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Abstract

Brain graphs provide a relatively simple and increasingly popular way

of modeling the human brain connectome, using graph theory to ab-

stractly define a nervous system as a set of nodes (denoting anatomi-

cal regions or recording electrodes) and interconnecting edges (denot-

ing structural or functional connections). Topological and geometrical

properties of these graphs can be measured and compared to random

graphs and to graphs derived from other neuroscience data or other

(nonneural) complex systems. Both structural and functional human

brain graphs have consistently demonstrated key topological properties

such as small-worldness, modularity, and heterogeneous degree dis-

tributions. Brain graphs are also physically embedded so as to nearly

minimize wiring cost, a key geometric property. Here we offer a con-

ceptual review and methodological guide to graphical analysis of human

neuroimaging data, with an emphasis on some of the key assumptions,

issues, and trade-offs facing the investigator.
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Graph: a model of a
complex system
completely defined by
a set of nodes or
vertices and the edges
or lines drawn between
them; mathematical
theory of random
graphs originated with
Euler and later Erdös
and Renyi in the
1950s. Analysis of
nonrandom graphs has
grown rapidly as an
aspect of complexity
science in the past
20 years
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WHAT IS A BRAIN GRAPH?

A brain graph is a model of a nervous system

as a number of nodes interconnected by a set

of edges. For example, the edges can repre-

sent functional or structural connections be-

tween cortical and subcortical regional nodes

based on analysis of human neuroimaging data.

Once a brain graph has been constructed by

defining the nodes and edges, its topological

properties can be measured by a rich array of

metrics that has been developed recently in the

field of statistical physics of complex networks

(Albert & Barabási 2002) and historically built

on the concepts of graph theory (Erdös &

Rényi 1959). Since the nodes of a brain graph

can be spatially localized, or physically em-

bedded, its geometrical properties can also be

estimated and potentially related to network

topology.

To date, most such human brain graphs

have specified binary connectivity—the edges

between nodes are undirected and unweighted;

see Figure 1. The construction of such binary

brain graphs is the focus of this article, although

we also briefly describe the construction of di-

rected and/or weighted brain graphs.

WHY BOTHER WITH BRAIN
GRAPHS AS MODELS OF THE
HUMAN BRAIN CONNECTOME?

Brain graphs are simple models of the real un-

derlying connectome (Sporns et al. 2005). They

are properly based on a number of more-or-

less explicit, and more-or-less realistic, tech-

nical assumptions. For example, we will usu-

ally assume that the nodes are independent and

internally coherent, and we may also assume

that all the edges signify the same strength of

connection between nodes. Such assumptions

inevitably entail some loss of information in

the resulting graphs compared to the multivari-

ate datasets from which they were constructed.

However, the technical constraints and robust

simplifications of graph theoretical analysis, ap-

plied to human neuroimaging data, are worth

it—arguably—for two strategic reasons: gener-

alizability and interpretability.

Generalizability

Graph theoretical analysis is potentially ap-

plicable to any scale, modality, or volume

of neuroscientific data (Bassett & Bullmore

2006, Bullmore & Sporns 2009, Sporns,

2010). We can say this with some confidence

because graph theory has already proven to be

applicable to a considerable diversity of com-

plex systems, including markets, ecosystems,

computer circuits, and gene-gene interactomes

(Barabási 2009). Some of these systems have

been graphically modeled on a much bigger

scale than has so far been attempted for ner-

vous systems. For example, graph models have

114 Bullmore · Bassett
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been constructed for the World Wide Web

comprising up to 200 million nodes (Websites)

and 1.5 billion edges (links) (Barabási & Albert

1999, Broder et al. 2000); and for the brain gene

transcriptome, comprising up to 20,000 nodes,

each representing expression of genetically

specific mRNA, with each edge representing

significant coexpression of mRNA related to

a pair of genes (Oldham et al. 2006). Thus,

graph theory potentially provides a common

language for the analysis of complex systems

in general, and we expect to be able to use it to

describe some of the key topological properties

of nervous systems from the cellular scale of the

neuronal connectome, exemplified by that of

the nematode worm, Caenorhabditis elegans, to

the whole-brain scale of human neuroimaging

data.

Within the domain of human brain map-

ping, graph models have now been reported

for all major modalities of magnetic resonance

imaging (MRI) and neurophysiological data.

Functional brain graphs have been constructed

from functional MRI (fMRI) (Achard &

Bullmore 2007, Achard et al. 2006, Eguı́luz

et al. 2005, Liu et al. 2008, Salvador et al. 2005a,

van den Heuvel et al. 2008), electroencephalog-

raphy (EEG) (Micheloyannis et al. 2006, Stam

et al. 2007a), and magnetoencephalography

(MEG) data (Bassett et al. 2006, Deuker et al.

2009, Stam 2004). Structural brain graphs

have been constructed from diffusion tensor

imaging (DTI) or diffusion spectrum imaging

(DSI) (Gong et al. 2008, Hagmann et al. 2008)

and conventional MRI data (Bassett et al.

2008, He et al. 2007). This degree of gener-

alizability immediately supports comparison of

topological parameters between structural and

functional networks. For example, it has been

discovered that fMRI and DTI brain graphs

consistently demonstrate some common global

topological properties (Honey et al. 2009, Park

et al. 2008, Skudlarski et al. 2008, Zalesky &

Fornito 2009; see Figure 1), including:

� small-worldness—indicating a balance

between network segregation and

integration,

Topology: spatial
properties that are
invariant under
continuous
deformation are
topological aspects of a
system. In brain
graphs, topological
analysis considers the
connectivity between
nodes regardless of
their physical or
anatomical locations

Connectivity: a
measure of association
between neurons or
brain regions. In
human neuroimaging,
functional connectivity
means that two regions
demonstrate similar
dynamics over time,
whereas effective
connectivity means
that one region has a
causal effect on
dynamics in another
region

Degree: the degree of
a node is the number
of edges connecting it
to the rest of the
network; the
distribution of degrees
over all nodes in the
network can be
described as a degree
(probability)
distribution. Brain
graphs typically have a
broad-scale degree
distribution, implying
that at least a few
“hub” nodes will have
high degree

� modularity—indicating a decomposabil-

ity of the system into smaller subsystems,

and
� heterogeneous degree distributions—

broad-scale or fat-tailed probability dis-

tributions of degree, indicating the likely

presence of network hubs or highly con-

nected nodes.

It is conceptually easier to link the brain

graphs derived from these different data types

to each other than it would be if each imag-

ing dataset were described in terms of some

modality-specific measure of association be-

tween regions, e.g., tractographic connection

probabilities from DSI or correlations be-

tween regional fMRI time series. Facilitat-

ing between-modality translation of results

can be important for methodological cross-

validation and, more fundamentally, for in-

forming our understanding of how functional

networks might interact with the substrate of a

relatively static structural network (Honey et al.

2009).

The generalizability of graph theory also

allows us to compare the topological properties

of large-scale or macro networks represented

by neuroimaging to those of small-scale or

cellular networks measured by microscopy or

microelectrode recording. This is potentially

important in defining organizational properties

of nervous systems that are conserved across

scales of space and time, and across different

species. More radically, the generalizability of

graph theory encourages the translation of new

ideas from analysis of nonneural complex sys-

tems, such as principles of high-performance

microprocessor design, to quantification of the

human brain connectome (Bassett et al. 2010).

We can thus begin to address questions such as,

what is special about the human connectome

compared to a variety of other complex,

information-processing systems? Do human

brain networks represent a singular pinnacle

of organizational complexity or are they one

of a universality class of superficially diverse

networks that share important topological

properties in common? These questions about

conservation of topological principles across
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Small-worldness:
originally
defined as the
combination of high
clustering and short
characteristic path
length; subsequently
also defined
as the combination of
high global and local
efficiency of informa-
tion transfer between
nodes of a network

Modularity: modular
networks are those
that are composed of
topological modules or
communities. A
module is defined as a
group of nodes that
have many
connections to other
nodes within the
module but few
connections to nodes
outside the module

Cost: a topological
definition of the cost of
a system is the number
of edges in proportion
to the total number of
possible edges; a
physical definition
weights the cost by the
geometric distance
between nodes. Brain
networks economize
(but do not minimize)
both topological and
physical costs

Efficiency: a word
with many meanings
but usually understood
as a measure of
information transfer
between nodes; a
network with high
global efficiency will
have a short
characteristic path
length. Cost-efficiency
relates the efficiency of
the graph to its cost or
connection density

information-processing systems are potentially

important because topological conservation

suggests that diverse systems have conver-

gently evolved to satisfy universal optimization

criteria. The identity and interdependence of

such putative network selection criteria are not

yet fully established, but plausible candidates

include minimization of wiring cost (a geo-

metric measure of physical distance between

connected nodes), maximization of efficiency

of information transfer (a topological measure

inversely related to path length between nodes),

hierarchical modularity, and high dimensional

interconnect topology (Bassett et al. 2010,

Robinson et al. 2009). Through the prism of

graph theory, we can begin to test ideas about

evolution and development of human brain

networks that are informed by what we know

about the selection of many other, perhaps

experimentally more tractable, networks.

Interpretability

Biological and behavioral interpretability is

always an issue in human neuroimaging. The

anatomical and physiological significance of

structural and functional MRI signals has

been extensively debated but not yet entirely

resolved (Lee et al. 2010, Lerch et al. 2006).

Imaging studies of brain systems or networks

inevitably depend on some measure of signal

association or covariation between regions,

but the neurobiological basis is not yet settled

for either interregional correlations in brain

structure estimated over subjects in MRI or

interregional correlations in brain function

estimated over time in fMRI. Lacking a

clear structural or physiological substrate for

changes in anatomical or functional connectiv-

ity, measured by statistical association between

regions at the systems level of neuroimaging,

it is difficult to predict how changes in such

descriptive statistics should be related to cog-

nitive or behavioral performance of the system.

