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INTRODUCTION

A post-industrial revolution is encouraging the deployment of novel concepts for designing smart
factories and creating a new generation of monitoring, control, and man-machine collaboration systems.
In general, companies are embracing an era of smart manufacturing built upon Cyber-Physical Systems
(CPS), the Internet of Things (IoT), and Cloud and Cognitive computing. Using digital technologies
with advanced manufacturing tools can provide opportunities for building smart decision support
systems (DSS) to improve manufacturing analysis, monitoring, output, and performance. Despite the
potential of advanced Decision Support Systems (DSS), the major enterprises are successfully adapting
smart manufacturing processes to use new digital technologies that can enable the implementation of
intelligent systems and advanced DSS.

Additionally, to move towards smart manufacturing, better means are required for technology
deployments. The speed of technology implementation should be significantly faster, and machines
should have a higher accuracy of calibration in comparison to traditional manufacturing. One approach
for enhancing deployment is incorporating optimization models into manufacturing systems. This
change should provide a design that provides ease of use for operators and decision-makers in the real-
time manufacturing process.

This chapter defines requirements for various types of DSS (see Power, 2002, and 2004, for details on
the typology of DSS) in a smart manufacturing environment based on the increased use of optimization.
It focuses on identifying key barriers that prevent the development and use of advanced or “smart” DSS
in manufacturing and then provides the requirement and architecture for a system engineering design
for using optimization and other techniques with advanced computing and manufacturing technologies.

This review aims to promote a standard design or framework that is useful for both manufacturing and
academic communities that can facilitate needed efforts and innovation while stimulating the adoption
and use of smart manufacturing technologies.

BACKGROUND

Mathematical models and optimization techniques are drivers for model-driven DSS. Concerning the
structure of data and problems’ objective and constraints, many programming tools, and mathematical
algorithms are available to aid decision-makers in building a DSS with optimal recommendations. The
critical step is to know the type of optimization algorithm needed to solve the problem.



(For more details on the taxonomy of optimization problems, one can refer to a comprehensive
collection of optimization resources at https://neos-guide.org/).

Mathematical algorithms support convergence toward optimal solutions. This review classifies
optimization problems in terms of traditional and intelligent approaches. The most commonly used
intelligent optimization models are search-based (i.e., metaheuristic models), learning-based (i.e.,
machine learning models), uncertainty-based (i.e., robust optimization; stochastic optimization),
simulation-based (i.e., Markov Chain Monte Carlo) and Markov Decision Process (MDP) (see Tao et
al., 2016, for a comprehensive review on intelligent optimization).

Although using an intelligent optimization algorithm can gradually adopt a specific model-driven DSS
for smart manufacturing, such a DSS requires several other criteria to be adequately intelligent. More
intelligent DSS are created with a learning algorithm, a knowledge-sharing system, and cognitive
computing capabilities. Nevertheless, in a smart manufacturing system, with connectivity among all
manufacturing processes, an integrated intelligent DSS is required to manage a manufacturing system.
Features of an integrated intelligent DSS include expert knowledge, risk management, production
control, quality monitoring, marketing and sales management, project management, and supply chain
(SC) support. Guo (2016) provides an extensive collection of DSS capabilities and features needed for
managerial tasks of smart manufacturing integrated with intelligent optimization algorithms.

There is a gap in the literature on the applications of optimization techniques in DSS for smart
manufacturing. Moreover, there is a lack of a comprehensive system design that can cover all types of
DSS and managerial decision making (DM). This analysis identifies the requirements of parameter
alignment and the conceptual design of an integrated intelligent DSS for smart manufacturing by
considering the optimization procedure.

DECISION SUPPORT CAN AID SMART MANUFACTURING INITIATIVES

Manufacturing in developed nations must incorporate more data capture and decision support to control
costs and maintain product quality. Digital transformation of manufacturing means production must be
transformed using technologies like robotics, 0T, intelligent systems, and real-time analytics. Smart
manufacturing means all aspects of production are transformed, so they are data, computing, and
decision support intensive. Smart manufacturing has been defined by i-SCOOP.eu as the "fully-
integrated, collaborative manufacturing systems that respond in real-time to meet changing demands
and conditions in the factory, in the supply network, and customer needs." Various decision support and
data-driven capabilities must be incorporated in smart manufacturing systems, including:

