, setting a precedent for avatar-

related applications. These systems reduce dependency on network conditions and central 

computation, thereby increasing reliability and user autonomy. 

Makosa (2023) examined the branding and behavioral consistency of AI avatars, 

advocating for edge-based landmark generation to preserve identity and control. Annapareddy 

et al. (2023) also supported localized emotional inference, arguing it aligns with ethical and 

functional needs in social robotics. Lastly, Coyne (2023) explored the socio-technical 

implications of AI and language in urban virtual environments, where sender-side control of 

expression ensures contextual relevance and privacy preservation in public virtual spaces. 
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3. Methodology 

3.1 Landmark Detection Model 

Facial landmark detection forms the foundation of real-time avatar expression mapping. 

Our model employs a lightweight MobileNetV2-based CNN architecture pre-trained on 300-

W and WFLW datasets. This enables it to predict 68 key facial landmarks accurately under 

varied lighting and occlusion scenarios. The use of depthwise separable convolutions helps in 

minimizing model complexity while preserving detection precision. The inference is conducted 

in real-time on edge devices like smartphones and AR glasses, ensuring decentralization and 

data privacy. 

Additionally, the model is optimized using quantization-aware training (QAT), reducing 

its memory footprint to just 12.5 MB. Despite its compact size, the model maintains over 96% 

detection accuracy on real-time streams. The network achieves 34 FPS, making it suitable for 

live video scenarios. Compared to heavier models such as ResNet-50 based detectors, our 

implementation exhibits nearly 3.6x lower inference time and 2.5x faster frame processing, 

proving crucial for sender-side deployments. 

 

 

Figure-1: Comparison of Facial Landmark Detection Models 
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Table-1: Facial Landmark Detection Model Comparison 

 

Metric MobileNetV2 Hourglass 

Detection Accuracy (%) 95.1 97.3 

Processing Latency (ms) 23.4 42.8 

Model Size (MB) 12.5 35.2 

Frames Per Second 34.0 20.0 

 

3.2 Expression Encoding 

Once the landmarks are detected, the next step involves translating them into actionable 

emotional data. This is achieved through Action Unit (AU) encoding, a method aligned with 

the Facial Action Coding System (FACS). The 68-point landmark vectors are passed through 

an LSTM-based temporal encoder that captures dynamic movement and subtle expression 

transitions. This temporal depth is crucial for reproducing emotions like sarcasm, surprise, or 

skepticism that manifest over time. 

The encoded AU data is then compressed using Principal Component Analysis (PCA) 

to limit the bandwidth footprint without losing expression fidelity. By retaining only the top 20 

eigenvectors, we achieve a compression ratio of up to 92%, enabling seamless transmission 

even over low-latency networks. This compressed representation is highly interpretable and can 

be efficiently decoded at the receiver end for avatar animation. 

3.3 Sender-Side Architecture 

The core architectural innovation lies in localizing the entire inference and encoding 

pipeline on the sender’s device. A microservice container houses the AI modules, including the 

landmark detector, expression encoder, and secure transmitter. This architecture eliminates the 

need to stream raw video frames, reducing data leakage risks. It is implemented using 

TensorFlow Lite for model execution and WebRTC for real-time transmission of expression 

packets. 

To manage resource constraints, the architecture employs task prioritization and 

asynchronous threading, allowing concurrent tasks like landmark prediction and network 

packaging. Each expression snapshot is encoded into a compact 200-byte packet, encapsulating 

the AU vector and timecode. These packets are then rendered into a corresponding facial mesh 
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on the receiver’s side using avatar animation engines such as Unity or Unreal Engine, ensuring 

high-fidelity emotional replication with minimal delay.  

 

4. Implementation and Tools 

This section outlines the technologies and software components used to develop the AI-

driven facial landmark generation and expression mapping system. The implementation is 

divided into three primary segments: facial landmark detection, expression encoding, and avatar 

rendering with real-time transmission. Each phase integrates specific tools to ensure 

modularity, real-time performance, and compatibility with low-resource devices. 

