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ARTICLE INFO ABSTRACT

Keywords: The coronavirus disease 2019 (COVID-19) is caused by the infection of highly contagious severe acute respiratory
COVID-19 syndrome coronavirus 2 (SARS-CoV-2), also known as the novel coronavirus. In most countries, the containment
SARS-CoV-2

of this virus spread is not controlled, which is driving the pandemic towards a more difficult phase. In this study,
we investigated the impact of the Bacille Calmette Guerin (BCG) vaccination on the severity and mortality of
COVID-19 by performing transcriptomic analyses of SARS-CoV-2 infected and BCG vaccinated samples in pe-
ripheral blood mononuclear cells (PBMC). A set of common differentially expressed genes (DEGs) were identified
and seeded into their functional enrichment analyses via Gene Ontology (GO)-based functional terms and pre-
annotated molecular pathways databases, and their Protein-Protein Interaction (PPI) network analysis. We
further analysed the regulatory elements, possible comorbidities and putative drug candidates for COVID-19
patients who have not been BCG-vaccinated. Differential expression analyses of both BCG-vaccinated and
COVID-19 infected samples identified 62 shared DEGs indicating their discordant expression pattern in their
respected conditions compared to control. Next, PPI analysis of those DEGs revealed 10 hub genes, namely
ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33. Functional enrichment analyses
found significantly enriched pathways/GO terms including cytokine activities, lysosome, IL-17 signalling
pathway, TNF-signalling pathways. Moreover, a set of identified TFs, miRNAs and potential drug molecules were
further investigated to assess their biological involvements in COVID-19 and their therapeutic possibilities.
Findings showed significant genetic interactions between BCG vaccination and SARS-CoV-2 infection, suggesting
an interesting prospect of the BCG vaccine in relation to the COVID-19 pandemic. We hope it may potentially
trigger further research on this critical phenomenon to combat COVID-19 spread.

Bacille calmette guerin (BCG)
Differentially expressed genes
Drug molecules

1. Introduction mechanism is still sparse. Numerous studies have already manifested

strong and consistent evidences regarding the impact of various disease

The World Health Organization (WHO) declared a global pandemic
on March 11, 2020 for the Coronavirus disease 2019 (COVID-19) [1],
caused by the highly contagious novel coronavirus (SARS-CoV-2)
infection [2]. It was first detected in Wuhan, China in December 2019,
although its epidemiological origin yet remains debatable. Eventually, it
has spread in many countries throughout the world very quickly [3].
Since the disease is a novel one, the knowledge about its underlying
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conditions during COVID-19 [4-6], including cardiovascular diseases
[71, malignancies [8], chronic kidney diseases [9], Chronic obstructive
pulmonary disease (COPD) [10], type II diabetes [11] and many more.

The world population is at the highest risk due to the COVID-19. As
on September 16, 2021, over 225 million confirmed SARS-CoV-2
infected cases have been reported in more than 217 countries and re-
gions with ~4.64 million deaths according to WHO (https://covid19.wh
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Fig. 1. Schematic diagram outlining the workflow of our proposed approach. (A) To conduct differential expression analysis, we have designed three individual
experiments for each of the datasets. In those experiments, the case conditions were SARS-CoV-2 infection and BCG non-vaccination (2 datasets), and the control
conditions were healthy status and BCG vaccination (2 datasets) respectively. (B) Common DEGs were then identified for both health conditions. (C) Biological
functions of these DEGs were assessed and therapeutic targets were found by PPI analysis. (D) Functional enrichment analysis was performed with GO and cell
signalling pathway databases. (E) Regulatory elements and possible comorbidities were determined. (F) Putative drug candidates and chemical agents were identified
using curated databases. (G) All the gained results were validated through an extensive literature review.

o.int/), and the grievous thing is that its mortality rate is increasing day-
by-day. However, the infection pattern as well as its severity and mor-
tality are shown some salient disparity in different regions indicating the
influence of social norms and healthcare strategies. Till now, 80 vaccines
against SARS-CoV-2 are on clinical trials on humans and 23 among them
are at the final phase. Fortunately, 7 vaccines have been already
approved for full use [12]. But still, the vaccines are not available and
affordable for everyone all over the world, only 5.53 billion vaccine
doses have been administered till September 16, 2021 (https://covid19.
who.int/). Moreover, the efficacy of these vaccines are subjects for
verification through long-term follow-up. In these circumstances, until
an effective and affordable vaccine has been available for all, adaptation
of existing and safe vaccines that reinforces the immunity system may be
beneficial. This strategy suggesting the protective impact of the Bacillus
Calmette-Guérin (BCG) vaccination on the intensity of the COVID-19 has
gained considerable research focus. Therefore, it is of significant
importance to conduct a rigorous system-level study if the BCG vacci-
nation can boost immune response during COVID-19 infection and
reduce its mortality risk.