For example, is it cognitively “good” or “bad”

to have a greater-than-average correlation

between a pair of fMRI time series represent-

ing, say, left middle frontal gyrus and right

hippocampus? Similarly, it is difficult to explain

why specific neuropsychiatric disorders, e.g.,

schizophrenia, have often been associated with

a profile of both abnormally increased and

decreased magnitude of connectivity across

different brain regions (Rubinov et al. 2009,

Whitfield-Gabrieli et al. 2009). Is less connec-

tivity always a sign of the disease process, and

more connectivity in a patient group always a

sign of a compensatory process, or can excess

connectivity be directly pathological?

The translation of modality-specific con-

nectivity statistics to topological measures

on brain graphs may help us to find more

secure cognitive and clinical interpretations

of neuroimaging systems. This proposition is

far from proven yet, although there are some

encouraging early signs in its favor. For exam-

ple, three recent studies—using fMRI (van den

Heuvel et al. 2009), MEG (Bassett et al. 2009),

and DTI (Li et al. 2009)—have indepen-

dently reported associations between general

intelligence or executive task performance

and topological measures of brain network

efficiency or cost-efficiency. In general, higher

cognitive performance has been associated with

brain graphs globally configured for greater

efficiency—speed and fidelity—of parallel

information transfer between regional nodes.

This observation is compatible with neuropsy-

chological theories that higher-order cognitive

functions depend on distributed processing

(Fodor 1983) across a large, integrated “neu-

ronal workspace” (Dehaene & Naccache 2001):

A network with higher global efficiency will

be more optimized as a cognitive workspace.

There have also been early reports that disease-

related changes in topological properties of

brain graphs can be related to other aspects of

the disorder in question. For example, reduc-

tions in network efficiency have been associated

with greater white matter lesion load in pa-

tients with multiple sclerosis (He et al. 2009a),

and reductions in nodal degree (the number of

edges connecting a regional node to the rest

of the brain graph) have been associated with

116 Bullmore · Bassett
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greater severity of local amyloid deposition

in patients with Alzheimer’s disease (Buckner

et al. 2009). It is also notable that moderate

levels of heritability have been reported for

brain graph topology measured in a twin study

using EEG (Smit et al. 2008), suggesting that

there may be important genetic effects on

variation in brain graph metrics. Collectively,

these and other early results suggest that it will

be interesting to apply graph theory more ex-

tensively to the cognitive, clinical, and genetic

interpretation of neuroimaging systems.

Clinical Relevance

The organization of brain graphs is modulated

by an array of factors that varies throughout the

healthy population, including behavioral vari-

ability (Bassett et al. 2009), cognitive ability (Li

et al. 2009, van den Heuvel et al. 2009), shared

genetic factors (Smit et al. 2008), genetic infor-

mation (Schmitt et al. 2008), age (Meunier et al.

2008, Micheloyannis et al. 2009), and gender

(Gong et al. 2009). The architecture of an indi-

vidual’s connectivity is inherently dynamic, be-

ing altered by experimental tasks (Bassett et al.

2006, de Vico Fallani et al. 2008a) and drug

treatment (Achard & Bullmore 2007, Schwarz

et al. 2009).

Complex network theory is particularly

appealing when applied to the study of clinical

neuroscience, where many cognitive and

emotional disorders have been characterized as

dysconnectivity syndromes (Catani & ffytche

2005), as indicated by abnormal phenotypic

profiles of anatomical and/or functional con-

nectivity between brain regions. For example,

in schizophrenia, a profound disconnection

between frontal and temporal cortices has been

suggested to characterize the brain (Friston &

Frith 1995); in contrast, people with autism may

display a complex pattern of hyperconnectivity

within frontal cortices but hypoconnectivity be-

tween the frontal cortex and the rest of the brain

(Courchesne & Pierce 2005). In fact, a wealth

of clinical and disease states have recently been

shown to manifest themselves by abnormal

cortical graph organization: schizophrenia

(Bassett et al. 2008, 2009; Liu et al. 2008;

Lynall et al. 2010; Micheloyannis et al. 2006;

Rubinov 2009), Alzheimer’s disease (He et al.

2008, 2009a; Stam 2010; Stam et al. 2007a;

Supekar et al. 2008), epilepsy (Horstmann et al.

2010, Raj et al. 2010, van Dellen et al. 2009),

multiple sclerosis (He et al. 2009b), acute de-

pression (Leistedt et al. 2009), absence seizures

(Ponten et al. 2009), medial temporal lobe

seizures (Ponten et al. 2007), attention deficit

hyperactivity disorder (Wang et al. 2010),

stroke (de Vico Fallani et al. 2009, Wang et al.

2009), spinal cord injury (de Vico Fallani et al.

2008b), fronto-temporal lobar degeneration

(de Haan et al. 2009), and early blindness (Shu

et al. 2009). Together, these studies highlight

the extended clinical relevance of graphical

analysis of human neuroimaging data.

Caveats

So far we have emphasized the attractive sim-

plicity, generalizability, interpretability, and

clinical relevance of brain graphs. Now we re-

turn to our major caveat: graph analysis of neu-

roimaging data is not “plug and play.” It is a

model building exercise, entailing arbitrary as-

sumptions and decisions, which can have influ-

ential effects on the results of the analysis. It

is also relativistic: Many of the results from a

brain graph will need to be calibrated by com-

parison to the extreme bounds of random and

regular graphs (see Figure 1), e.g., to quantify

small-worldness of the brain networks, or we

may wish to compare one group of brain graphs

to another. How best to compare topological

metrics between graphs is not a trivial ques-

tion. In addition to these relatively specialist

questions about construction and comparison

of brain graphs, any approach to systems anal-

ysis of neuroimaging data also raises a number

of issues about data acquisition and preprocess-

ing, statistical hypothesis testing and multiple

comparisons, visualization, etc. In what follows,

we attempt to address some of these caveats in

greater detail.

www.annualreviews.org • Brain Graphs 117

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
1.

7:
11

3-
14

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
xo

Sm
ith

K
lin

e 
E

nt
er

pr
is

e 
on

 0
3/

31
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

https://www.researchgate.net/publication/23400085_Altered_sleep_brain_functional_connectivity_in_acutely_depressed_patients_Hum_Brain_Mapp?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/24030166_Indications_for_network_regularization_during_absence_seizures_Weighted_and_unweighted_graph_theoretical_analyses?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/6491892_Small-world_networks_and_epilepsy_graph_theoretical_analysis_of_intracerebrally_recorded_mesial_temporal_lobe_seizures_Clin_Neurophysiol?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/24312128_Uncovering_Intrinsic_Modular_Organization_of_Spontaneous_Brain_Activity_in_Humans?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/5782868_Smit_DJ_Stam_CJ_Posthuma_D_Boomsma_DI_de_Geus_EJ_Heritability_of_'small-world'_networks_in_the_brain_a_graph_theoretical_analysis_of_resting-state_EEG_functional_connectivity_Hum_Brain_Mapp_29_1368-13?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/5782868_Smit_DJ_Stam_CJ_Posthuma_D_Boomsma_DI_de_Geus_EJ_Heritability_of_'small-world'_networks_in_the_brain_a_graph_theoretical_analysis_of_resting-state_EEG_functional_connectivity_Hum_Brain_Mapp_29_1368-13?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/40693465_Age-_and_Gender-Related_Differences_in_the_Cortical_Anatomical_Network?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/5616680_Identification_of_Genetically_Mediated_Cortical_Networks_A_Multivariate_Study_of_Pediatric_Twins_and_Siblings?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=
https://www.researchgate.net/publication/26328622_Cognitive_fitness_of_cost-efficient_brain_functional_networks_Proc_Natl_Acad_Sci_U_S_A?el=1_x_8&enrichId=rgreq-823828bb-39b0-4b89-be6c-a99985c62a5a&enrichSource=Y292ZXJQYWdlOzQ5NjU1NjI4O0FTOjk4OTE0MzA0NzkwNTM5QDE0MDA1OTQ0MTkwNDc=


HOW TO CONSTRUCT A
BRAIN GRAPH

The two key questions to address in construct-

ing a graphical model of a brain network are,

(a) What is a node, and (b) What is an edge?

What Is a Node?

Before we describe the previously used defini-

tions of nodes in neuroscience and neuroimag-

ing, it is important to describe what properties

a node should have in general (Butts 2009). In

graphical models, a node is a portion of the

system that is separable from the other por-

tions of the system in some way; i.e., nodes are

meant to be inherently independent or distinct

in the system under study. To put it another

way, the interactions between nodes will be-

come continuously less meaningful the more

similar the nodes are to each other. In addition

to being independent, the nodes should be in-

ternally coherent or homogeneous, i.e., nodes

should be encapsulated informational compo-

nents that have internal integrity and external

independence (Butts 2008, 2009; Rubinov &

Sporns 2010).

Cellular systems. A cellular nervous system

has an immediately obvious graphical decon-

struction: each neuron can be considered an

independent and homogeneous node, and the

synapses between neurons can be considered

as edges. This is the intuitively straightforward

basis for the graphical analysis of the cellular

connectome of the nematode worm, C. elegans

(Bassett et al. 2010, Watts & Strogatz 1998),

which comprises about 300 cellular nodes and

about 7,600 synaptic edges. It has also been the

basis for graphical modeling of small-world

cellular networks in vertebrate brainstem

(Humphries et al. 2006). However, we note

that C. elegans is currently the only organism

for which the cellular connectome has been

completely described; graphical modeling of

cellular connectomes in other species will be

challenged by their greater size and variability,

and even in this most tractable case, graphical

analysis involves making choices about whether

all types of neurons should have equal status

as nodes [more than 100 classes of neurons are

recognized in C. elegans (White et al. 1986)].

Electrophysiological data. For graphical

analysis of neurophysiological data on elec-

tromagnetic fields, including microelectrode

recordings from cortical tissue (Yu et al. 2008)

as well as scalp electrode recordings in EEG or

surface sensors in MEG, it may be reasonable

to define each electrode or signal sensor as a

node. Defining nodes as MEG or EEG sensors

will preserve the native covariance structure of

the data, but without appropriate preprocess-

ing (Stam et al. 2007b), this will include strong

correlations between neighboring sensors due

to volume conduction of electrical activity from

a single source in the brain to multiple nearby

electrodes or sensors on the scalp surface. In

graphical terms, untreated volume conduction

will be represented by a regular lattice-like

structure of highly clustered connections

between spatially neighboring sensors, which

could clearly confound analysis of brain

network properties such as small-worldness.

