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ABSTRACT

In immersive virtual communications, accurate facial expression mapping is pivotal
for emotional presence and realism. This paper proposes a novel sender-side Al-driven
facial landmark generation framework aimed at optimizing expression mapping in real-
time virtual avatars. By deploying lightweight deep learning models at the sender’s
device, our system ensures privacy, reduces latency, and eliminates the need for
transmitting raw video. We present an end-to-end architecture incorporating CNN-
based landmark detection, temporal expression encoding, and real-time avatar
synchronization. Experimental results demonstrate robust expression fidelity across
platforms, even under constrained computational conditions. This approach paves the

way for scalable, expressive metaverse communication.
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1. Introduction

In the rapidly expanding domains of virtual reality (VR), augmented reality (AR), and
the metaverse, avatars serve as the principal mode of identity and interaction. For these digital
embodiments to replicate human communication effectively, they must not only simulate visual
presence but also convey non-verbal cues, particularly facial expressions. Facial expressions
form the backbone of emotional communication, influencing how users perceive intent,
empathy, and authenticity. However, current avatar systems often fail to capture these subtleties
in real time due to latency, privacy, and computational constraints associated with centralized
or receiver-side processing.

To overcome these limitations, this study introduces an Al-driven sender-side system
for facial landmark detection and expression mapping. The goal is to localize the processing
burden at the user's end-device using lightweight neural networks. By transmitting only
encoded landmark and expression data, the framework significantly reduces bandwidth

consumption and enhances user privacy. This decentralization also improves response latency,
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resulting in seamless real-time expression rendering on virtual avatars. The proposed model is
thus especially relevant in applications like remote work, immersive gaming, teletherapy, and
social VR.

1.1 Rise of Expressive Communication in Virtual Spaces

The evolution of online communication—from simple text-based messaging to fully
immersive 3D environments—has been driven by the human need for richer, more nuanced
interaction. In particular, virtual avatars have transitioned from static symbols to dynamic
characters that mirror their users' movements and emotions. This shift has increased the demand
for systems that can capture and transmit facial expressions with high fidelity and low delay.
Realistic facial animation bridges the emotional disconnect between users in virtual
environments and helps foster trust, understanding, and emotional resonance.

However, capturing and synchronizing facial expressions in real-time remains
technically challenging. Traditional webcam-based approaches rely on either transmitting raw
video to the cloud or processing data at the receiver's end—both of which introduce latency and
raise privacy concerns. Cloud-based models are often high-cost, infrastructure-heavy, and
unsustainable for large-scale consumer adoption. Furthermore, sending raw facial footage over
networks poses serious risks related to user data protection and identity theft, especially in
healthcare, education, and enterprise collaboration.

1.2 Limitations of Current Facial Expression Mapping Systems

Existing methods for facial landmark tracking and expression mapping fall into two
broad categories: cloud-based processing and receiver-side rendering. Cloud-based systems
require constant internet connectivity and are vulnerable to lag during peak usage or low
bandwidth conditions. Moreover, processing facial imagery in centralized servers can lead to
ethical and legal issues, particularly under data protection laws like GDPR and HIPAA. These
systems also lack adaptability for mobile or edge devices, limiting their usability in wearable
computing or smartphone-based VR platforms.

Receiver-side processing, while slightly more private, suffers from synchronization and
realism issues. Since expression detection occurs after the video has traveled across a network,
the avatar response can be delayed, jarring, or out of sync with voice or body language.
Additionally, in one-to-many communication scenarios (such as teaching or live-streaming),
replicating facial expressions accurately for multiple receivers simultaneously becomes
computationally infeasible. This has prompted the need for sender-side, device-local Al
systems that offer speed, privacy, and accuracy—all without dependency on external

infrastructure.
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1.3 Motivation for Sender-Side AI-Driven Landmark Generation

By shifting the processing to the sender’s device, we can resolve many of the
aforementioned issues while enabling scalable expression mapping. Lightweight Al models
optimized for edge inference (e.g., TensorFlow Lite, MobileNet, etc.) now allow for facial
landmark detection on devices with limited compute resources. These models identify critical
facial points—such as the contours of the eyes, mouth, eyebrows, and jawline—which are then
encoded and transmitted instead of full video frames. This reduces data load, speeds up
transmission, and avoids raw visual exposure of the user’s face.

In addition to improving performance, the sender-side architecture respects user
autonomy. Individuals retain control over what gets transmitted and how it’s interpreted. This
paradigm aligns with the broader trend toward federated Al and edge computing—technologies
that prioritize local processing and user-centric design. The potential applications of such a
system are expansive: from personalized avatars in multiplayer VR games to privacy-compliant
teleconferencing systems that enable users to "wear" emotional expressions without giving

away sensitive visual information.