Many countries all over the world have been using the BCG-
vaccination to fight against tuberculosis (TB), organised through their

national TB programs. It is obtained from Mycobacterium bovis isolation
and currently it is the most widely used but amongst the most contro-
versial vaccines. The BCG is an attenuated variant of a Mycobacterium
bovis, which is firmly identified with Mycobacterium tuberculosis, the
operator liable for TB. As one of the most widely used vaccines
throughout the world, BCG has also been reported to reduce infant
mortality due to infections other than TB [13,14]. BCG vaccine bolsters
the inherent immunity system and thus protects from a wide range of
other infections. For example, it is routinely used in the treatment of
bladder cancer [15] and also reduced the respiratory syncytial virus
infections [16]. Wardhana et al. has demonstrated its preventive impact
on respiratory tract infections in elderly people [17], whereas a clinical
trial evidenced protective effect against pneumonia in
tuberculin-negative senior individuals [18]. Inspired by this evidence, it
has been hypothesised that BCG vaccination might alleviate the severity
and fatality of SARS-CoV-2 infection and thus provoke quick rescue [19,
20]. Various studies are being under clinical trial to evaluate the effect of
BCG vaccination on COVID-19 pandemic (for example, NCT04379336,
NCT04537663, NCT04475302, NCT04327206 etc. on clinicaltrials.
gov). All these evidences raise research need to investigate the influ-
ence of BCG vaccination on COVID-19 at the genetic level that has not
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Fig. 2. Differential gene expression and common DEGs. Volcano plots depict the genes expression in A) SARS-CoV-2 infected PBMCs, and two datasets for BCG
vaccinations B) GSE90748 and C) GSE108363. Venn Diagram for finding common D) up- and E) down-regulated DEGs among three dataset, COVID-19, GSE90748
and GSE108363. F) The bubble plot shows the common DEGs between BCG vaccination and SARS-CoV-2 in PBMCs.

been done yet.

Availability of high throughput technologies to analyse large-scale
transcriptomic data have excelled these methodologies as promising
tools in the biomedical research field [21-25]. Genetic inspection into
the transcriptomic data yields better insight into the molecular patho-
genesis of the SARS-CoV-2 infection and its related complications that
includes idiopathic pulmonary fibrosis (IPF) [26], pulmonary arterial

hypertension [27,28], common cancers [29], cardiovascular, hyper-
tensive disorders [30] and psychiatric disorders [31]. This study aims to
explore the genetic interaction of BCG vaccination on the COVID-19
through investigating the coexisting differentially expressed genes
(DEGS), shared molecular pathways induced by those DEGs and their
protein-protein interactome. The underlying analytical approach for this
study is depicted in Fig. 1. We used the shared DEGs to identify
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Fig. 3. A) The protein-protein interaction network for the common DEGs between COVID-19 and BCG vaccination. B) The blue colored nodes indicate the top
module of the network. C) The nodes having color from red, orange and yellow are the top significant hub genes.

hub-genes, regulatory factors, potential drug targets and putative
chemical agents. The findings could help to fight against the COVID-19
pandemic [32].

2. Methods
2.1. Data

To identify the relationship between BCG vaccination and SARS-
CoV-2 infection, we have analysed gene expression microarray and
RNA-Seq transcriptomic data. In this study, we have collected two
datasets from National Center for Biotechnology Information Gene
Expression Omnibus (NCBI-GEO) with accession numbers GSE108363
and GSE90748, and one dataset from EBI array express with accession
number E-MTAB-8871. GSE90748 is an RNA-Seq data and the other two
are microarray transcriptomic data. The GSE90748 study has measured
the expression profiles of 15 samples with 5 replicates of BCG injected
and 10 replicates of non-injected lessions generated by high throughput
sequencing technique, namely Illumina HiSeq 2000 by comparing [33].
GSE108363 is an expression profiling data by array using Illumina
HumanHT-12 platform for 2 cohorts of blood samples infected with
Mycobacterium tuberculosis and the same with Mycobacterium bovis
BCG [34]. The E-MTAB-8871 study was designed to study the compar-
ative gene expression profiles derived from human peripheral blood
mononuclear cells (PBMCs) of 10 healthy control and 23 SARS-CoV-2
infected patients using the NanoString Human Immunology Panel [35].