An alternative approach is to reconstruct the

sensor data in terms of anatomically located

sources and define each source as a node (Palva

et al. 2010a,b). This allows the operator some

discretion in how many nodal sources should

be reconstructed from a fixed number of sen-

sors, and it deals with the issue of volume con-

duction. However, it is also important to bear

in mind that some source reconstruction algo-

rithms, such as the synthetic aperture magne-

tometry beamformer, solve the inverse problem

by diagonalizing the sensor covariance matrix to

render sources as statistically independent from

each other (see, e.g., Cheyne et al. 2006). This

is obviously unlikely to represent an optimal

starting point for an analysis of functional con-

nectivity between sources. Other reconstruc-

tion algorithms assume stationarity (constant

mean and variance over time) of the time series,

which is unlikely to be realistic over the dura-

tion of a typical experimental recording (from
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tens to thousands of seconds) (Kowalik & Elbert

1994).

Thus we can see that a preprocessing step

(source reconstruction) that might seem attrac-

tive for defining the nodes of an MEG network

could have severe effects on the covariance be-

tween nodes that will later be used to define

the edges of the network (Vrba & Robinson

2001). Most graphical studies of neurophysio-

logical data so far have used sensors as nodes

(Bassett et al. 2006, 2009; Stam 2004, 2010),

implicitly sacrificing anatomical resolution and

independence of nodes for greater data fi-

delity of edges representing covariation be-

tween nodes. This trade-off has not been ex-

tensively studied in terms of its impact on

statistical properties of graph metrics derived

from neurophysiological data. It seems clear

from preliminary work that headline prop-

erties of human brain functional networks—

such as small-worldness and broad-scale de-

gree distributions—are qualitatively conserved

whether network nodes are defined as sources

(Palva et al. 2010b) or sensors (Deuker et al.

2009), but this is an area where there is likely to

be further significant methodological develop-

ment in the future.

Tract-tracing and MRI data. For graphi-

cal analysis of tract-tracing data on large-scale

axonal projections between regions of mam-

malian cortex, nodes have usually been de-

fined cytoarchitectonically as Brodmann areas

(Hilgetag et al. 2000; Scannell et al. 1995, 1999;

Young 1992, 1993). In some of the early graph-

ical studies of human neuroimaging data, an

approximately equivalent convention was fol-

lowed to define nodes (Achard et al. 2006,

Bassett et al. 2008, Wang et al. 2008). Each in-

dividual’s brain image was coregistered with an

anatomically parcellated template image, and

the mean signal over all voxels in each region of

the template image was taken as the nodal value

at that anatomical location. Several similar but

not identical template images are available (see

Related Resources) and have been used for this

purpose. It has been shown that use of different

anatomical templates for analysis of the same

imaging data can lead to subtly different graph-

ical results (Wang et al. 2010). It has also been

suggested by analysis of simulated fMRI data

that specification of functionally, rather than

anatomically, defined nodes may improve fi-

delity of functional network modeling (Smith

et al. 2010).

The main advantage of using an anatomi-

cally defined template for nodal parcellation of

neuroimaging data is that it can support direct

comparison of results to prior neuroimaging or

primate neuroanatomy studies using the same

or a similar template. The main disadvantage,

which is probably more significant, is that

the size of different template regions can vary

considerably. For fMRI analysis, for example

in the Automated Anatomical Labeling (AAL)

template (Tzourio-Mazoyer et al. 2002)

(Figure 2), the middle frontal gyrus region

comprises many more voxels than the hip-

pocampus region. Nodal values obtained by

averaging across many voxels in larger regions

will be less noisy than nodal values estimated by

averaging across smaller regions, leading to a

bias in favor of stronger statistical associations

between larger regions of the template image

(Salvador et al. 2008). One way of dealing

with this bias is to randomly sample the same

number of voxels in estimation of each nodal

value, but this is likely to mean that larger

nodes are less internally coherent.

An increasingly preferred approach to defi-

nition of nodes in fMRI data has been to stip-

ulate that each node should comprise an equal

number of voxels and that nodes should collec-

tively cover the brain without prior anatomical

information being used to guide their size or

location (Zalesky et al. 2010b). If this approach

is adopted, the key parameter to choose is the

spatial size of each node, which can range from

a minimum of 1 voxel to a maximum in the or-

der of 104 voxels. We can see immediately that

each spatial scale represents a trade-off between

the defining nodal properties of independence

and coherence: Single voxel nodes will be more

coherent but less independent of each other (to

the extent that the image is spatially smooth),

whereas larger nodes, located regardless of
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approximate cytoarchitectonic fields, will be

less coherent but more independent.

There has been limited systematic explo-

ration of the effect of nodal size on overall

network properties. A few fMRI studies

adopting the minimum nodal size of one voxel

have reported scale-free or power law degree

distributions of the resulting networks (Eguı́luz

et al. 2005, van den Heuvel et al. 2008), whereas

the majority of fMRI and MRI studies using

anatomical templates with larger nodes have

reported exponentially truncated power law

degree distributions (e.g., Achard et al. 2006).

This indicates that some network properties,

such as the form of the degree distribution,

may be qualitatively affected by the size of the

nodes—in this case, voxel nodes leading to net-

works with a larger probability of very highly

connected hubs. It is not yet clear whether this

apparent difference in degree distributional

properties as a function of the spatial scale of

network nodes reflects a biological difference

in network organization at different spatial

scales or the reduced independence of voxel

nodes that are small compared to the spatial

smoothness of the image. However, a study

of anatomical networks derived from the same

set of DTI and DSI data as nodal size was

continuously increased from small nodes,

comprising a local cube of {3 × 3 × 3} voxels,

to large nodes, comprising {100 × 100 ×

100} voxels, found that the form of the degree

distribution and other topological properties

were quite consistently expressed across scales,

although the quantitative values of topological

parameters were scale dependent (Zalesky et al.

2010b).

Another factor to take into consideration

when deciding the size of nodes is that smaller

nodes will naturally be more numerous, and hy-

pothesis testing of nodal statistics, e.g., to pro-

duce a cortical surface map of between-group

differences in nodal degree, will require a larger

number of statistical tests and therefore more

stringent multiple comparisons corrections. In

other words, the greater spatial resolution of

local network properties conferred by smaller

nodes comes at the cost of more conservative

significance thresholds to control type I (false

positive) error in the context of multiple com-

parisons. This is a familiar trade-off in the con-

text of mass univariate statistical testing for clas-

sical brain activation mapping.

What Is an Edge?

We have seen that there is no absolutely correct

or straightforward answer to the question of

defining nodes. The question of how to define

edges in a brain graph is even more open to

a variety of legitimate choices. As before, the

case of C. elegans can provide a deceptively

simple template: The edges in this cellular

connectome are usually defined as the synapses

between neurons, which are highly reliable

between different worms and have been exactly

described (White et al. 1986). But should

electrical and chemical synapses be given equal

weight as edges? Should the directionality of

chemical synapses be respected by specification

of directed edges in the corresponding graph?

In practice, most graphical analyses of C. elegans

have adopted the simplest possible choice—all

synaptic connections are represented as undi-

rected and unweighted (or equally weighted)

edges—but this is clearly not the only possible

choice. When we turn to the graphical analysis

of neuroimaging, neurophysiological, and

other data where we lack a “ground truth”

knowledge of the physical connections be-

tween nodes, a reasonable specification of

edges becomes more challenging.

To explore the methodological issues

in this context, we consider the illustrative

example of building a graph model for the

human functional connectome based on a

single fMRI dataset (see Figure 2A). Several

questions immediately arise; e.g., under what

experimental conditions should the data be

recorded, and how should they be preprocessed

prior to graph analysis? To date, most graph

models of fMRI data have been based on

data recorded with participants lying quietly

in the scanner, at rest. However, there is no

reason in principle why graphs could not be

constructed from data recorded while subjects
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perform experimentally controlled cognitive

tasks; indeed, this strategy is likely to become

more popular in the future, as attention focuses

on the question of how graphical parameters

of functional network organization can be

related to cognitive performance (see Future

Issues and Palva et al. 2010a for an example of

task-related network analysis using MEG).

For resting-state data analysis, one com-

mon question is how long a functional MRI

time series should be to support investigation

of functional associations and networks. From

a strictly technical point of view, a larger num-

ber of time points will generally improve the

precision of time series model parameter esti-

mates. The frequency bandwidth of a digital

time series process is limited by the Nyquist fre-

quency ( fN = fS/2, where fS is the sampling

frequency) at the upper end and by the length of

the time series at the lower end ( fmin = 1/T ,

where T is the number of time points in the

series). Within these limits, higher-frequency

components will generally be estimated with

greater precision than low-frequency compo-

nents (Achard et al. 2008). In fMRI, inter-

est is often focused on a low-frequency range

<0.1 Hz, which is considered to be more purely

representative of neuronal (noncardiorespira-

tory) sources of (co)variation, and the sampling

interval is typically on the order of seconds.

These considerations indicate that fMRI time

series will ideally be recorded over at least 5 to

10 minutes (Van Dijk et al. 2010), and longer

time series (about 30 minutes) have been re-

ported (Achard et al. 2006). However, very

long periods of fMRI recording may be diffi-

cult for subjects to tolerate without excessive

head movement or changes in brain state such as

falling asleep. In general, basing functional con-

nectivity or network analysis on very long peri-

ods of time series, although technically prefer-

able, incurs the assumption that brain func-

tional systems are in the same (stationary) state

over the period of observation, which becomes

increasingly implausible as the length of obser-

vation increases. The assumption of stationar-

ity also arises if several short segments of fMRI

time series, e.g., the resting-state epochs of a

classical blocked periodic activation paradigm,

are concatenated to form a composite time se-

ries for connectivity and network analysis (Fair

et al. 2007). This procedure assumes that the

brain is in approximately the same functional

state before and after performance of cogni-

tive tasks, although there is some evidence that

endogenous brain dynamics recorded immedi-

ately after effortful task performance may be

different from the dynamics preceding task per-

formance (Barnes et al. 2009).