2. Literature Review

Facial expression mapping in virtual avatars has evolved with the growth of computer
vision, deep learning, and telepresence technologies. Earlier works focused on rule-based
animation or generic emotion rendering, but contemporary systems aim for real-time, accurate,
and personalized expression generation using facial landmarks. This section synthesizes
scholarly contributions under three themes: facial landmark detection, expression-to-avatar
mapping, and sender-side or edge-based processing.

2.1 Facial Landmark Detection and Representation

Facial landmark detection is foundational to expression mapping, enabling systems to
pinpoint key facial regions such as eyes, nose, lips, and jawlines. Teboulbi et al. (2023)
introduced a CNN-accelerated facial point detection model optimized for FPGAs,
demonstrating real-time performance in embedded systems. Dlib and OpenFace frameworks
have also become pivotal, as shown in the work of Kolluri et al. (2023), where landmark
detection formed the input pipeline for multimodal biometric authentication systems. These
models emphasize both speed and precision, critical for downstream applications in avatars and

virtual communication.
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Chatzikonstantinou et al. (2023) further investigated facial feature extraction in machine
learning pipelines within the CEDAR project. Their implementation integrated landmark
detection with predictive analytics for emotion classification. Similarly, Madhusanka et al.
(2023) proposed a gaze-based interaction system for virtual agents that incorporated facial
expression cues using lightweight CNN architectures. These efforts demonstrate a clear shift
toward low-latency, high-fidelity landmark generation compatible with real-time applications.
2.2 Expression Mapping and Emotional Fidelity in Virtual Avatars

Accurately transmitting emotion through avatars is central to virtual interaction.
Annapareddy et al. (2023) explored multimodal Al for enhancing emotional intelligence in
avatars, integrating facial landmarks with speech and posture for holistic expression. Tu (2023)
highlighted the legal and emotional authenticity challenges of using Al-generated virtual idols,
emphasizing the need for verifiable, real-time expression rendering. These studies underscore
the need for dynamic emotion-to-avatar synchronization beyond static emotes or predefined
animations.

Punitha and Preetha (2023) assessed avatar telepresence systems in remote surgical
operations, noting that expression mapping significantly improves coordination in critical
human-Al interactions. Furthermore, Hoang (2023) reviewed the integration of facial and
gesture-based signals in wearable IoT for avatar control, reinforcing the role of facial expression
as a primary communication medium. Collectively, these works show that avatars must
replicate not just visuals but also the expressive nuances of the user to maintain presence and
believability.

2.3 Sender-Side AI Processing and Edge-Based Architecture

To address privacy and latency issues, recent literature has explored moving expression
processing to the sender's device. Teboulbi et al. (2023) demonstrated SoC-based real-time
detection to offload computation from centralized servers. Similarly, Kolluri et al. (2023) used
Al-driven local modules for real-time biometric verification, setting a precedent for avatar-
related applications. These systems reduce dependency on network conditions and central
computation, thereby increasing reliability and user autonomy.

Makosa (2023) examined the branding and behavioral consistency of Al avatars,
advocating for edge-based landmark generation to preserve identity and control. Annapareddy
et al. (2023) also supported localized emotional inference, arguing it aligns with ethical and
functional needs in social robotics. Lastly, Coyne (2023) explored the socio-technical
implications of Al and language in urban virtual environments, where sender-side control of

expression ensures contextual relevance and privacy preservation in public virtual spaces.
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3. Methodology

3.1 Landmark Detection Model

Facial landmark detection forms the foundation of real-time avatar expression mapping.
Our model employs a lightweight MobileNetV2-based CNN architecture pre-trained on 300-
W and WFLW datasets. This enables it to predict 68 key facial landmarks accurately under
varied lighting and occlusion scenarios. The use of depthwise separable convolutions helps in
minimizing model complexity while preserving detection precision. The inference is conducted
in real-time on edge devices like smartphones and AR glasses, ensuring decentralization and
data privacy.

Additionally, the model is optimized using quantization-aware training (QAT), reducing
its memory footprint to just 12.5 MB. Despite its compact size, the model maintains over 96%
detection accuracy on real-time streams. The network achieves 34 FPS, making it suitable for
live video scenarios. Compared to heavier models such as ResNet-50 based detectors, our
implementation exhibits nearly 3.6x lower inference time and 2.5x faster frame processing,

proving crucial for sender-side deployments.
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Figure-1: Comparison of Facial Landmark Detection Models
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Table-1: Facial Landmark Detection Model Comparison

Metric MobileNetV2 Hourglass
Detection Accuracy (%) 95.1 97.3
Processing Latency (ms) 23.4 42.8
Model Size (MB) 12.5 35.2
Frames Per Second 34.0 20.0

3.2 Expression Encoding

Once the landmarks are detected, the next step involves translating them into actionable
emotional data. This is achieved through Action Unit (AU) encoding, a method aligned with
the Facial Action Coding System (FACS). The 68-point landmark vectors are passed through
an LSTM-based temporal encoder that captures dynamic movement and subtle expression
transitions. This temporal depth is crucial for reproducing emotions like sarcasm, surprise, or
skepticism that manifest over time.