2.2. Deferential expression analysis

RNA-Seq, the next-generation sequencing technology measures the
gene expression with a high level of accuracy and mitigates many lim-
itations of microarrays. Using this high-throughput sequencing tech-
nology and global trasncriptiomic analyses, we have designed three
individual experiments for each of the datasets. In those experiments,

the case conditions were SARS-CoV-2 infection and BCG non-
vaccination (2 datasets), and the control conditions were healthy sta-
tus and BCG vaccination (2 datasets) respectively [Fig. 1 A]. To identify
DEGs associated with the respective conditions, we have used an R
Bioconductor package DESeq2 [36], which identifies DEGs based on the
Negative Binomial (also known as Gamma-Poisson distribution. More-
over, we have applied the R Bioconductor package, namely limma
[37-40] for the microarray dataset analysis to obtain the dys-regulated
genes. To negate the errors introduced in the preparation and analysis of
microarray data due to diverse operational set-ups and experimental
system, the transcriptomic data were transformed using z-score nor-
malisation defined as
8 —8&i

AL -1l
i o;

where g; is the expression data for i gene and j* sample (for both case
and control), g and o; are respectively the mean and standard deviation
of the expression levels for i gene considering all the samples.

After obtaining the DEGs for each disease condition, we have
selected the significant genes by setting the threshold level of the ab-
solute value of log fold change > 1 and FDR-adjusted (false discovery
rate) p-value < 0.05.

2.3. Protein-protein interaction analysis

Proteins exhibit physical contact with each other in a cell or in a
living organism indicating some biochemical events, typically function
as some molecular processes within a cell, and thereby form a protein-
protein interaction (PPI) network [41]. Here, we have used STRING to
construct the PPI network for the DEGs that are shared between
SARS-CoV-2 infection and BCG vaccination. STRING provides a
knowledge base about known and estimated PPIs that comprises both
physical and functional interactions, where nodes represent genes and
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Table 1
Particulars for the hub genes and the genes in the top module of PPI network.
Gene Name Pattern  Pathogenetic mechanism Associated Disorders Ref.
symbol
ADORA3 Adenosine A3 receptor  Up ADORA3 is highly regulated, most plentiful in the brain and several Ischemia and Ataxia, Sensory, 1, [58,
endocrine cells. G proteins mediate this receptor to inhibit adenylyl cyclase. = Autosomal Dominant. 59]
CCL4 C-C Motif Chemokine Down CCL4 encodes mitogen-inducible monokine protein. It is one of the primary = Bacterial meningitis and Human [60]
Ligand 4 factors that the CD8" T-cells produce and are suppressed in HIV. The Immunodeficiency Virus Infectious
protein expresses inflammatory and chemokine related processes. Disease.
CCR2 C-C Motif Chemokine Up CCR2 is a chemokine that mediates monocyte chemotaxis. This is Human Immunodeficiency Virus Type [61]
Receptor 2 responsible for infiltrating monocyte in inflammatory disorders such as 1 and idiopathic Anterior Uveitis.
rheumatoid arthritis and in the inflammatory reaction related to tumours.
CD33 CD33 Molecule Up CD33 belongs to the sialic-acid-binding immunoglobulin-like lectin (Siglec) ~ Alzheimer’s Disease, Acute Leukemia [62]
family that mediates cell-cell interactions and maintains rest for the and Acute Promyelocytic Leukemia.
immune cells
CXCL1 C-X-C Motif Down CXCL1 encodes CXC receptor 2, which is involved in inflammation and Alzheimer’s Disease and Bacterial [63]
Chemokine Ligand 1 chemoattraction for neutrophils. Irregular expression of this protein playsa  Meningitis
role to grow and develop certain tumours.
CXCL5 C-X-C Motif Down The protein encoded by CXCL5 is a member CXC subfamily of chemokines  pulmonary sarcoidosis, rheumatoid [64]
Chemokine Ligand 5 that recruit leukocytes. It also participates to activate neutrophils. arthritis
CXCL8 C-X-C Motif Down CXCLS8 acts as a chemotactic element that activates neutrophils. It acts as Melanoma, bronchiolitis [65]
Chemokine Ligand 8 basophils, and T-cells attractant, but not for monocytes. various cells release
it as inflammatory responses.
IFNG Interferon Gamma Down IFNG encodes cytokine that both the adaptive and natural immune system  Hepatitis C Virus, Tuberous Sclerosis 2. [66]
cells secret. Mutations in this gene are lined with an increase in
vulnerability to the infections of viruses, bacteria and parasites as well as
many autoimmune diseases.
ITGB2 Integrin Subunit Beta2  Down ITGB2 encoded proteins activate the immune response and leukocyte leukocyte adhesion deficiency type i [67]
adhesion deficiency is resulted due to its defect. It also participates in the
transmigration of leukocytes that includes T-cells and neutrophils.
OPRL1 Opioid Related Up OPRL1 encodes G-protein-coupled receptors belonging to the opioid family =~ Drug dependence [68]
Nociceptin Receptor 1 including kappa, delta and mu receptors. This receptor-ligand system
regulates various biological processes and neuro-functioning, that include
response to stress and anxious activities, memory and learning, locomotor
action, and immune and inflammatory responses.
PTGS2 Prostaglandin- Down PTGS2 encodes isozymes that are inducible. Various stimulatory actions gastric ulcer, familial adenomatous [69]
Endoperoxide Synthase modulate this indicating its involvement in the prostanoid biosynthesis polyposis
2 associated with mitogenesis and inflammation.
TLR5 Toll Like Receptor 5 Up TLRS5 identifies individual pathogen-related molecular models that are melioidosis, legionnaire disease [70]