In addition to the question of time series

length, there are multiple preprocessing steps

commonly applied in fMRI analysis that will

likely have as yet incompletely characterized

effects on functional brain graphs. For ex-

ample, nodal time series are often corrected

for head movement and for other “nuisance

covariates,” such as global brain or white

matter mean fluctuations, before estimation

of association metrics (Poldrack et al. 2008).

Such preprocessing steps can significantly alter

the specificity, strength, and localization of

measured functional associations and therefore

may substantially alter the topology of brain

graphs derived from the association matrices

(Murphy et al. 2009, Van Dijk et al. 2010,

Weissenbacher et al. 2009).

However, many of these issues concerning

data acquisition and preprocessing are generic

to fMRI studies of brain functional connectiv-

ity and are not uniquely problematic from the

perspective of graph analysis. To focus more

specifically on the issues arising in graph analy-

sis, we use a representative single fMRI dataset

(results shown in Figure 2A), acquired over

the course of about 37 minutes (equivalent to

2,048 time points at each voxel) from a healthy

volunteer in the resting state. The data were

preprocessed to correct voxel times series for

head movement and slice timing offsets, then

regionally parcellated using the AAL template

(Tzourio-Mazoyer et al. 2002), which defines

90 cortical and subcortical regions; method-

ological details are described in Achard et al.

(2006). Thus, the dataset available for graph

analysis comprised a {N × T} or {90 × 2048}

multivariate time series (see Figure 2A).
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Association matrix: a
matrix of connectivity
measures between
each possible pair of
the nodes in the
system; applying a
global threshold to an
association matrix to
generate a binary
adjacency matrix is the
simplest and most
frequently used
approach to graph
analysis of human
neuroimaging data

Functional association. Given a multivariate

time series like an fMRI dataset (or an MEG

or EEG or MEA recording), the first signif-

icant choice we have to make is how to de-

scribe the statistical association between each

nodal time series. In general, we estimate the

pair-wise association ai, j between the ith and

jth nodes, i �= j = 1, 2, 3, . . . , N and compile

these statistics for all possible pairs in a {N ×

N} interregional association matrix, A (see

Figure 2A,B). Many measures of association

could be used for this purpose, and they can be

categorized by various criteria. Following Fris-

ton (1994), we can distinguish measures of func-

tional connectivity, such as correlation coeffi-

cients, from measures of effective connectivity,

such as path coefficients. A functional connec-

tivity statistic measures the extent to which two

processes behave similarly over time; an effec-

tive connectivity statistic measures the extent to

which one process can be predicted or explained

by the other. Thus, the association matrix gen-

erated by estimating the functional connectivity

between each pair of nodes will be symmetric,

whereas the association matrix generated by an

effective connectivity analysis need not be. To

date, almost all graphical analyses of fMRI data

have been based on a symmetric association ma-

trix generated by some measure of functional

connectivity between nodes; however, there is

no reason in principle why methods of effective

connectivity analysis, such as path analysis or

dynamic causal modeling, could not be used as

the statistical basis for a functional brain graph.

Moreover, this distinction between func-

tional and effective connectivity, although

influential, does not exhaust the ways in which

various association measures can be distin-

guished (David et al. 2004). Some measures of

functional connectivity, such as the correlation

coefficient, will only capture linear interactions

between time series, whereas other measures,

such as the mutual information (Bassett et al.

2009), phase synchronization (Kitzbichler

et al. 2009, Palva et al. 2010a), or synchroniza-

tion likelihood (Stam 2004), are sensitive to

both linear and nonlinear interactions. Some

measures are sensitive to association between

nodal time series subtended by a specific fre-

quency interval, such as the wavelet correlation

(Bullmore et al. 2004) or coherence in the

frequency domain (Salvador et al. 2005b).

Some measures, such as the partial correlation

(Salvador et al. 2005a) or partial coherence

(Salvador et al. 2005b), are particularly sen-

sitive to the specific association between each

pair of nodes and will discount third-party

effects, such as shared inputs from a third node

or global mode of covariation.

We cannot offer definitive guidance about

which of these or other possible association

statistics is “best” for the purposes of graph

analysis [though see David et al. (2004) and

Smith et al. (2010) for evaluation of multiple

possible connectivity metrics in the context

of simulated data]. But we can offer some

general suggestions about how to deal with

this moment of choice. First, it is wise to bear

in mind the nature and limitations of the data,

and the hypothetical question of interest. In

our illustrative example, we have a resting state

fMRI data matrix where the number of time

points (2,048) is about one order of magnitude

greater than the number of nodes (90). Under

these circumstances, it is probably advisable to

start with a simple measure of stationary associ-

ation, especially if focusing on a low-frequency

interval, e.g., ≤0.1 Hz, to mitigate nonneuronal

contributions to covariation between nodes. If

the time series were longer, it might be more

attractive to look at dynamic or nonstationary

aspects of association; if the number of nodes

was smaller relative to the number of time

points, more sophisticated measures of associ-

ation such as dynamic causal modeling might

be computationally tractable; if the data had

been acquired during performance of multiple

discrete cognitive trials, rather than at rest, it

might be interesting to measure the correlation

of event-related response amplitude between

nodes (Yoon et al. 2008).

Whichever measure of association is cho-

sen, our second piece of general advice would

be to look at the association matrix carefully

before proceeding to graphical analysis (Figure

3A,B). Several simple exploratory analyses may
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be informative and will build a preliminary

understanding of the data before they are more

abstractly represented by a graphical model.

For example, it may be useful to calculate the

grand mean of the association matrix and, for

each node, its mean association with the rest

of the matrix: we refer to these as measures of

the strength of association. The mean strength

of association for the ith node is simply

āi,. = 1
N

∑
j ai, j . It may also be useful to con-

sider the between-node variation in strength

of association and the within-node variation of

association to all other nodes in the system: We

can refer to these as measures of the diversity

of association. It can also be informative to use

principal component (PC) analysis to identify

major modes of covariation between multiple

nodes; for example, the ratio of the first

eigenvalue, λ1, to the sum of other eigenvalues

can provide a measure of the global integration

of the system I =
λ1∑N
2 λ j

(Lynall et al. 2010,

Tononi et al. 1994). Many other exploratory

multivariate techniques could be used at this

stage.

The basic idea is to get acquainted with the

association matrix in relatively simple terms

before it is transformed to an adjacency matrix

and described topologically. Such an incre-

mental approach will generally prevent us from

thinking about the results of graphical analysis

as the output of a “black box” procedure and

will likely be predictive of some of the key topo-

logical results. For example, the most highly

connected nodes or hubs of a brain graph

will typically be those nodes with the highest

mean strength of connectivity (Figure 4).

The value of preliminary exploratory analysis

is particularly clear when we are dealing

with several individual association matrices

representing brain systems in subjects drawn

from different patient groups or studied under

different experimental conditions (see below).

Structural association. Conceptually iden-

tical approaches can be taken to the graphical

analysis of structural networks derived from

measures of anatomical connectivity between

nodal regions. Anatomical connectivity can be

defined in different ways, based on different

kinds of MRI data. For diffusion tensor or

spectrum imaging, it is possible to assign a

probability of axonal connection between any

pair of gray matter regions on the basis of

tractographic analysis of an individual dataset.

For conventional (e.g., T1-weighted) MRI

data, anatomical connectivity has been inferred

by thresholding a matrix of interregional

covariation in cortical thickness or volume of

multiple regions (Bassett et al. 2008, He et al.

2007) (see Figure 2C). Strong between-subject

covariation in local gray matter measurements

has been interpreted as indicative of axonal

connectivity between covarying regions, on

the grounds that connectivity has mutually

trophic effects on the growth of connected

neurons or regions, leading to correlations in

the size of the regions when they are measured

after a period of development (Mechelli et al.

2005, Wright et al. 1999). This is not the only

possible interpretation—as noted, the cellular

substrates for many neuroimaging phenomena

are unresolved—but there is some empirical

evidence that regions with high gray matter

covariation measured in conventional MRI also

have a high probability of being connected by

axonal projections inferred from tractographic

analysis of DTI or DSI data (Lerch et al. 2006).

Both MRI and DT/SI-based anatomical

networks have their limitations. The main

drawback of MRI-based anatomical connectiv-

ity analysis, besides the question of its cellular

substrate, is that it depends on covariation over

individual subjects. Precise estimation there-

fore demands MRI data, ideally on hundreds

of subjects, to yield a single association matrix,

and thus a single network, for the whole group.

This precludes analysis of how individual

differences in anatomical network organization

might be associated with other individual

differences, such as variability in performance

of a cognitive task. In contrast, the main advan-

tage of DT/SI-based anatomical connectivity

analysis, in addition to its more clearly defined

cellular substrate, is that an association matrix

can be estimated for each subject, where ai, j
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denotes the connection probability between

regions i and j estimated by some tractography

algorithm (Hagmann et al. 2008, Iturria-

Medina et al. 2007). This allows investigators

to explore associations between measures on

individual anatomical networks and other indi-

vidually variable measures, such as functional

networks derived from fMRI, or cognitive vari-

ables such as IQ scores or executive function,

or clinical variables such as white matter lesion

load in patients with multiple sclerosis.

The main current disadvantage of DT/SI-

based networks is that tractography on

available data seems generally to underestimate

the probability of connections between regions

that are a long distance apart in the brain.

This is because long-distance projections are

more likely to intersect with other, differently

orientated projections, and it is more difficult

to trace the course of a single tract in the con-

text of crossing fibers. More recent acquisition

sequences, such as the HARDI sequence for

DSI, have been shown to generate networks

with a higher probability of long-distance con-

nections than older, classical DTI sequences

(Zalesky et al. 2010b). Foreseeable improve-

ments in diffusion data acquisition and analysis

tools can be expected to produce high-quality

anatomical networks in single subjects.

Thresholding and connection density.