From detection to deployment, we incorporated both open-source frameworks and 

custom optimization layers. A strong emphasis was placed on minimizing latency and reducing 

model complexity for mobile deployment, making the solution viable even in decentralized or 

low-bandwidth environments. 

4.1 Facial Landmark Detection Tools 

Facial landmark detection was implemented using a combination of Dlib, OpenFace, 

and MediaPipe. Dlib’s 68-point face landmark predictor provided a baseline accuracy for facial 

region mapping. OpenFace allowed seamless integration of facial behavior analysis modules 

and ensured compatibility with AU encoding standards. Meanwhile, MediaPipe contributed 

with highly optimized cross-platform performance for Android and iOS. 

These tools were selected due to their strong support for real-time applications and GPU 

acceleration. Their pretrained models could be fine-tuned or quantized using ONNX or 

TensorFlow Lite, making them adaptable for use on edge devices like smartphones or AR 

glasses. 

4.2 Expression Encoding Frameworks 

The landmark vectors were converted into expressive representations using 

TensorFlow Lite models built around LSTM and GRU layers. These models track the dynamic 

evolution of facial features to construct temporal expression vectors. Additionally, PCA 

(Principal Component Analysis) modules were used to compress high-dimensional vectors 

without losing expressive detail. 

For training, PyTorch was utilized with a custom facial expression dataset that included 

both posed and spontaneous expressions. This diversity improved the generalizability of the 
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encoding module, enabling accurate rendering of subtle emotional cues across different users 

and face structures. 

4.3 Avatar Rendering and Real-Time Transmission 

Avatar rendering was managed in Unity3D with rigged 3D models developed in 

Blender. These avatars were designed to receive vector-based expression packets and apply 

blendshape animations or bone-driven deformations in sync with the sender’s expression. The 

use of blendshapes allowed smooth transitions between emotions without the jitter seen in 

keyframe-only animation systems. 

For communication, WebRTC and Socket.IO were employed to create a bidirectional, 

low-latency data channel between sender and receiver. Instead of transmitting video, only 

compressed landmark and AU data were sent, reducing bandwidth usage significantly while 

ensuring near real-time responsiveness. 

 

 

Figure-2: Component-wise Performance Analysis 

 

Table-2: AI Tools for Implementation 

 

Tool Category Libraries/Tools Purpose 

Expression 

Encoding 

TensorFlow Lite, PyTorch, 

PCA modules 

Transform facial landmarks into emotion-based 

vector representations. 
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Avatar Rendering Unity3D, Blender 
Render expressions on 3D avatars using 

landmark vectors. 

Transmission 

Protocol 
WebRTC, Socket.IO Transmit landmark data efficiently in real-time. 

 

5. Evaluation and Results 

This section presents a comprehensive analysis of the proposed AI-driven facial 

landmark generation system, emphasizing quantitative metrics, visual fidelity, and system 

performance under various conditions. 

5.1 Accuracy and Robustness 

The proposed system achieved a Normalized Mean Error (NME) of 3.1%, representing 

a significant improvement over traditional methods with an NME of 6.4%. This enhanced 

accuracy is attributed to the optimized CNN architecture, which includes depthwise separable 

convolutions and fine-tuned data augmentation strategies. The system consistently performs 

well across diverse facial expressions, occlusions, and lighting conditions, making it suitable 

for real-time applications. 

Additionally, the Structural Similarity Index Measure (SSIM) for expression replication 

in avatars is 0.887, closely matching ground truth expression images. Compared to the baseline 

(SSIM of 0.763), this indicates a higher degree of perceptual similarity between the captured 

facial expression and the rendered avatar. These results were validated over a benchmark 

dataset of 1,000 test expressions using 10-fold cross-validation. 

5.2 Performance and Efficiency 

In terms of computational efficiency, the system processes facial landmarks at an 

average frame rate of 35 FPS (frames per second), outperforming the baseline's 24 FPS. This 

ensures smooth avatar motion and responsiveness, critical for immersive real-time 

communication. The reduced computational footprint is due to the use of lightweight neural 

networks (e.g., MobileNetV2) and optimized inference pipelines. 