expressed in infections. It encodes proteins that can recognise bacterial
flagellin which is a virulence component and the prime factor of bacterial

flagella.

edges indicates interconnection between them. At present, this database
includes 24,584,628 proteins from 5090 organisms [42]. The medium
confidence score 0.40 was set to generate this network. Proteins with
different network characteristics such as having high-degree of in-
teractions, may have a significant role in the cellular responses to a
special physiological stimulus. We identified such highly interconnected
nodes of the network, known as hub genes, using cytoHubba plugin of
Cytoscape software [43] with the Degree topological algorithm [44].
These hub genes produce a highly dense module inside the interactome
that could be of importance in effective drug discovery. We have
extracted such highly concentrated modules by analysing the PPI
network by another Cytoscape plugin, namely Molecular Complex
Detection (MCODE) [45].

2.4. Gene set enrichment analysis

Gene set enrichment analysis (GSEA) for a set of genes identifies their
significant involvement in a certain molecular pathway or functional
category to yield knowledge about the biological corollary, position on
the chromosome, or regulation they share [46]. Such functional cate-
gories are defined by gene ontology (GO) terms that are further cat-
egorised as a biological process (BP), cellular component (CC) and
molecular functions (MF) [47]. Similarly, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database provides functional knowledge
regarding the cellular processes for analysing signalling pathway [48].
To have a better understanding of the metabolic pathways that are
active in SARS-CoV-2, we have performed the GSEA for the shared DEGs,
using a web-based graphical tool, namely ShinyGO V0.61 considering

GO (BP, CC, and MF), and KEGG databases. ShinyGO provides a
comprehensive analysis of a given set of genes for graphical represen-
tation of related molecular pathways and functional categories by
incorporating GO and other data sources [49]. For statistical signifi-
cance, the cut-off limit of adjusted p-value < 0.05 was set for the
assessment of the enrichment results.

2.5. Regulatory analysis

Transcription factors (TFs) and micro-RNAs (miRNAs) usually
regulate the expression pattern of a target protein at their transcription
and post-transcriptional level, and thus have an impact on the biological
processes [50]. We performed the gene regulatory networks (GRNs)
analysis to obtain the regulatory factors that might influence the con-
sequences of COVID-19 for not being vaccinated with BCG. For this, we
analysed the common DEGs using NetworkAnalyst 3.0 web platform to
obtain the TF-gene and gene-miRNA interactions. NetworkAnalyst 3.0
provides a free online platform to facilitate expression profiling, inter-
actome analysis, and meta-analysis using transcriptomic data [51]. We
have identified the TF-gene interactions using JASPAR database that
offers open access to annotated and high-quality matrix-based profiles of
TF binding site [52]. For gene-miRNA interactome analysis, we
considered the miRTarBase database, since it maintains a collection of
manually curated and empirically validated miRNA targets [53].