Having thus estimated an association matrix

from the data, the next crucial question is, what

kind of graph do we wish to construct from the

association matrix? We will continue to illus-

trate possible solutions in relation to a func-

tional association matrix based on our illustra-

tive fMRI dataset, but many of the issues apply

directly to graphical analysis of other associa-

tion matrices. As already noted, most investiga-

tors using fMRI for this purpose to date have

estimated a measure of functional connectivity

between nodes, such as the correlation coeffi-

cient, and then thresholded the resulting asso-

ciation matrix A to create a binary adjacency

matrixA (Figure 5). We can describe this more

formally by saying that a threshold τ is applied

to each element ai, j of the association matrix,

and if ai, j ≥ τ , the corresponding element of

the adjacency matrix αi, j is set to unity; other-

wise, if ai, j < τ , αi, j = 0. If there is a nonzero

element in the adjacency matrix, this is equiva-

lent to saying there is an unweighted and undi-

rected edge between the corresponding nodes

of the network. In other words, the threshold-

ing operation on the association matrix will de-

fine the edges in the adjacency matrix and will

therefore have a strong influence on the topol-

ogy of the network. So a key subsidiary question

that arises is, what should be the value of the

threshold τ?

Let’s consider the limiting cases first, ini-

tially assuming for the sake of simplicity that

the association between each pair of nodal time

series has been described in terms of the ab-

solute correlation coefficient 0 ≤ |ai, j | ≤ 1. If

τ = 0, then all elements of the association ma-

trix will pass the threshold, all elements of the

adjacency matrix will be nonzero, all possible

edges in the graph will exist, and the connec-

tion density of the graph κ will be maximized.

We can generally define the connection density

or topological cost of the graph as

0 ≤ κ ≤ 1 =
Eτ

N (N −1)
2

, (1)

where Eτ is the number of edges generated by

thresholding at some value of τ , and N (N −1)
2

is

the maximum number of edges that could exist

in a network of N nodes. Clearly, when τ = 0,

κ = 1. It should also be clear that if τ = 1

in this case, then no elements of the associa-

tion matrix will pass the threshold, all elements

of the adjacency matrix will have the value of

zero, there will be no edges in the graph, and

its connection density will be zero. The im-

portant generalization is that if the threshold

is set below the minimum value of the asso-

ciation matrix, the adjacency matrix will have

maximum connection density, whereas if the

threshold is set above the maximum value of

the association matrix, the adjacency matrix will

have minimum connection density, and as the

threshold is gradually increased from minimum
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to maximum values, this will result in monoton-

ically, but not necessarily linearly, decreasing

connection density of the graph (Figure 5).

Thus, we can describe any threshold on any

association measure in terms of the connec-

tion density or topological cost of the result-

ing graph, and this will always fall in the range

0 ≤ κ ≤ 1 (Stam et al. 2007a). We will see

that this translation from threshold value τ to

connection density κ is useful, but it does not

yet answer the question of which threshold(s)

to apply.

There are two broad approaches to thresh-

olding: We can search for a single, in some sense

optimal, threshold to apply to each association

to decide if it should be an edge and describe

the topological properties of the resulting net-

work only at that threshold (Achard et al. 2006,

He et al. 2007), or we can threshold the as-

sociation matrix at many different values and

describe the resulting network properties as a

function of changing threshold or connection

density (Achard & Bullmore 2007, Bassett et al.

2008).

One way to define a single threshold is

by controlling the probability of type I (false

positive) error on multiple hypothesis testing

of each element in the association matrix.

For example, in our illustrative example,

we have 4,050 unique elements of the as-

sociation matrix. We could set τ such that

Prob(ai, j > τ ) ≤ 0.05, which will result in

about 200 bidirectional nonzero elements in

the adjacency matrix under the null hypothesis.

More conservatively, we could set τ so as to

control the expected number of false positives,

or the false discovery rate (Genovese et al.

2002, He et al. 2007). These are both examples

of mass bivariate hypothesis testing, where a

statistical hypothesis is tested independently

for each of a large number of bivariate measures

of association between nodes. An alternative

approach may be to apply a preliminary statis-

tical threshold to each edge and then test the

null hypothesis at the level of suprathreshold

clusters of interconnected edges (Zalesky et al.

2010a). This is akin to the use of cluster-level

Clustering:
a measure of the
cliquishness of
connections between
nodes in a topological
neighborhood of the
graph; the nearest
neighbors of a highly
clustered node will
also be the nearest
neighbors of each
other. Related to local
efficiency and fault-
tolerance of the
network

statistics in classical fMRI activation mapping

(Bullmore et al. 1999), although in this case

clusters of edges are defined topologically

rather than clusters of voxels being defined by

spatial proximity, as in the classical case.

Our preference has been to explore network

properties as a function of changing threshold.

As the threshold is gradually relaxed, more

edges are added to the network, so it becomes

increasingly dense or less sparsely connected

(see Figure 4). The complex or nonrandom

topology of brain graphs is typically clearest

in relatively low-cost networks, i.e., those with

connection densities less than about 0.5. In this

first half of the possible cost range, increasing

connection density is associated with a dispro-

portionate increase in global and local efficiency

of network topology, and the small-world prop-

erties of the system are most clearly demon-

strated by comparison to random networks

(Figure 6). The greater-than-linear increase in

efficiency as a function of cost means that the

cost-efficiency difference is typically positive

and has a maximum value at connection density

about 0.3 (Achard & Bullmore 2007, Bassett

et al. 2009) (see Figure 6). At lower thresholds,

associated with connection densities greater

than 0.5, the law of diminishing returns seems

to apply. Addition of extra edges, or increasing

connection cost, is associated with relatively

modest increments of network efficiency; small-

world properties are less clearly delineated;

and the networks become indistinguishable

from random graphs at highest connection

costs.

This behavior allows us to define a small-

world cost regime as the range of connection

densities over which the network exhibits the

small-world characteristic: a clustering coeffi-

cient greater than the clustering coefficient of

a random network and a path length about the

same as the path length of a random network

(Humphries et al. 2006, Watts & Strogatz

1998); for mathematical definitions, see the fol-

lowing section on Measures on Graphs: Topo-

logical Measures. This definition of small-

worldness clearly requires that the experimental
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network be compared to random networks

and regular lattices (Bassett et al. 2010, Kaiser

& Hilgetag 2006, Watts & Strogatz 1998).

Each of these benchmark graphs has a different

degree distribution; that is, a node in each of

these networks will have a different probability

of being a highly connected hub. This degree

distributional variation could predispose the

network to have higher or lower values of

a given graph metric, such as the clustering

coefficient. It is therefore often useful to assess

whether the topological structure present in a

brain network under study is due to the degree

distribution alone or to additional architectural

constraints. Thus, it is common practice to

compare brain network properties to both (a) a

pure random network and (b) a random network

that has been constructed to retain the identical

degree distribution of the brain network under

study (Maslov & Sneppen 2002).

When random graphs are constructed over

a range of connection densities, it is found that

the network becomes fragmented, into a gi-

ant connected cluster and a number of smaller

islands, at a characteristic critical connection

density. Thus, for a random graph to be en-

tirely connected, the mean degree of the N

nodes needs to be at least 2× log(N ), or equiv-

alently, the connection density κ needs to be

at least (2 log(N ))N
N (N −1)/2

. We can say that there is

a percolation threshold, defined as the low-

est connection density at which the graph

becomes entirely connected and information

can percolate freely throughout the whole

system.

When brain graphs are constructed by

global thresholding over a range of connec-

tion densities, they also tend to become frag-

mented at lower connection densities (see, e.g.,

Figure 4). The percolation threshold is variable

between individuals and data types but is typi-

cally in the range 0.1 < κ < 0.5. The fragmen-

tation or percolation properties of networks can

be topologically informative in their own right

and are also closely related to measures of a net-

work’s robustness to random error or targeted

attack (Achard et al. 2006, Honey & Sporns

2008, Lynall et al. 2010). But this behavior also

alerts us to the fact that sparsely connected net-

works, which tend to be more complex or less

random topologically, will often comprise dif-

ferent numbers of fully connected nodes, and

this will need to be controlled when it comes

to comparing any topological metric between

networks. One simple way of controlling the

number of connected nodes is to measure graph

metrics only over the range of costs for which

all individual graphs are entirely connected

(Bassett et al. 2008, Lynall et al. 2010). How-

ever, if some of the individual networks have

high percolation thresholds, this may force

comparison of metrics over a less sparsely con-

nected cost range, where differences from ran-

domness will tend to be less salient.

An alternative to global thresholding for

graph construction may help to circumvent

some of these issues. For example, a graph can

be constructed from the minimum spanning

tree (MST) (Hagmann et al. 2008). The MST

fully connects N nodes with N − 1 edges,

with low connection density in the order of

N/N2. This means that the MSTs of any two

connectivity matrices will be guaranteed to be

entirely connected at sparse connection densi-

ties and therefore could support comparison of

topological metrics controlled for number of

edges and number of connected nodes over a

more interesting cost range than global thresh-

olding. However, MSTs are by definition

acyclic and will not demonstrate biologically

plausible clustering of connections between

topologically local nodes. Once the MST has

been defined as the “skeleton” of the brain

network, it must therefore be grown somehow,

e.g., by addition of extra edges that pass a global

threshold value, such that graph metrics can be

estimated over a full cost range of connection

densities, without any change in the number

of connected network nodes (Alexander-Bloch

et al. 2010). Minimum spanning trees and

related methods of graph construction may

prove to be advantageous as a technical basis

for comparing networks, matched for number

of nodes and edges, between different groups

or experimental conditions. However, there

are likely to be significant future developments
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concerning the optimal methods for filtering an

association matrix to construct a brain graph.

MEASURES ON GRAPHS

Brain graphs are models of physically embed-

ded information-processing networks. Each

node has an anatomical address in physical

space and a network role in topological space.

The brain as a whole is a high-performance

network—with many global topological prop-

erties in common with high-performance

computer chips, economic markets, and other

complex systems—physically embedded as a

sulco-gyrally convoluted sheet of processing

elements interconnected by a core of white

matter cabling.