1. Knowledge-Driven DSS

In a smart manufacturing environment, sharing expert domain knowledge at the manager-operator and
operator-machine levels is very important. Recommender systems and opinion mining can support real-
time, data-based DM. Machine/user relationship mining and clustering can increase self-awareness,
self-learning, and self-maintenance of production systems. Finally, Reciprocal Learning-Based DSS



(RL-DSS) can make repetitive decisions and reduce the human decision-making load. Routine decision
tasks can be programmed, and learning algorithms can enhance performance. Then decision-makers
can update their knowledge, and the improved system helps to create better decisions than previously
possible for semi-structured decisions. Research challenges include:

¢ Providing Man-Machine Knowledge-Sharing
e Knowledge-Mining
e Creating Reciprocal Learning-Based DSS

2. Data-Driven DSS / Document-Driven DSS

Big data management in the cloud can improve data management and distribution for both “machine-
generated data” and “human-generated data.” Real-time automated fault detection, classification, and
root-cause detection should be optimized using data from sensors. Finally, data-driven DSS should
integrate real-time and special data analytic studies. New and expanded data sources can enhance
predictive analytics, and output can be quickly shared using visualization tools.

3. Model-Driven DSS

Factories of the Future (http://www.effra.eu/factories-future) require integrated supply chain
management, improved demand forecasting, and technology integration throughout the supply chain
management process. Sensors combined with quantitative models can reduce costs and identify faults
in the supply network, such as sensor failure and degradation. Ideally, models will optimize the
frequency and timing of sensor measurement and will eliminate or reduce supply chain network delays.

The creation of an intelligent feedback control system can improve product quality and can provide
feedback for system management, which can be used to improve production scheduling, to maintain
machinery, and improve proactive maintenance.

4. Communication-Driven DSS

More machine to machine and person to machine decision support can facilitate the sharing of machines
across different tasks or under different conditions. Developing simulation tools can help to train
operators and decision-makers, prevent impending problems, and help in taking corrective action
promptly. If Artificially Intelligent machines communicate, then security challenges will increase, but
shared DM will increase the capabilities of the production network.

Challenges to Improving DSS

Smart manufacturing requires intelligent systems and decision support for human participants.
Improving DSS capabilities is necessitated by the development and deployment of smart manufacturing
systems. The main sources of challenges are:

o Innovation: The fast growth of start-up firms accelerates changes in manufacturing
environments. The production function has become a source of innovation. On the other hand,
innovation in organizations often increases personalization. However, sustainability in



innovation due to the rapid changes in technology is often temporary. Invest in decision support
may face a delay.

e Changes in Social Behavior: Customers are becoming more knowledgeable, and their
demand for quality, customer service, and rapid product adaptation to new technologies is
increasing. Therefore, developing capabilities for manufacturing servitization is needed to
provide services and solutions that supplement traditional product offerings. New service
capabilities often necessitate creating more integrated products, increased customer focus, more
automated services, support, and more knowledge integration to produce value-added products.
Additionally, rapid changes in leadership and culture must occur to respond to the rapid market,
business, and technological change.

e Changes in Technology: Changes in technology set new standards for evaluating the
performance of manufacturing firms, such that from a quality management perspective, since
1987 (ISO 9000 series) society has moved to environmental management in 1992 (ISO 14000
series) and, recently, to an energy management perspective (ISO 50000 series). Other indices,
such as the Key Performance Indicators (KPI), must radically change in both definitions and
metrics due to cross-factory integration.

e Changes in Market Behavior: Merging of the small, medium, and large enterprises change
the nature of competition in many markets. Lowering the general cost of IT infrastructures like
servers and networks and market forces that are increasing the cost of innovative technologies
are increasing the dynamism and volatility in many industries. Robots and machines participate
in smart manufacturing systems utilizing Artificial Intelligence (AI). Therefore, the concept of
a supply chain is not limited to moving services and products from suppliers to customers;
instead, supply chains must describe all transactions among different parts of production
systems and networks both inside and outside of a manufacturing environment.

Despite the challenges mentioned above, Table 1 summarizes some specific suggestions for developing
DSS and smart manufacturing solutions.