2.6. Candidate drug and chemical agent identification

We performed the protein-drug interactions (PDI) and protein-
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chemical interactions (PCI) analysis using the overlapping DEGs for the
potential drug target and chemical agents identification. For PDI, we
incorporated Enrichr platform to explore the disease signature database
DSigBD (http://dsigdb.tanlab.org/DSigDBv1.0/). EnrichR integrates a
range of pre-compiled geneset libraries to facilitate enrichment analyses
for a gene list of interest [54]. We have assessed the significance of the
gained enrichment results by considering the adjusted p-value < 0.05
for statistical significance. Again, the DSigDB is a collection of 22,527
gene sets related to the drug and small molecules considering the dys-
regulation in gene expression due to drug/compounds [55]. We have
carried out PCI analysis using the NetworkAnalyst framework to exploit
the Comparative Toxicogenomics Database (CTD) databases, which il-
luminates the effect of chemicals on diseases by providing manually
curated information regarding protein-chemical and chemical-disease
association [56].

2.7. Disease comorbidity assessment

To gain further insights into what implications COVID-19 may have
on the overall health conditions, especially on those who have not been
BCG vaccinated, we carried out the gene-disease association analysis for
the shared 62 DEGs using the DisGeNET dataset through Enrichr [57].
DisGeNET is a publicly available database of gene-disease associations
that comprises 21,671 genes with 30,170 human diseases. We obtained
enrichment results by considering gene enrichment > 10 and adjusted
p-value < 0.001. The obtained gene-disease associations (GDA) are then
represented graphically as a bipartite network constructed with Cyto-
scape v3.8 software.
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Fig. 5. TF-gene interactome where lime circles are the TFs while pink hexagons indicate the shared DEGs between SARS-CoV-2 infection and BCG vaccination.

3. Results

3.1. Differential expression analyses found common DEGs between SARS-
CoV-2 infection and BCG vaccination

PBMC samples from COVID-19 patients and healthy controls were
compared to obtain the differential expression results of SARS-CoV-2
infection, which yielded a total of 1289 significant (892 up- and 397
down-regulated) DEGs. Similarly, blood samples from subjects without
having BCG vaccination (case) were compared with the individuals
having BCG vaccination (control). Thus, the resulted DEGs indicate
genes to showcase altered expression if a person has not been vaccinated
with m. bovis BCG. Cross comparison resulted in 11 down-regulated and
51 up-regulated DEGs that were common between SARS-CoV-2 and BCG
vaccination datasets. The quantities of obtained DEGs overlapping be-
tween SARS-CoV-2 and BCG vaccination datasets are depicted in the
Venn diagrams shown in Fig. 2 D and Fig. 2 E for up- and down-
regulated DEGs, respectively. The volcano plots in Fig. 2(A, B and C)
presented the expression pattern of the genes in three datasets. Note, all
the downstream analyses were carried out considering these 62 common
DEGs shown in Fig. 2 F.

3.2. PPI network analysis for hub gene and module analysis

Next, we have queried the common DEGs in STRING for their PPI
network, which is comprised of 54 nodes, each representing proteins
and 166 edges indicating interactions among them (Fig. 3 A). Next, a set
of highly connected modules (i.e. PPI sub-networks) were identified by
MCODE, a Cytoscape plugin as shown in Fig. 3 B. The most densely
connected module contains 10 genes including ADORA3, CCL4, CCR2,
CXCL1, CXCL5, CXCL8, IFNG, OPRL1, PTGS2 and TLR5. Moreover, a set
of hub genes were determined using cytoHubba, another Cytoscape
plugin resulted in 10 hub genes including ITGB2, CXCL8, CXCL1, CCR2,
IFNG, CCL4, PTGS2, ADORA3, TLR5 and CD33, which is shown in
Fig. 3C. Next, this set of important genes (i.e. hub genes from cytoHubba
and genes constituting the top module) was investigated in the litera-
ture, which revealed their pathogenic mechanism and associated dis-
orders as tabulated in Table 1.

3.3. GSEA analyses identified pathways shared by SARS-CoV-2 and M.
Bovis BCG

The GSEA was performed for the common DEGs considering BP, CC
and MF for GO annotation as well as KEGG pathways to have better
insight into their biological functions. The top 30 most significant GO
terms and KEGG pathways based on FDR adjusted p-values are shown in
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Fig. 6. Gene-miRNA interaction network where lime hexagons represent shared DEGs and pink circles indicate miRNAs.