There are therefore two main classes of

measure on brain graphs: topological and ge-

ometric. Topological metrics capture the rela-

tions between nodes regardless of their physical

location—an edge can count identically as an

edge whether it connects two locally neighbor-

ing nodes or a pair of nodes located far apart

from each other; a hub node with many edges,

or high degree, will count as a hub wherever

it is located. Physical metrics capture the re-

lations between nodes in Euclidean space and

will have continuous values in SI units. There

is obvious potential interest in understanding

the interaction between brain network topol-

ogy and geometry. There are many methods

by which topological and geometric measures

could be combined; for example, we can weight

topological edges by physical distance between

nodes for weighted network analysis. We con-

sider that this topo-physical mapping of brain

networks is likely to become of considerable in-

terest in the future, although it has not yet been

much developed.

Topological Measures

Because network analysis is based on the math-

ematical field of graph theory, there is a wealth

of previously defined metrics that can be used to

characterize the topological architecture of the

brain’s anatomical or functional connectivity.

These are parameters of global network organi-

zation, and many of them can also be estimated

at the single-node or edge level of the graph

(see Rubinov & Sporns 2010 for review).

Degree and degree distribution. Perhaps

the simplest topological measure is the degree

of a node, k, which is defined as the number

of edges emanating from that node. Degree,

sometimes called degree centrality, has been

used to discriminate between nodes in the

system that are well connected, i.e., so-called

hubs, and nodes that are less well connected, or

nonhubs (see Figure 1). Due to their relatively

increased connectivity, high-degree nodes are

likely to play an important role in the system’s

dynamics. The probability distribution for

nodal degree is the degree distribution of

the network. Brain graphs generally have

heterogeneous or broad-scale degree distribu-

tions, meaning that the probability of a highly

connected hub is higher than in a comparable

random network (see Figure 6C). Most studies

have found that an exponentially truncated

power law is the best form of degree distri-

bution to fit to networks based on functional

and structural MRI data. Some studies have

reported that the degree distribution of fMRI

networks follows a power law, which implies

that the probability of a highly connected hub

is higher than it would be if the degree distri-

bution were exponentially truncated. Different

degree distributions imply differences in net-

work growth rules. For example, a power law

degree distribution is compatible with growth

by a simple preferential attachment rule,

whereby each new node is more likely to form

connections with existing hubs, and there is no

limit to the number of connections a hub can

sustain; whereas an exponentially truncated dis-

tribution implies that there may also be physical

constraints on the number of connections that

any single node can sustain. It will be interesting

to explore computational models of network

growth more extensively in relation to emerg-

ing empirical data on brain network degree

distributions and other topological properties.
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Although degree provides a simple measure

of a node’s hubness, it is not the only measure

of a node’s significance for the flow of informa-

tion through the network. The complementary

metric of betweenness centrality describes how

many shortest paths between any two nodes

in the system must pass through the node in

question (Freeman 1977). A brain regional node

with high centrality is therefore potentially an

information bottleneck because it will be in-

volved in many of the shortest paths between

other regions of the whole brain network. Al-

though betweenness centrality is the oldest and

perhaps most used centrality measure, closeness

centrality, eigenvector centrality, and edge cen-

trality all provide similar but not identical infor-

mation regarding nodal importance (Lohmann

et al. 2010, Sporns et al. 2007). Centrality mea-

sures can also be estimated for each edge, as well

as for each node, in the network.

Small-worldness and efficiency. The two

metrics originally used to characterize the C. el-

egans neuronal system were the clustering coef-

ficient, which is a measurement of the efficiency

of local connectivity, and path length, which

is a simplified measurement of the global effi-

ciency of information transfer on the network

(Watts & Strogatz 1998) (see Figure 3C). As

described in a previous section, these two met-

rics enable us to define the small-world prop-

erty, in which the network exhibits a clustering

coefficient, C, greater than the clustering coef-

ficient of a random network, Cr ; a path length,

L, about the same as the path length of a ran-

dom network, Lr ; and therefore a small-world

scalar σ > 1 (Humphries et al. 2006, Watts &

Strogatz 1998), where

σ =

C
Cr

L
Lr

. (2)

It is important to note here that reporting a

small-world scalar σ > 1 is not enough to

prove small-worldness; both γ = C/Cr > 1

and λ = L/Lr ∼ 1 are also required. The

reason that the relation σ > 1 is not enough

to prove small-worldness is that it is possible

to have regular network structures with large

clustering coefficients (for example, giving γ =

3) but also long path lengths (for example giving

λ = 2), which together provide a σ value greater

than 1. In other words, regular-lattice-like net-

works may have small-world scalars σ > 1, and

so to prove small-worldness, both the γ and λ

values need to be reported.

The small-world scalar is dependent on

the calculation of a path length, which can be

troublesome for networks that contain one or

more disconnected nodes. The path length of a

disconnected node is infinity (it cannot transfer

information to any other node on the network),

and so the average path length of a network

that contains a disconnected node (such as

many fMRI networks at sparse threshold;

Achard et al. 2006) will also be equal to infinity.

In a complementary formalism, Latora &

Marchiori (2001) introduced the global ef-

ficiency as an alternative metric of global

integration that is inversely proportional to

the characteristic path length of the network,

thus allowing computation of a finite value for

graphs with disconnected nodes (Achard &

Bullmore 2007). In addition to the global effi-

ciency, Latora & Marchiori (2001) also defined

the local efficiency of each node, which is similar

but not equivalent to its clustering coefficient or

fault tolerance (see Figure 3D). Subsequently,

Achard & Bullmore (2007) defined the nodal

efficiency as inversely proportional to the path

length of connections between a single node

and every other node in the network. It can be

seen that there are many metrics that include

the word efficiency in their name, and care is

required to avoid terminological confusion.

As connection density increases, there will

be an increase in global efficiency for any

graph: More edges make it easier to get from

one node to another, but each extra edge adds a

marginal cost to the overall topological cost of

the network. In brain graphs, efficiency tends

to increase faster than linearly as connection

density is increased from zero to about 20%,

but at progressively higher costs, the extra

advantage in efficiency is less than the incre-

mental cost. This means that the difference

between global efficiency and topological cost,
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so-called cost-efficiency (Achard & Bullmore

2007, Bassett et al. 2009, Deuker et al. 2009), is

generally positive and has a maximum value at a

critical connection density, which is somewhat

variable between subjects but typically about

κ ∼ 0.3. The topological cost-efficiency of

brain networks is consistent with their classi-

fication as economical small-world networks

(Latora & Marchiori 2001, 2003).

Modularity. A brain graph can generally

be subdivided or partitioned into subsets or

modules of nodes (Chen et al. 2008, Meunier

et al. 2008). Finding the mathematically

optimal modular decomposition for a brain

network is not trivial, and several alternative

algorithms have been proposed. In general, the

aim is to find the partition that maximizes the

ratio of intramodular to intermodular edges.

Thus the nodes in any module will be more

densely connected to each other than to nodes

in other modules (Blondel et al. 2008, Leicht

& Newman 2008, Newman 2006). The in-

tramodular degree is a measure of the number

of connections a node makes with other nodes

in the same module. The participation coeffi-

cient is a measure of the ratio of intramodular

connectivity to intermodular connectivity for

each node (Guimera et al. 2007). These and

related metrics can be used to define nodes as

“connectors” (with high intermodular connec-

tions) or “provincials” (with low intermodular

connections). We can see that resolving the

modular or community structure of a brain

graph is likely to add important information

about which anatomical regions or tracts have

the most critical topological roles in trans-

mission of information across brain networks.

We also know from recent work that brain

networks are not only modular at a global scale,

they also demonstrate a hierarchical modularity

(Meunier et al. 2009) or nested arrangement of

modules within modules, which may be advan-

tageous in terms of stability, evolvability, and

efficiency of physical embedding of complex

networks in general (Bassett et al. 2010, Simon

1962).

Other topological metrics. There is no

shortage of topological metrics that could be

applied to brain graphs. Here we have summa-

rized only a few of the parameters that have

been most extensively investigated in the neu-

roimaging literature to date. The literature on

statistical physics of complex networks is the

primary source for many other metrics, tools,

and concepts for brain graph analysis (Albert

& Barabási 2002, Strogatz 2001). There is also

a rapidly growing literature on specialist ap-

plications to human neuroimaging and other

neurophysiological data (for recent reviews,

see Bassett & Bullmore 2006, 2009; Bullmore

et al. 2009; Bullmore & Sporns 2009; Hagmann

et al. 2010; and Wang et al. 2009). In gen-

eral, it is worth remembering that many topo-

logical metrics will be strongly correlated with

each other and with more elementary statistical

properties of the data. Different metrics often

provide convergent angles on the same aspects

of network organization: For example, a more

hub-dominated degree distribution was asso-

ciated with greater clustering of connections

in fMRI data (Lynall et al. 2010). It is corre-

spondingly unlikely that any single metric will

turn out to be uniquely important in capturing

the complexity of human brain networks (Costa

et al. 2007).

Geometric Measures

The main geometric measure on a graph is

the distance between connected nodes. This

is sometimes described for convenience as

the wiring length of a connection. In human

brain networks based on DTI or fMRI data,

most connections have short wiring length, but

the probability distribution is heavy-tailed and

there is a significant minority of long-distance

edges (see Figure 6D). Further analysis has

shown that the human brain is economically but

not minimally wired, meaning the total wiring

cost of the network (the sum of all physical dis-

tances between connected nodes) is less than

it would be if the same nodes were wired up

at random but more than if the nodes were

rewired to minimize wiring cost (Chen et al.
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2006, Kaiser & Hilgetag 2006). This observa-

tion implies that conservation of wiring cost has

been positively if not uniquely selected in evo-

lution of large-scale brain networks, and it is

compatible with much prior data and analysis

indicating that many aspects of brain anatomi-

cal organization can be approximated by wiring

minimization principles (Attwell & Laughlin

2001, Chen et al. 2006, Kaiser & Hilgetag 2006,

Niven & Laughlin 2008).

The distance is usually estimated as the

Euclidean distance between regional centroid

coordinates in stereotactic space. It might be

possible to substitute curvilinear estimates

of distance from tractographic modeling of

DTI/DSI data in the future. The distance

between regions can be used, for example, to

weight the edges of the network under study.