Table 1. Optimization-based solutions for overcoming DSS challenges in smart manufacturing

Quick Solutions Detailed Solutions
Digitalize knowledge- | ° Incorporating the behavior of human decision-makers into DSS.
based DSS . Automating decisions previously made by humans.
. Improving the interface of information systems for humans.
Incorporate dynamics | ¢ Developing stochastic and dynamic versions of solutions and deterministic
into the solutions models.
. Anticipating stochasticity in the models based on dynamic programming,
robust optimization, and stochastic programming.
Design software-based | ° Considering the role of high-tech computing techniques, including cloud
solutions with a user- computing techniques in DM and parallel computing on Graphics Processing Units
friendly interface (GPU).
. Knowing the restrictions of management software for smart manufacturing
management, process, and production.
. Proposing alternative software solutions, including service-oriented
computing and software agents for planning and scheduling applications.
Create a hybrid . Facilitating planning problems and a DM-based optimization and data
configuration of analysis perspective.
optimization models




. Implementing ‘“Manufacturing Execution System” (MES), “Enterprise
Resource Planning” (ERP), and “Advanced Planning and Scheduling” (APS) for
developing integrated production planning and scheduling solutions.

. Decreasing measurement uncertainty by merging the hybrid metrology
with state-of-the-art statistical analyses.
Enable Simulation and | ° Simulating the physical environment to comprehend the connections amid

Data-driven solutions | real-world circumstances; and planning to find solution-based approaches in a risk-
free environment before applying those solutions.

. Visualizing production planning processes by use of the event-driven
process.
. Modeling and analyzing manufacturing challenges by utilization of
various simulation paradigms.
. Supporting the different aspects of DM in smart manufacturing by
embedding the actual simulation methods in existing and forthcoming information
systems.
Encourage Process . Integrating decisions made by the different elements of the system to avoid
integration ad hoc situations.
. Integrating high-tech computing procedures to derive computationally

tractable models and to engage discourses regarding various uncertainties
encountered in the industry.

. Incorporating sustainability aspects solutions and deterministic models.
. Taking the product’s lifetime into account and integrating with demand
planning.

KEY COMPONENTS OF INTELLIGENT, INTEGRATED DSS

This section defines a framework and a reference architecture to support the requirements for more
intelligent, “smarter” DSS. Three components are explored: 1) the environment, 2) the architecture, and
3) the requirements. The discussion is based on common principles, assumptions, and terminology for
better integration and interoperability.

A. Environment

Cyber-Physical Systems (CPS) integrate computation, networking, and physical processes. A CPS
links cyberspace with the physical world through a network of interrelated elements such as sensors
and actuators, robotics, and computational engines. These systems are highly automated, intelligent,
and collaborative. A CPS is sufficient when only standalone model-driven, data-driven, and document-
driven DSS are implemented. However, when knowledge-driven and communication-driven DSS are
integrated with other types of DSS, the CPS itself cannot adequately cover interactions among the
system components. In this case, only a Cyber-Physical-Social System (CPSS) can support all aspects
of decision support, needed in the system. Semantic integration transfers information between the
physical world and CPSS and delivers knowledge between a CPSS and communities of participants. In
smart manufacturing, communities include expert engineers/managers and/or machines/manufacturing
tools. Communication can be defined either on a vertical level (between members at different expertise
and application levels) or on a horizontal level. Machines in the same group and similar applications
can form a community if they are carrying out knowledge activities and if they can either learn from or
teach other members of the group. A schematic of the CPSS is illustrated in Figure 1.
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Figure 1. Schematic of a Cyber-Physical-Social System

Ideally, the CPSS environment will be an autonomous, sustainable, and intelligent system that can
gather and organize resources into semantically rich forms that efficiently can be used by both machines
and decision-makers. Additionally, each space is required to be capable of self-evaluation.

The evolution of socioe-conomic aspects, especially social network peer reviews related to
products/services in manufacturing organizations and more integrated operational structures, defines a
new concept of social manufacturing systems (Jiang et al., 2016). Information technology and decision
support must process these new data sources, especially for consumer uses.

B. Architecture

DSS can create a sophisticated management system. In general, DSS can integrate multidisciplinary
data sources and related tools to generate value-added information for supporting DM. This section
outlines a functional description of the components required for realizing a system based on CPSS. The
architecture comprises inherent layers that are typically considered in requirements specifications for
production systems and associated analytics and decision processes. The ten proposed architecture
layers are as follows:

1. Data Layer: Contains distributed spatial, constraint, and relational databases—and their meta-data
information. This layer provides transparent access to data without concern for their original
formats. Since the data layer is the most frequently accessed layer, a data warehouse system usually
exists to improve performance. The data layer also provides the base for building data-driven and
document-driven DSS.