Fig. 4. As depicted in the hierarchical clustering trees of enriched
pathways/terms, inflammatory response and myeloid leukocyte acti-
vation were the top enriched GO terms of the biological process cate-
gory. The cellular component part showed equally high enhancement of
cytoplasmic vesicle and intracellular vesicle terms. Again, the molecular
function subsection identified signalling receptor binding as the most
significant whereas cytokine and chemokine related GO terms were
found to be involved with the DEGs, as expected. On the other hand,
most DEGs were found to be associated with lysosome and rheumatoid
arthritis molecular pathways along with cytokine-cytokine receptor
interaction, chemokine signalling pathway, IL-17 signalling pathway
and TNF signalling pathway that could be of great biological interest.

3.4. Transcription factors and miRNAs

From the gene regulatory network analysis, we obtained 56 tran-
scription factors (TFs) as regulating the expression level of the common
DEGs that could be involved in SARS-CoV-2 infection. As shown in
Fig. 5, the top 2 dominating TFs were GATA2 and FOXC1, regulating 37
and 34 DEGs, respectively. Whereas, CD36 was found to exhibit the
highest regulation among all through 25 TFs. Moreover, we found 137
miRNAs that interacted with 40 DEGs among all as depicted in Fig. 6.
Among these identified miRNAs, hsa-mir-335-5p and hsa-mir-26b-5p
shared the maximum 12 and 10 interactions, respectively, indicating
their most influential role in gene regulation. On the other hand, ITGB8

and LIPA were the top 2 interacted DEGs having 38 and 35 interactions,
respectively.

3.5. Potential drug target and chemical agents

After filtration of the obtained PDI data, we found 265 drug mole-
cules to be significantly related to the common DEGs. The top 20 sig-
nificant drug components are tabulated in Table 2. The PCI analysis
estimated 56 chemical agents to be associated with 44 DEGs, where both
CXCL8 and PTGS2 interacted with maximum of 48 chemical com-
pounds. The resulted network is depicted in Fig. 7.

4. Comorbid diseases of COVID-19

After manual curation of the GDA, we obtained 30 highly significant
diseases related to 53 distinct DEGs with up to 21 shared DEGs. The
resulted GDA network is depicted in Fig. 8. Diabetes mellitus was found
to be associated with the highest number (21) of DEGs where both
obesity and Alzheimer’s disease were related to 20 DEGs. On the con-
trary, both IFNG and PTGS2 were linked with all the 30 diseases. We
hypothesize that these DEGs and diseases association could yield further
research to investigate the COVID-19 progression and its association
with BCG vaccination.
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Table 2
The top 10 significant drug candidates obtained for the shared DEGs by SARS-
CoV-2 and BCG vaccination.

Drug/Small molecule Adj.p- Genes
val
Sodium dichromate 2.64E- CXCL8, RNASE6, RNASE1, RCBTB2,

13 PYCARD, IFNG, NPC2, ADORA3,
ALDH3B1, STAB1, CAT, CCL4, CD36,
VSIG4, KCTD12
NICKEL SULFATE 3.49E-  CXCL8, RNASE6, CXCL1, PTGS2, CXCL5,
07 MS4A6A, ADORA2A, IFNG, GPNMB, CAT,
CCL4, TIMP2, CD36, CCR2, C1QC
Lycorine 8.35E-  GEBPA, GRN, SYK, IDH1, ITGB2, CYBRD1,
07 CD1D, LIPA, RCBTB2, PYCARD, SCPEP1,
MS4A6A, GPNMB, NPC2, ALDH3B1,
KCTD12, CCR2
MS4A6A, GPR34, IFNG, GPNMB, ADORA3,
IDH1, CAT, VSIG4, CI0RF162, PTGS2,
RNASE1, C1QC
MSR1, GRN, CXCL8, IFNG, ITGB2, CAT,