In this case, we could perform what is called a

weighted network analysis, in which the weights

of the edges are used in the computation of all

graph metrics calculated on the network.

Although for the most part topological and

geometric measures have remained separate

in network analysis, the interactions between

topology and space specifically for spatially em-

bedded systems such as the brain will likely

prove interesting in future. One interesting av-

enue will be to assess the spatial distribution

of graph metrics throughout the physical space

of the system. This has been done in the con-

text of other more generally spatially embed-

ded systems: The spatial distributions of cen-

trality measures have been used, for example, to

study urban street architectures (Crucitti et al.

2006). In addition to studying the spatial dis-

tributions of graph metrics, we may be able to

apply metrics that inherently blend topologi-

cal and geometric properties, such as the Rent’s

exponent. Based on work in the computer sci-

ence literature and recently applied to human

brains, the topo-physical metric known as Ren-

tian scaling has been used to quantify the cost-

efficiency of physical connectivity in terms of

both wiring and connection complexity (Bassett

et al. 2010). It is likely that additional metrics

and analysis methods will provide added insight

into the complex interaction between network

topology and physical placement in the human

brain, both functionally and structurally.

COMPARING AND VISUALIZING
BRAIN GRAPHS

Comparing Graphs

Brain graph analysis inevitably means making

comparisons between networks. For instance,

we often want to know if some aspect of brain

network organization is nonrandom. This will

mean comparing the brain network derived

from neuroimaging data to a random network

generated by computer simulation of an Erdös-

Renyı́ random graph (Erdös & Rényi 1959).

For a given number of nodes, we can generate

a large number of random graphs with some-

what variable topology and use the distribution

of topological metrics in the random graphs as a

point of reference to judge the nonrandomness

of the same metrics measured in the neuroimag-

ing data. We may also want to compare brain

graphs to minimally wired versions of the same

network, or to compare brain graphs between

groups of subjects, such as a patients and healthy

volunteers. In all these examples of compar-

ing brain graphs, it is important to observe two

golden rules (Bollobás 1985): The graphs to be

compared must have (a) the same number of

nodes and (b) the same number of edges.

This is because the quantitative values of

topological metrics will depend on both the size

and connection density of the graphs, and in or-

der to identify topological differences between

graphs that specifically point to the difference

between groups, it is important to control these

general effects before making any quantitative

comparisons. To test statistical hypotheses

about differences between groups of networks,

we would also recommend the adoption of non-

parametric techniques, e.g., permutation tests

for the difference in topological metrics be-

tween two groups of brain graphs. The distribu-

tional properties of topological metrics are not

well known, and the sample sizes in most neu-

roimaging experiments are not large, present-

ing challenges for asymptotic theory. More pos-

itively, a computationally intensive approach
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to inference by Monte Carlo simulations or

data resampling offers substantial advantages

in terms of flexibility, precision, and validity of

testing that are only discounted somewhat by

the costs entailed in greater processing time.

In addition to comparing topological

structures of entire graphs, we could focus

on subnetworks of graphs that are different

between groups. Recent progress in appli-

cations of machine learning can be used to

uncover unique subgraphs that discriminate

between two weighted (sparse or complete)

graphs (Richiardi et al. 2010), and permutation

testing on topological clusters of connections

has proven to be statistically powerful in

identification of abnormal subnetworks in

fMRI data on people with schizophrenia

(Zalesky et al. 2010a). Techniques like these

may provide a new avenue for the application

of complex network analysis to smaller subsets

of whole-brain connectivity profiles.

Visualizing Graphs

Brain graphs can be visualized in real space, as

seen in Figure 6B, to show their actual physical

structure. In a complementary visualization,

brain graphs can be plotted in topological

space. For example, nodes can be visualized

as close to each other if they are part of the

same topologically defined cluster or module

and far apart from each other if they are sep-

arated by a long path length (see Figure 6A).

Also, topological properties taken from these

brain graphs can be visualized in anatomical

space—so-called topophysical mapping. For

example, we can produce cortical surface maps

of the degree of cortical nodes, highlighting

the anatomical distribution of network hubs

(see Figure 4). See Table 1 for available

software that can be used to visualize brain

graphs.

BEYOND THE SIMPLEST GRAPHS

Directional Connections
and Causal Relationships

Network edges may be directed (drawn as ar-

rows) or undirected (drawn as lines). A directed

edge makes a claim about the causal relations

between nodes, whereas an undirected edge is

Table 1 Available tools for network analysis of brains

Human brain atlases Software Site

AAL WFU PickAtlas http://www.fmri.wfubmc.edu/cms/

Brodmann MRICRO http://www.cabiatl.com/mricro/

Freesurfer Freesurfer http://surfer.nmr.mgh.harvard.edu/

Harvard-Oxford FSL http://www.fmrib.ox.ac.uk/fsl/

LPBA40 LONI http://www.loni.ucla.edu/Atlases/

Reference networks Laboratory Site

C. elegans (N = 131,277) Kaiser http://www.biological-networks.org

Macaque (N = 95) Kaiser http://www.biological-networks.org

Macaque (N = 71,47) Sporns http://www.indiana.edu/cortex/

Macaque Visual (N = 30,32) Sporns http://www.indiana.edu/cortex/

Cat (N = 95,52) Sporns http://www.indiana.edu/cortex/

Network Toolboxes Language Site

Matlab BGL Matlab

Brain Connectivity Toolbox Matlab http://www.indiana.edu/cortex/

Brainwaver R

Network visualization Description Site

gplot Matlab http://www.mathworks.com/matlabcentral/fileexchange

Pajek Closed source http://pajek.imfm.si/doku.php

Caret Van Essen http://brainvis.wustl.edu/wiki/index.php
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agnostic about causality—it is simply a claim

about association. The directionality or causal-

ity of neuronal interactions is not always eas-

ily estimated from data. In the neural system

of C. elegans, many synaptic connections be-

tween cells are electrical (not chemical), and

this has usually been modeled as a single undi-

rected edge between neuronal nodes (Kaiser &

Hilgetag 2006, Watts & Strogatz 1998). Sim-

ilarly, most interregional axonal connections

in mammalian cortex are reciprocal, and most

graphical models of macaque and cat cortex

have had undirected edges (Kaiser & Hilgetag

2006, Sporns et al. 2004). In human neuroimag-

ing data, it is currently more difficult to assign

directionality to associations between regions,

whether measured by structural MRI, DTI,

DSI, or fMRI. Most graphs constructed from

fMRI data have therefore measured symmet-

ric measures of association or functional con-

nectivity, like simple correlation, partial corre-

lation, mutual information, or synchronization

likelihood, and constructed undirected graphs

on this basis. However, it is possible to model

directional edges (Chen & Herskovits 2007)

by using, for example, partial directed coher-

ence (Baccalá & Sameshima 2001), dynamic

causal modeling (Friston et al. 2003), structural

equation modeling (Büchel & Friston 1997), or

Granger causality (Bernasconi & König 1999)

as measures of asymmetric association or ef-

fective connectivity. To date, however, it is

unclear whether it is possible to scale these

methods to systems with more than a handful

of nodes; for the possibility of such a large-

scale analysis using structural equation mod-

eling, see Kenny et al. (2009). Computational

models have shown that more complex and bi-

ologically plausible dynamics can be generated

from directed graphs of brain anatomy based on

tract tracing data on primates than can be gen-

erated from undirected graphs based on diffu-

sion spectrum imaging data on humans (Knock

et al. 2009). It seems likely that further devel-

opment of data and methods for analysis of di-

rected brain graphs will be a priority for future

technical innovation.

Weighted Network Analysis

Although the majority of network studies of

neuroimaging data have been performed on bi-

nary or unweighted networks, in which each

edge has a weight of one and each nonedge has

a weight of zero, there has been a growing in-

terest in the use of weighted networks, in which

edges may have continuously variable weights

(see Rubinov & Sporns 2010 for a recent

review and http://sites.google.com/a/brain-

connectivity-toolbox.net/bct for the Brain

Connectivity Toolbox software library, which

provides code for many of the metrics). One

simple approach to weighted network analysis

is to start with a binary network constructed

at some cost and then assign a weight wi, j to

each edge. The weights could be the physi-

cal distance between nodes or the strength of

functional connectivity between nodes. Most

of the topological metrics available for analysis

of binary networks have been generalized for

weighted network analysis, so weighting a bi-

nary adjacency matrix does not restrict the op-

tions for topological analysis, and it does retain

more physical information in the graph model.

The weighting of brain networks by physi-

cal connection distance or wiring cost seems

likely to be of interest given the prior evidence

that wiring costs are highly economized, if not

strictly minimized, in animal nervous systems at

many spatial scales. It is likely that future studies

will increasingly use DT/SI-based measures of

anatomical connection distance between nodes

as the weights on anatomical and functional

networks.

A more radical approach, sometimes also

called weighted network analysis, is to estimate

metrics that are analogous to topological met-

rics on a thresholded graph without applying

any threshold to the association matrix. For ex-

ample, unsupervised learning methods, such as

the spin-glass algorithm, can be used to decom-

pose an association matrix into clusters that cor-

respond closely to the modules identified by

a topological analysis of the adjacency matrix

generated by thresholding the association ma-

trix (Alexander-Bloch et al. 2010). It is likely

132 Bullmore · Bassett

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
1.

7:
11

3-
14

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
xo

Sm
ith

K
lin

e 
E

nt
er

pr
is

e 
on

 0
3/

31
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



that there will be further consideration of ap-

proaches to network analysis that do not de-

pend on a thresholding step, but of course one

of the benefits of global thresholding is that it

will remove a proportion of the noisy or ran-

dom edges from the graph. Metrics estimated

directly on the unthresholded association ma-

trix will generally have lower signal-to-noise ra-

tios than metrics estimated on sparsely thresh-

olded graphs.