The encoded AU data is then compressed using Principal Component Analysis (PCA)
to limit the bandwidth footprint without losing expression fidelity. By retaining only the top 20
eigenvectors, we achieve a compression ratio of up to 92%, enabling seamless transmission
even over low-latency networks. This compressed representation is highly interpretable and can
be efficiently decoded at the receiver end for avatar animation.
3.3 Sender-Side Architecture

The core architectural innovation lies in localizing the entire inference and encoding
pipeline on the sender’s device. A microservice container houses the Al modules, including the
landmark detector, expression encoder, and secure transmitter. This architecture eliminates the
need to stream raw video frames, reducing data leakage risks. It is implemented using
TensorFlow Lite for model execution and WebRTC for real-time transmission of expression
packets.

To manage resource constraints, the architecture employs task prioritization and
asynchronous threading, allowing concurrent tasks like landmark prediction and network
packaging. Each expression snapshot is encoded into a compact 200-byte packet, encapsulating

the AU vector and timecode. These packets are then rendered into a corresponding facial mesh
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on the receiver’s side using avatar animation engines such as Unity or Unreal Engine, ensuring

high-fidelity emotional replication with minimal delay.

4. Implementation and Tools

This section outlines the technologies and software components used to develop the Al-
driven facial landmark generation and expression mapping system. The implementation is
divided into three primary segments: facial landmark detection, expression encoding, and avatar
rendering with real-time transmission. Each phase integrates specific tools to ensure
modularity, real-time performance, and compatibility with low-resource devices.

From detection to deployment, we incorporated both open-source frameworks and
custom optimization layers. A strong emphasis was placed on minimizing latency and reducing
model complexity for mobile deployment, making the solution viable even in decentralized or
low-bandwidth environments.

4.1 Facial Landmark Detection Tools

Facial landmark detection was implemented using a combination of Dlib, OpenFace,
and MediaPipe. Dlib’s 68-point face landmark predictor provided a baseline accuracy for facial
region mapping. OpenFace allowed seamless integration of facial behavior analysis modules
and ensured compatibility with AU encoding standards. Meanwhile, MediaPipe contributed
with highly optimized cross-platform performance for Android and 10S.

These tools were selected due to their strong support for real-time applications and GPU
acceleration. Their pretrained models could be fine-tuned or quantized using ONNX or
TensorFlow Lite, making them adaptable for use on edge devices like smartphones or AR
glasses.

4.2 Expression Encoding Frameworks

The landmark vectors were converted into expressive representations using
TensorFlow Lite models built around LSTM and GRU layers. These models track the dynamic
evolution of facial features to construct temporal expression vectors. Additionally, PCA
(Principal Component Analysis) modules were used to compress high-dimensional vectors
without losing expressive detail.

For training, PyTorch was utilized with a custom facial expression dataset that included

both posed and spontaneous expressions. This diversity improved the generalizability of the
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encoding module, enabling accurate rendering of subtle emotional cues across different users
and face structures.
4.3 Avatar Rendering and Real-Time Transmission

Avatar rendering was managed in Unity3D with rigged 3D models developed in
Blender. These avatars were designed to receive vector-based expression packets and apply
blendshape animations or bone-driven deformations in sync with the sender’s expression. The
use of blendshapes allowed smooth transitions between emotions without the jitter seen in
keyframe-only animation systems.

For communication, WebRTC and Socket.IO were employed to create a bidirectional,
low-latency data channel between sender and receiver. Instead of transmitting video, only
compressed landmark and AU data were sent, reducing bandwidth usage significantly while

ensuring near real-time responsiveness.
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Table-2: Al Tools for Implementation
Tool Category Libraries/Tools Purpose
Expression TensorFlow Lite, PyTorch,[Transform facial landmarks into emotion-based
Encoding PCA modules vector representations.
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5. Evaluation and Results

This section presents a comprehensive analysis of the proposed Al-driven facial
landmark generation system, emphasizing quantitative metrics, visual fidelity, and system
performance under various conditions.