Medroxyprogesterone 2.24E-
acetate 06

Phorbol 12-myristate 13- 2.00E-

acetate 05 CCL4, TIMP2, ITGB8, CD36, PTGS2, CXCL5
1-chloro-2,4- 3.73E- CXCL8, GPNMB, IDH1, CAT, CCL4, CXCL1,
dinitrobenzene 05 CD36, PTGS2, CCR2
Anisomycin 3.85E-  CEBPA, GRN, SYK, IDH1, ITGB2, CYBRD1,
05 CD1D, LIPA, PYCARD, MS4A6A,
ALDH3B1, PPT1, VSIG4, KCTD12, CD33,
CCR2
Aspirin 6.39E- CXCL8, OAS1, ADORA2A, IFNG, ADORA3,
05 ITGB2, TIMP2, RNASE6, CXCL1, CD36,
PTGS2, RNASE1
RUTIN 7.47E- CXCLS8, IFNG, GAA, CAT, PTGS2
05
Acetovanillone 9.67E- MSR1, CXCL8, CXCL1, CD36, PTGS2
05

5. Discussion

This study primarily evaluates the potentiality of the BCG vaccina-
tion to minimise the severity and/or mortality of COVID-19 disease at
the molecular level by adopting a series of bioinformatics strategies. For
this, we have compared the gene expression profiles of PBMC in COVID-
19 patients with healthy individuals as well as subjects without and with
BCG vaccination. Cross-comparison identified 62 genes exhibiting
similar alteration of expression patterns indicating their significant
protective contribution on COVID-19 as a result of BCG vaccination.
Subsequently, we explored their biological functionalities by employing
PPI analysis, shared GO terms and KEGG pathway identification, gene
regulatory network analysis followed by drug target and chemical agent
identification to estimate the influence of BCG vaccination over COVID-
19.

The PPI network analysis, being an integral part of this study,
identified the most densely connected sub-network containing ADORA3,
CCL4, CCR2, CXCL1, CXCL5, CXCL8, IFNG, OPRL1, PTGS2 and TLR5 via
MCODE algorithm. Hub gene identification algorithm also obtained 10
hub genes (ITGB2, CXCL8, CXCL1, CCR2, IFNG, CCL4, PTGS2, ADORA3,
TLR5 and CD33) being the most interacting genes with each other. Many
of these genes have already been implicated with COVID-19. ADORA3
interacts with Adenosine to moderate the anti-inflammatory mechanism
by reducing the production and release of pro-inflammatory cytokines
[71]. The elevated level of cytokine circulation, known as cytokine
storm, has been reported to be highly associated with the COVID-19
pathogenesis resulting in lung damage [72]. Yong et al. reported
increased expression of pro-inflammatory cytokines including CXCL1
and CXCL8 as well as chemokine CCL4 and CCR2 in SARS-CoV-2
infected patients [73]. Higher expression of CD33 is reported to be
associated with the increased severity of COVID-19 [74]. An enhanced
ratio of IFNG has been found in severe SARS-CoV-2 infected patients,
which could exacerbate the cytokine storm [75]. ITGB2 is found to be
co-expressed between angiotensin-converting enzyme II (ACE2) and
leukocyte mediated immunity, playing a crucial role in the immune

Computers in Biology and Medicine 138 (2021) 104891

responses [76]. It also accelerates the lung repair and restoration after
injury by negatively regulating WNT signalling in the lung [77]. PTGS2
plays a vital role in SARS-CoV-2 infection by encoding cytochrome c
oxidase subunit II (COX2) [78]. SARS-CoV-2 activates COX2 and excites
COX2 inflammatory cascades to cause lung inflammation [79]. TLR5 has
been suggested as a putative therapeutic target to fight against
COVID-19 as it stimulates early signalling for innate immunity genera-
tion [80]. Thus, the close association of these identified genes with the
COVID-19 pathogenesis hints at the prospective influence of BCG
vaccination against the severity of SARS-CoV-2 infection.

Functional enrichment analysis identified several significant GO
terms and KEGG pathways that COVID-19 shares with BCG vaccination.
Among the top 30 enriched GO terms in each category notable terms
include immune response, inflammatory response, neutrophil activa-
tion, cytokine activation and chemokine activation. On the other hand,
prospective shared molecular pathways include lysosome, IL-17 sig-
nalling pathway, TNF-signalling pathway, chemokine signalling
pathway and cytokine-cytokine receptor interaction. Lysosome serves as
the animal cell’s primary digestive chamber and the drugs targeting the
lysosomes are considered to be the prospective therapy against COVID-
19 [81]. Again, Interleukin 17 (IL-17) plays a vital role in recruiting
immune cells to the infected site as redemption and also promoting the
reduced flow of chemokines and cytokines [82]. Thus, IL-17 activation is
supposed to be implicated with SARS-CoV and MERS-CoV infections
[83]. This pathway also induces pro-inflammatory cytokines and thus
corresponds to SARS-CoV-2 infection [84]. Consequently, IL-17 has been
suggested as a plausible target in developing effective therapies to treat
severe COVID-19 [85]. Meanwhile, Yabo, et al. reported TNF-signalling
pathway to be enhanced in intense SARS-CoV-2 infection [86]. Overall,
these shared DEGs between BCG vaccination and SARS-CoV-2 infection
and their immune response-related pathway activities suggest that BCG
vaccination may potentially contribute to induce or boost the host
response against SARS-CoV-2 infection and hence may reduce COVID-19
mortality rate, which is also currently reported to be evident from
experimental data [87].