CONCLUSIONS

Graph analysis is rapidly growing in popularity

as an approach to modeling the complexity of

the human brain connectome. The fundamen-

tal motivations for graph theory as a method

of brain network analysis are its relative sim-

plicity and high degrees of generalizability and

interpretability. However, like all other model-

ing endeavors, the results of brain graph anal-

ysis are underpinned by basic assumptions or

choices, many of which will represent a trade-

off between competitive criteria. We have tried

to elucidate some of the conceptual issues and

recent methodological advances that will be rel-

evant to an investigator wanting to use these

techniques to analyze neuroimaging or other

neuroscientific data. Our hope has been to stim-

ulate informed use and further methodological

development of graph theoretical networks as

models of the human brain connectome.

SUMMARY POINTS

1. Brain graphs are apparently simple but powerful models of the brain’s structural or

functional connectome; graphical analysis is applicable to many scales and types of neu-

roscience data and is interpretable in relation to general principles of complex system

organization.

2. Key questions to address in any graphical analysis are, what is a node and what is an

edge? In neuroimaging or neurophysiological data, a node will typically be a region of

the image, or a sensor or electrode of the recording array, and edges will be defined by

thresholding a measure of statistical association between nodes. Many methodological

issues attend the specification of both nodes and edges.

3. It is recommended to explore network properties over a range of connection densities or

topological costs. Sparsely thresholded networks (with cost less than 20%) demonstrate

nonrandom properties such as small-worldness and modularity more saliently and are

more likely to be fragmented or not entirely connected.

4. Once a brain graph has been constructed, many topological and geometrical properties

can be estimated—early work has focused on broad-scale degree distributions, econom-

ical small-worldness and cost-efficiency, and modularity. These and other nonrandom

properties of network organization have been found consistently across many different

types of neuroscientific data, suggesting that they represent highly conserved general

principles of connectome organization.

5. Network analysis is relativistic—brain graphs need to be compared to each other and

to benchmark networks. In making comparisons, it is generally advisable to ensure that

the connection density and number of entirely connected nodes is equivalent between

graphs.

6. Weighted network analysis allows incorporation of more physical data, such as the con-

nection distance between nodes, in the topological analysis of network properties.
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FUTURE ISSUES

1. Scale. Early brain graph studies have typically used a few images. With the fund-

ing of the National Institutes of Health Human Connectome Project (http://

www.humanconnectomeproject.org) and the related growth of interest in graphical

analysis, we can expect publication of brain graphs based on hundreds or thousands of

subjects, allowing more powerful studies of genetic and other causes of variation in brain

graph parameters.

2. Causality. It will be necessary to optimize techniques to capture directional interac-

tions between neuronal populations and to model large causal systems as directed brain

graphs. Most human brain graph studies to date have assumed undirected edges, which

is technically simpler but neglects this biologically important aspect of neural systems.

3. Cognition. Aspects of brain graph topology have been linked to cognitive and behavioral

performance, but the relationships between psychological and topological properties of

brain networks are likely to be investigated more extensively in the future (for example,

by greater consideration of task-related functional neuroimaging data).

4. Biomarkers. The potential utility of graphical metrics as diagnostic markers of neuropsy-

chiatric syndromes will be explored on the basis of larger clinical samples and in relation

to various dysconnectivity models of schizophrenia and other disorders likely to result

from developmentally perturbed formation of the brain connectome.

5. Network movies. Most graphical analyses have provided a static view of brain func-

tional network organization over several seconds or minutes of observation; however,

rapid functional network configuration—or nonstationarity—is theoretically important

for adaptivity of cognitive function and may be studied by construction of network movies

representing time-resolved change in network architecture.
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Figure 1

Organization of human brain networks in comparison to extremal architectures on topological dimensions of small-worldness (x-axis) and degree distribution ( y-axis).
Small-world networks, like the brain, exist between the extreme boundaries of a regular lattice network (lower left) and pure random network (lower right). Random and
regular networks, although differing in terms of order/disorder, both have homogeneous degree distributions; that is, all nodes are connected to roughly the same number
of other nodes. In contrast, a star network (upper left) is maximally heterogeneous, with a single high-degree hub and many low-degree peripheral nodes. The human
brain network, as measured by both structural and functional neuroimaging, lies in between these two extremes and displays a broad-scale degree distribution where
low-degree nodes, medium-degree nodes, and high-degree nodes coexist in unison and collectively form the network architecture. This heterogeneity is the necessary
substrate for nodes to perform a broad range of functional roles. Circles indicate regional nodes of the brain network; gray lines indicate connections between them.
Edges connecting nodes are unweighted or binary (they are either present or not present) and undirected (if an edge links node i to node j, it also links node j to node i ).
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Figure 2

From data to association matrix. (A) An anatomical template image (left) is used to parcellate the voxel-level fMRI data. Regional mean
time series (middle) are estimated for each of the N = 90 regions in the parcellation template. The pair-wise association ai, j is
estimated between the ith and jth nodes, i �= j = 1, 2, 3, . . . , N and compiled for all possible pairs to form a {N × N} interregional
association matrix, A (right). If we choose the measure of association to be the absolute Pearson’s correlation between two time series,
then this value ranges between 0 and 1. (B) For EEG or MEG data, neurophysiological time series are measured by an array of sensors
(left), each of which provides a nodal time series (middle) at frequencies generally higher than those measured by fMRI. Due to this
increase in temporal resolution, a wide variety of association metrics can be applied, including mutual information, synchronization,
and phase coherence (right), to construct an association matrix. (C) Several morphometric variables can be computed on a regional basis
(left) from individual structural MRI images, including gray matter volume, cortical thickness, surface area, and curvature (middle). The
correlation or partial correlation of these regional morphometric variables over subjects provides an association matrix (right), which
can be used as a measure of anatomical connectivity (Lerch et al. 2006).

www.annualreviews.org • Brain Graphs C-3

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
1.

7:
11

3-
14

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 G

la
xo

Sm
ith

K
lin

e 
E

nt
er

pr
is

e 
on

 0
3/

31
/1

1.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



node i node j
1 2

1

2

3 4

5

6path-length = 2

node jnode i

whole network

subgraph of node i subgraph of node j

high

clustering

low

clustering

High nodal

stength

Low nodal

strength

High edge

diversity

Low edge

diversity

CBA

Figure 3

Schematic definitions of basic connectivity and graph metrics. (A) Nodal strength is the sum of the associations between the index node and all other nodes in the system,
and edge diversity is defined as the standard deviation of the associations. The magnitude of association is given by the color of the lines, where red indicates a strong
association and blue indicates a weak association; the strength of a node is represented as proportional to its size. (B) Path length. The path length from node i (shown in
red) to node j (shown in blue) is defined as the fewest number of edges that must be traversed to get from node i to node j. In this case, the minimum path length is 2
(shown in green). There may be longer paths available (such as the path of length 6 shown in gray around the bottom loop of the network). The path length of a network
is inversely proportional to its efficiency of parallel information transfer. (C) Clustering coefficient is a measure of local connectivity and is highly correlated with the local
efficiency of information transfer (Latora & Marchiori 2001). We show a toy network (top) and determine the clustering of node i (shown in red) and node j (shown in
blue). The nearest neighbors of the highly clustered node i are connected to each other, to form triangle motifs, whereas the nearest neighbors of the less clustered node j
are not connected to each other.
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Figure 4

Convergent aspects of functional connectivity and functional network analysis. (A) Cortical surface maps showing the spatial distribution of nodal degree in a single fMRI
dataset. Warm colors indicate high degree, cool colors indicate low degree, and white indicates regions that are disconnected from the graph. (B) Cortical surface maps
showing the spatial distribution of nodal strength for the same fMRI dataset, where again warm colors indicate a high nodal strength and cool colors indicate a low nodal
strength. The comparison of A and B highlights the similarity between nodal degree and nodal strength present in many networks derived from functional neuroimaging
data.
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Figure 5

From association matrix to adjacency matrix. (A) The association matrix represents the absolute value of all pair-wise wavelet
correlations estimated for a single fMRI dataset (see Achard et al. 2006). The 90 nodal regions of the Automated Anatomical Labeling
(AAL) template are ordered into left and right hemispheres, and then into six anatomical clusters (medial temporal, subcortical,
occipital, frontal, temporal, parietal) as defined by Salvador et al. (2005a). (B) The three adjacency matrices shown were obtained by
thresholding the association matrix in A at costs of κ = 0.15 (left), κ = 0.30 (middle), and κ = 0.45 (right). White elements in the
adjacency matrices indicate the existence of an edge, and black elements indicate the absence of an edge. Note that the density of
connections or topological cost of the matrix increases with decreasing threshold. (C) Plot of the connection density or cost (x-axis) as a
function of the threshold applied to the association matrix ( y-axis) to construct the adjacency matrix; association matrices thresholded at
higher values will have fewer edges than those thresholded at lower values. Colored lines in the plot indicate the costs at which the
three adjacency matrices shown in B were calculated.
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Figure 6

Topological and geometrical properties of functional brain graphs. (A) For a single fMRI dataset, we calculated the adjacency matrix at
a cost of κ = 0.05, and the edges present in this adjacency matrix were plotted here in topological space so that the distance between
nodes is larger if those nodes are separated by a longer path length and smaller if they are separated by a shorter topological path
length. The size of nodes indicates nodal degree whereas the color of the node indicates its lobar identity. (B) Brain graph plotted in
physical space where the distance between nodes is the Euclidean distance between regional centroids in the anatomical space of the
real brain. The size of nodes indicates nodal degree whereas the color of the node indicates its lobar identity. (C) Plot of the degree
distribution (red ) and distribution fit (black) of the brain graph, showing the predominance of low-degree nodes and the presence of a
few high-degree hubs. (D) Plot of the distribution of physical distance of connections of the brain graph (red ) in comparison to the
distance distribution in a minimally rewired network ( black). (E) Plot of global efficiency versus cost for the brain network (red ) and a
distribution of 100 comparable random networks (black). (F) Plot of local efficiency versus cost for the brain network (red ) and
a distribution of 100 comparable random networks (black). (G) Plot of the cost-efficiency versus cost for the brain network (red ) and a
distribution of 100 comparable random networks (black). (H) Plot of small-worldness versus cost for the brain network (red ). The
small-worldness scalar σ = 1 in a random graph.
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