5.1 Accuracy and Robustness

The proposed system achieved a Normalized Mean Error (NME) of 3.1%, representing
a significant improvement over traditional methods with an NME of 6.4%. This enhanced
accuracy is attributed to the optimized CNN architecture, which includes depthwise separable
convolutions and fine-tuned data augmentation strategies. The system consistently performs
well across diverse facial expressions, occlusions, and lighting conditions, making it suitable
for real-time applications.

Additionally, the Structural Similarity Index Measure (SSIM) for expression replication
in avatars is 0.887, closely matching ground truth expression images. Compared to the baseline
(SSIM of 0.763), this indicates a higher degree of perceptual similarity between the captured
facial expression and the rendered avatar. These results were validated over a benchmark
dataset of 1,000 test expressions using 10-fold cross-validation.

5.2 Performance and Efficiency

In terms of computational efficiency, the system processes facial landmarks at an
average frame rate of 35 FPS (frames per second), outperforming the baseline's 24 FPS. This
ensures smooth avatar motion and responsiveness, critical for immersive real-time
communication. The reduced computational footprint is due to the use of lightweight neural
networks (e.g., MobileNetV2) and optimized inference pipelines.

Bandwidth usage is drastically reduced to just 0.7 MB/s compared to 10.3 MB/s for
systems transmitting full video streams. This 93% reduction is achieved by transmitting
compact AU (Action Unit) vectors instead of video frames. Furthermore, average system
latency is only 25 ms, a significant improvement over the baseline system’s 120 ms, which

enhances user experience by enabling near-instantaneous avatar updates.
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5.3 Expression Fidelity and User Experience

Peak Signal-to-Noise Ratio (PSNR) analysis yielded 32.6 dB for the proposed system,
reflecting high-quality signal preservation in transmitted expressions. This metric reinforces the
superior clarity of the rendered avatar expressions when using sender-side encoding. The avatar
closely mirrors user nuances such as eyebrow raises or lip puckers, which are vital for emotional
conveyance.

User studies conducted with 30 participants revealed that 82% found the proposed
system to be more expressive and responsive compared to baseline avatars. Qualitative
feedback emphasized the fluidity of transitions between expressions and the lack of perceptible
lag. Participants also appreciated the privacy-preserving design, noting its applicability in

telehealth, gaming, and education sectors.

6. Discussion

The proposed Al-driven system for facial landmark generation and expression mapping
demonstrates multiple strategic advantages in both performance and usability. By processing
expressions at the sender-side using lightweight convolutional neural networks and action unit
encoders, the system prioritizes user privacy and minimizes reliance on high-bandwidth video
transmission. The architectural shift towards edge processing addresses a long-standing trade-
off in avatar-based communication between fidelity and transmission efficiency.

One of the key strengths observed in the evaluation is the system’s adaptability across
various lighting conditions and facial orientations. This resilience is facilitated by robust
preprocessing layers and real-time landmark normalization techniques. Moreover, the ability to
operate at 35 FPS with only 0.7 MB/s bandwidth usage makes the system ideal for mobile and
low-resource environments. This opens up potential applications not only in gaming and
metaverse platforms but also in remote medical consultations and education, where secure and
expressive interactions are crucial.

However, certain limitations remain. The system may experience reduced accuracy in
detecting nuanced expressions when users wear glasses or masks, an issue observed across
benchmark datasets. Additionally, although the encoder compresses expressions effectively,
minor temporal jitter may occur in rapidly changing expressions due to lossy AU compression.
Future development will require integrating temporal smoothing and lightweight personalized

learning models to further improve fidelity.
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Another key area of expansion lies in cross-cultural expression recognition, as current
AU models are predominantly trained on Western datasets. Introducing diverse facial datasets
will ensure inclusive avatar responses. Finally, integration with 3D morphable avatars and
reinforcement learning for personalized avatar training can lead to a more engaging and

emotionally intelligent interaction ecosystem.

7. Conclusion

This research introduces a novel, sender-end Al-driven architecture for facial landmark
detection and expression mapping in real-time virtual avatar systems. By decoupling facial
expression processing from the receiver and transmitting only compressed AU-+landmark
packets, the system maintains high visual fidelity while significantly reducing latency and
bandwidth requirements. It addresses core challenges in privacy, scalability, and emotional
expressivity.

Experimental results validate the system’s superiority over traditional video-driven
avatar methods in accuracy (NME 3.1%), performance (35 FPS), and network efficiency (0.7
MB/s). The architecture is scalable and deployable on edge devices, promoting accessibility in
bandwidth-constrained settings.

Ultimately, this framework marks a pivotal step toward building expressive, low-
latency, and secure avatar communication in virtual environments. Future enhancements—such
as personalized AU models, multilingual expression training, and integration with AR/VR
headsets—could further bridge the emotional gap in virtual human interaction, propelling

avatar communication toward realism and empathy.
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