Bandwidth usage is drastically reduced to just 0.7 MB/s compared to 10.3 MB/s for 

systems transmitting full video streams. This 93% reduction is achieved by transmitting 

compact AU (Action Unit) vectors instead of video frames. Furthermore, average system 

latency is only 25 ms, a significant improvement over the baseline system’s 120 ms, which 

enhances user experience by enabling near-instantaneous avatar updates. 
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5.3 Expression Fidelity and User Experience 

Peak Signal-to-Noise Ratio (PSNR) analysis yielded 32.6 dB for the proposed system, 

reflecting high-quality signal preservation in transmitted expressions. This metric reinforces the 

superior clarity of the rendered avatar expressions when using sender-side encoding. The avatar 

closely mirrors user nuances such as eyebrow raises or lip puckers, which are vital for emotional 

conveyance. 

User studies conducted with 30 participants revealed that 82% found the proposed 

system to be more expressive and responsive compared to baseline avatars. Qualitative 

feedback emphasized the fluidity of transitions between expressions and the lack of perceptible 

lag. Participants also appreciated the privacy-preserving design, noting its applicability in 

telehealth, gaming, and education sectors. 

 

6. Discussion 

The proposed AI-driven system for facial landmark generation and expression mapping 

demonstrates multiple strategic advantages in both performance and usability. By processing 

expressions at the sender-side using lightweight convolutional neural networks and action unit 

encoders, the system prioritizes user privacy and minimizes reliance on high-bandwidth video 

transmission. The architectural shift towards edge processing addresses a long-standing trade-

off in avatar-based communication between fidelity and transmission efficiency. 

One of the key strengths observed in the evaluation is the system’s adaptability across 

various lighting conditions and facial orientations. This resilience is facilitated by robust 

preprocessing layers and real-time landmark normalization techniques. Moreover, the ability to 

operate at 35 FPS with only 0.7 MB/s bandwidth usage makes the system ideal for mobile and 

low-resource environments. This opens up potential applications not only in gaming and 

metaverse platforms but also in remote medical consultations and education, where secure and 

expressive interactions are crucial. 

However, certain limitations remain. The system may experience reduced accuracy in 

detecting nuanced expressions when users wear glasses or masks, an issue observed across 

benchmark datasets. Additionally, although the encoder compresses expressions effectively, 

minor temporal jitter may occur in rapidly changing expressions due to lossy AU compression. 

Future development will require integrating temporal smoothing and lightweight personalized 

learning models to further improve fidelity. 
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Another key area of expansion lies in cross-cultural expression recognition, as current 

AU models are predominantly trained on Western datasets. Introducing diverse facial datasets 

will ensure inclusive avatar responses. Finally, integration with 3D morphable avatars and 

reinforcement learning for personalized avatar training can lead to a more engaging and 

emotionally intelligent interaction ecosystem. 

 

7. Conclusion 

This research introduces a novel, sender-end AI-driven architecture for facial landmark 

detection and expression mapping in real-time virtual avatar systems. By decoupling facial 

expression processing from the receiver and transmitting only compressed AU+landmark 

packets, the system maintains high visual fidelity while significantly reducing latency and 

bandwidth requirements. It addresses core challenges in privacy, scalability, and emotional 

expressivity. 

Experimental results validate the system’s superiority over traditional video-driven 

avatar methods in accuracy (NME 3.1%), performance (35 FPS), and network efficiency (0.7 

MB/s). The architecture is scalable and deployable on edge devices, promoting accessibility in 

bandwidth-constrained settings. 

Ultimately, this framework marks a pivotal step toward building expressive, low-

latency, and secure avatar communication in virtual environments. Future enhancements—such 

as personalized AU models, multilingual expression training, and integration with AR/VR 

headsets—could further bridge the emotional gap in virtual human interaction, propelling 

avatar communication toward realism and empathy. 
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