2. Information Layer: Contains a collection of domain-specific mathematic or analytic tools or
simulation models that help aggregate data into information. The analytic tools can be distributed
over a network of computers in each of the other layers in the architecture. The analytic tools include
domain-specific statistics, optimization, and simulation models. These domain-specific tools can
provide value-added information based on raw data from the data layer.



Knowledge Layer: Knowledge is created or discovered by combining information when it
transfers from an expert/intelligent engineer/machine to other parties in the system. Tools or
applications that provide or recognize domain-specific knowledge include data mining, knowledge
discovery algorithms, or traditional statistical inference approaches. The tools in the knowledge
layer do not make decisions. Instead, they contribute and organize knowledge that is used in the
DM process. This layer also provides the knowledge base needed to build a knowledge-driven DSS.

Integration Layer: In a smart manufacturing context, additional adapters for sensor and IoT object
integration are required. Due to the extensive variety in the use of various sensors, an initial
classification into the ontology-based enterprise data model is needed. The integration layer can
provide access to all types of DSS. In the integration layer, data from multidisciplinary sources is
combined into information that can be used as domain knowledge either by non-experts or by
machines. Those multidisciplinary data sources and related tools can be organized under a
hierarchical architecture to clarify their relationship. The system in this layer cannot express the
information context for a specific domain application for DM.

Physical Configuration Layer: This layer deals with the practical deployment of essential
hardware for implementing CPSS, such as sensors, actuators, machines, and personnel. Information
about the task, process plans, quality requirements, and real-time data can be stored in the physical
devices, which can repeatedly be read and written for production management. The physical devices
flow via wireless communications in the manufacturing environment, and the information network
and databases extracted from physical devices are configured and connected for information sharing
under this layer.

Social Interaction Layer: The social interaction layer plays the role of a mediator to assist the
communication and collaboration among manufacturing components as described in the social
space of the CPSS. This layer also provides the base to build a comprehensive communication-
driven DSS.

In-Memory Data Management and Connectivity Layer: Due to the high volume of data and the
velocity generated by physical devices, an in-memory data management platform is utilized for
distributed in-memory data management with predictable latency and fast data access for real-time
data handling. An in-memory data store will act as a central point of coordination, aggregation, and
distribution. Besides data management, events such as alerts or system messages communicate with
users in this layer.

Predictive Learning Layer: Real-time data access via the in-memory data management platform
can be preprocessed, and feedback results to the in-memory data store. The aggregated data are
used for in-situ analysis. Historical data can be analyzed for pattern detection correlated with
respective manufacturing process behaviors. Based on these patterns, manufacturing abnormalities
can be detected, learned, optimized, and applied to monitor real-time data streams. Furthermore,
modern Markov Decision Process (MDP) approaches could be combined with historical data to
optimize the learning procedure.

Presentation Layer: For enabling decision-makers to make quality real-time decisions, all relevant
data needs to be aggregated and visualized appropriately. Additionally, process engineers must be
notified proactively if a decision is required or when a deviation in the current state of a process is
detected. Moreover, a recommendation should be generated based on historical process analysis,
and drill-down functionality should allow for navigating Bayesian information and enable decision-
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makers to make high-quality decisions. Also, the presentation layer creates a user interface platform
for displaying decision rules to decision-makers. It manages the multidisciplinary meta-information
from the layers beyond it. Based on the meta-information, it can reflect and provide internal data
and services to users utilizing a user interface diagram. The user interface can take many forms,
such as a Web portal.

Intelligent Action Layer: DM happens in this layer based on presented information.
Manufacturing processes can be adapted by adjusting the current decision. However, adaptations
in one process can lead to necessary changes in other interlinked processes. A consistent transition
of changes must be feedback to the process execution system(s) where adaptations have taken place.

Figure 2. illustrates the relationship between different layers.
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Figure 2. The schematic of the relationship among different layers of architecture

Requirements

To create the architecture required for reasoning a CPSS, a generalized framework of methods, tools,

and concepts can describe the needed components required for all types of DSS in a smart enterprise

manufacturing environment. We define the following requirements:

Engineering Methodologies: Combining different engineering tools to build different models of a
smart plant, can be expressed in the form of process models using different process modeling
languages. Methodologies decide which model to produce and which modeling languages to use to
describe the model.