We have also investigated the association between COVID-19 and
BCG vaccination from the perspective of regulatory mechanisms, e.g.,
TF-gene, gene-miRNA, protein-drug and protein-chemical interactions.
PDI analyses revealed several potential drug candidates that could be
further investigated with chemical experiments at a larger scale for
verification. Among these, lycorine is a potential candidate to develop
medicine against SARS-CoV [88]. This phytochemical also exhibits
strong inhibitory effects against SARS-CoV-2 infection [89]. According
to a recent study, anisomycin can impede the inflammation in macro-
phages, which eventually may obstruct the cytokine storm [90].
Initially, various in vitro results suggested prospective therapeutic pos-
sibilities in several drugs and chemicals to inhibit COVID-19. For
instance, remdesivir and chloroquine had been proposed to fight against
SARS-CoV-2 infection [91]. Among them, remdesivir was the first drug
that the US Food and Drug Administration (FDA) has approved for use
clinically to treat hospitalized COVID-19 patients [92]. Besides this,
favipiravir evidenced promising effects to protect from COVID-19 [93].
Furthermore, hydroxychloroquine and azithromycin combination ther-
apy have reported significant protection against COVID-19 [94]. But, at
later stages randomized clinical trials (RCTs) at a larger global scale
have evidenced insignificant certainty for the efficacy of most of these
components. For example, no definite evidence has been found to
endorse the effectiveness of chloroquine or hydroxychloroquine with or
without azithromycin in the COVID-19 treatment [95]. Therefore, the
urge of continuous endeavour for finding putative potential therapeutic
candidates has stretched even more. However, the identified chemical
agents through the PCI yield potential considerations against COVID-19.
For example, Valproic acid shows antiviral effects that demonstrate its
promising prospect against SARS-CoV-2 [96]. Furthermore, tretinoin is
predicted as a repurposable drug target for COVID-19 [97]. Besides this,
cyclosporine impedes the replication of SARS-CoV and MERS-CoV [98],
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Fig. 7. Protein-chemical interaction network for common DEGs, where olive octagons are the DEGs and pink circles indicate chemical agents. The network was

constructed using degree > 20 and betweenness > 20.

hence it is speculated that cyclosporine treatment could be beneficial in
COVID-19 [99]. Altogether, these findings are of great biological and
clinical interest that may enhance our insight into SARS-CoV-2 infection
and eventually promote the therapeutic strategy development to
counter the COVID-19 pandemic. Some limitations of this study would
be noted as samples of SARS-CoV-2 infection and BCG vaccination were
taken at different time frames, the number of samples is small, different
technologies (microarray and RNA-seq) were used for data extraction,
and the lack of clinical validation of the identified signatures. Thus
cautions have to be taken while interpreting the findings of the study. In
future studies, datasets from the same patient samples with BCG vacci-
nation status and their SARS-CoV-2 infection status along with their
categorical distributions of the factors like age, sex, and comorbidities
could be investigated and external validation of the findings could be
administered.

6. Conclusion

In this study, we aimed to reveal whether BCG vaccination could
boost the immunity against COVID-19 by employing a series of bioin-
formatics approaches. We found several hub genes that have a protective
effect against COVID-19 and its severity. Some signature genes are

10

involved in reducing the production and release of pro-inflammatory
cytokines, and hence, modulate the anti-inflammatory mechanism.
Enrichment analysis indicated that the BCG vaccine has immunomod-
ulatory activities which are necessary to reduce the fatality of COVID-19
patients. We hope, these interesting findings would potentially open up
further research direction on this hypothesis with thorough pathological
investigations.
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Fig. 8. Gene-disease association network. In this bipartite network, circular nodes (blue) represent the shared DEGs while octagonal nodes indicate COVID-19 (red)
and different diseases (lime).
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