Modeling Languages: Used for shaping the different aspects of the system and its entities—aspects
including human roles, operational processes, functions, information, workplace, and production
technologies.

Engineering Tools: Used for implementing modeling languages, which are supported by
engineering methodologies, and model concepts to create, use, manage, analyze, evaluate, and enact
models for simulation and to provide a shared design repository or database.

Model Concepts: Define and formalize the most generic concepts of models in the form of
ontological models, meta-models, or reference models.



Modules: Used to implement the operating systems supported by models.

Functional Components: For connecting to DSS in the operation phase. The functional
components of DSS are included in all defined phases of software development and support the
rapid adaptability and reconfigurability of manufacturing within the smart environment.

Information Analysis: Consists of the analytical process modeling, statistical data and information
modeling and analysis, quality management, and optimization.

System Management: Involves the definition of requirements and parametric constraints. The
reference structure of system management is open, which permits the possibility of expansion and
improvement of the system. It can also specify hardware, processes, personnel, and facilities.

Mathematical Models: Adequate models of the processes for achieving the control tasks of the
system modules and equipment are required. The mathematical models allow for the optimization
of the process parameters, function, and behavior of the system, information maintenance,
operations and data management, and organizational structure.

Database: Methods, tools, and models are arranged in a database. The methods and tools have to
be characterized by their attributes for a database. Attributes determine their applicability from the
system requirements. The database contains a case library and a set of solutions related to these
cases. The attributes represent the objects in the database.

Attributes: Defines within the ontology model as relating to properties for each concept, which are
only used by the corresponding methods in each group form the basis for the choice of a suitable
method or tool for the given task. Attributes characterize the prepared cases in detail and are stored
in the database to be utilized in case-based reasoning.

Ontology: Describes the meaning and relationships among modeling concepts (definitions)
available in modeling languages, to improve the analytic capability of engineering tools and the
usefulness of the models. Different components have different ontologies that coincide only
partially or even mismatch. However, ontologies can merge and create a single coherent ontology;
or they can align and reuse information from one another.

Monitoring Agents: These follow system behavior after applying the recommended method for
design and control. The “data collection and acquisition” subsystem is available and connected with
monitoring agents.

Control Agents (Actuators): These execute control algorithms. During the real-time control, the
actuators interfere with an equipment control block initiated by some industrial controller devices
or which may occur following operator manipulation. State feedback regulators can be implemented
after receiving signals from measuring devices.

Equipment Control: Usually designed by equipment producers. It includes sources of the actual
measurement of data for the state of the physical or cyberspace equipment by sensors or other
measuring devices.

Object-Based Architectures: The most promising approach in modeling interactive systems.
These model the interface software as a composition of co-operating objects. These models are
highly modular and support concurrency, distribution of applications, and multithread dialogues.



e Interference Monitoring of a User’s Requirements: Defines outputs and inputs for the
identification of control work for making a connection of external applications via the internet or a
local network for distributed computing. It is required to start as an independent component and to
connect to a server for computing. The resources could be physically accessible in cyberspace.

e Readability of Knowledge: Knowledge has to be represented in a form that can be read by a human
or by a machine/computer.

e Reusability of Data: All data about the specific domains have to be stored, archived, and organized
for future reuse.

¢ Reproducibility: New knowledge has to be reproducible (based on historical information), and it
should be organized as a structured database.

e Contestability: Monitoring agents update the database with newly achieved results for subsequent
usage and application if all of the requirements are satisfied — or else the monitoring and control
agents have to repeat their operations.

¢ Connectivity: The data collection and acquisition, the information system, and system management
have to connect to DSS to provide decision-makers, operators, and managers with key information
that enables them to make efficient and consistent decisions.

o Knowledge Sharing: Represents the application of logic, computation, and ontology for the task
of constructing models for an application domain. Knowledge can integrate with conjoint use of
ontology and software patterns inside each component.

e Rules: Defined within an interference engine; serve to find solutions for the user according to the
user’s requirements.

e Control Strategies: Defined for searching solutions by predefined rules in both forward chaining
and backward chaining.

e Case-Based Reasoning: Used within the system to find a solution that matches best with the user’s
requirements, using data stored in a database.

With regards to the environment and the architecture mentioned previously relative to intelligent,
integrated DSS, Figure 3 is a block diagram of requirements for improved DSS to support the essential
characteristics of smart manufacturing.
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Figure 3. Block diagram of requirements for intelligent, integrated DSS

FUTURE RESEARCH DIRECTIONS

In proposing future research directions, we attempt to provide a broad vision of design for “smart” DSS

for “smart” manufacturing. These design requirements are not discussed in the literature with regards

to an analytic and decision support context and thus are new directions for the next step towards smart

manufacturing. In the following, we discuss some of the highlighted topics in this technology chain.

Area 1: Bi-level optimization is an approach where the outer optimization problem is
embedded (nested) within an inner optimization problem (including lower-level variables).
Many multi-level DMs exist—DM:s such as strategic planning of marketing and sales channels;
global SC simulation models based on a marketing-operations perspective; and positioning
order penetration points (OPP) in global SCs in smart manufacturing, which can be modeled
by Bi-level optimization approach. As an example, in a Bi-level DM, both the leader and the
follower may have multiple objectives with uncertain values and constraints, which can be
modeled as a fuzzy multi-objective Bi-level programming DSS.

Area 2: Developments in electronic communication, computing, and DM — coupled with new
interest on the part of organizations to improve meeting effectiveness — are spurring research
in the area of group DSS (GDSS). GDSS combines communication, computing, and DM to
facilitate the formulation and solution of unstructured problems by a group of people. Another
area of future research would be developing mathematical models of group DM in DSS of the
smart manufacturing environment.

Area 3: Optimizing the product design process in smart manufacturing has a significant impact
on global SC. The role of having a smart DSS for optimal product design in smart
manufacturing is crucial. Multi-level DM programming can be applied for capturing different
features in design stages and for evaluating design alternatives based on correlated criteria such
as functionality, reliability, and manufacturability to perform automated DSS for product
design criteria. Consequently, multi-level optimization — as a useful and practical tool —



provides the what-if analysis for product design (i.e., “What would happen if a particular
decision is taken?).

e Area 4: Smart manufacturing employs computer control and high levels of adaptability. There
is an increasing number of computer systems in smart manufacturing, which can be considered
as autonomous agents. Another area of future research would be developing Game Theory
models for making rational choices—DSS in a negotiation and bargaining game.

e Area 5: Applying cooperative and noncooperative multi-level programming is a generalized
future research direction in the control and optimization of cooperative systems in the smart
manufacturing environment.

e Area 6: Other topics in SC and operation management in smart manufacturing: 1) Integrated
DSS for operation and maintenance optimization; 2) Integrated and coordinated DSS for SC
optimization; and 3) Integrated DSS for maintenance, spare parts, inventory, and logistics.

CONCLUSION

More sophisticated decision support is critical for intelligent DM in smart manufacturing environments.
In this analysis, we have reviewed the role of optimization and other mathematical and machine learning
models in DSS to solve complex DM tasks in smart manufacturing systems. We have proposed a
systematic structure for engineering decision support applications. Integrating operations research
modeling, optimization, big data analytics, and Al provide a means for making better decisions with
complex objectives in a smart manufacturing setting. In smart manufacturing and Industry 4.0 context,
optimization techniques can play a critical role in automating strategic, operational, and tactical DM
and can provide more precise error analysis. Smarter decision support should lead managers to make
better decisions to improve the efficiency and effectiveness of smart manufacturing systems.

We are early in the journey toward smarter manufacturing and personalization of goods. We are moving
towards automation and using and integrating data capture is facilitating process improvements.
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KEY TERMS AND DEFINITIONS

Advanced Planning and Scheduling: Refers to a manufacturing management process where raw
materials and production capacity are optimally allocated to meet demand.

Case-Based Reasoning: The process of learning to solve new problems based on the solutions of
similar past problems.

Enterprise Resource Planning: The real-time integrated management of core business processes,
mediated by software and technology.

Manufacturing Execution System: Computerized systems used in manufacturing to track and
document the transformation of raw materials to finished goods.

Markov Decision Process: Describes the environment for solving the optimization problem by
reinforcement learning or dynamic programming. It provides a mathematical framework for modeling
DM in situations where outcomes are fully or partially observable.

Order Penetration Point (OPP): Defines the stage in the manufacturing value chain, where a
particular product is linked to specific customer orders.

Semantic Integration: The process of integrating information from diverse sources. In this regard,
semantics focuses on the organization and action upon information by acting as an intermediary
between heterogeneous data sources, which may conflict not only in structure but also in context or
value.
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