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Abstract

Explainability is often critical to the acceptable implementation of artificial
intelligence (AI). Nowhere is this more important than healthcare where decision-
making directly impacts patients and trust in AI systems is essential. This trust
is often built on the explanations and interpretations the AI provides. Despite
significant advancements in AI interpretability, there remains the need for clear
guidelines on when and to what extent explanations are necessary in the medical
context. We propose a novel categorization system with four distinct classes of
explanation necessity, guiding the level of explanation required: patient or sample
(local) level, cohort or dataset (global) level, or both levels. We introduce a math-
ematical formulation that distinguishes these categories and offers a practical
framework for researchers to determine the necessity and depth of explanations
required in medical AI applications. Three key factors are considered: the robust-
ness of the evaluation protocol, the variability of expert observations, and the
representation dimensionality of the application. In this perspective, we address
the question: When does an AI medical application need to be explained, and at
what level of detail?
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Main

Explainable artificial intelligence (XAI) has become a critical concern in digital devices
and artificial intelligence (AI) affecting various fields like environmental science, cli-
mate studies, automotive technology, and medicine. In particular, the use of XAI in
medical practice is crucial due to its significant role in the diagnosis of disease and the
care patients receive. XAI plays a key role in fostering trust in algorithms as it aids in
understanding risks and identifies therapeutic targets. Additionally, it offers insights
into disease progression, treatment response, decision-making, and enables closed-loop
control. To this end, a robust explanation of an AI framework can contribute to the
design of safety parameters for regulatory consideration of potential therapies [1].

Although many studies have proposed methods to enhance the interpretability of
AI systems, there remains a gap regarding when and at what level of explainability
is truly required. Specifically, the literature lacks practical guidance on distinguish-
ing between when the explanation necessity required is for predictions of individual
patients or samples, the local level, and when it is required to decode the entire model
for predictions of the whole cohort or dataset, the global level [1].

In this perspective, we address the question of explanation necessity in the field
of AI with a focus on medical applications. We present a categorization that identi-
fies different explanation needs across a range of AI tasks, providing clear algorithmic
guidance on when to utilize none, local, global, or both types of explanations. We
parameterize the classes of explanation necessity based on the robustness of the
evaluation protocol, the degree of agreement among experts’ observations, and the
representational dimensionality of the application. We propose a mathematical rep-
resentation of the different categories and discuss various frameworks for delivering
explanations. Additionally, we explore different AI tasks and provide examples using
our framework.

Background of explainable methods

There has been a notable surge in recent publications concerning XAI and machine
learning in the field of digital devices and especially in medical applications
[2],[3],[4],[5]. XAI can be broadly classified into two methodological approaches:
post-hoc and transparent.

Post-hoc methods are employed alongside AI techniques in a post-prediction set-
ting to explain the (otherwise non-interpretable or ’black-box’) AI predictions and
unveil nonlinear mappings within complex datasets. They include both model-specific
approaches that address particular nonlinear behaviors and model-agnostic approaches
that explore data complexity [2, 6]. A widely used post-hoc technique is Local
Interpretable Model-Agnostic Explanations (LIME), which clarifies the network’s pre-
dictions by constructing simple, interpretable models that locally approximate the
deep network; i.e., in the immediate vicinity of the prediction of interest [7]. LIME is
an example of a perturbation technique that evaluates the sensitivity of an AI pre-
diction to the input features by systematically altering sub-groups of the training
data [7, 8]. In contrast, Gradient-weighted class activation mapping (Grad-CAM) [7]
is a model-specific method that maps significant features in the imaging space using
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the activations of the last convolutional layers of the AI architecture. This method is
amongst the most common XAI methods used in medical imaging due to its ease of
application and interpretation. Other post-hoc methods are the attribution explain-
ability methods, such as Shapley Additive Explanations (SHAP; [9]) and Layer-wise
Relevance Propagation (LRP; [10]), which identify important features for a given pre-
diction by assigning relevance scores to the features of a given input. These attribution
methods can be used for either local or global explanations, in contrast to majority of
the post-hoc methods that are used mainly locally.

Transparent methods focus on AI models that exhibit inherent properties such as
simulatability, decomposability, and transparency (’white-box’) and are closely asso-
ciated with linear techniques such as Bayesian classifiers, support vector machines,
decision trees, and K nearest neighbor algorithms [6].

In many applications involving medical images, XAI faces the ”curse of dimension-
ality” arising from the high-dimensional nature of the data. This challenge underscores
the need for simpler models and variable selection techniques to deliver interpretability
even if this sacrifices the accuracy and efficiency typically achieved by AI models like
deep learning networks. Despite the trade-offs, XAI can foster trust in algorithms, aid
in understanding risks and side effects, help identify therapeutic targets, offer insights
into the progression of diseases and their response to treatments, support decision-
making, enable closed-loop control, and contribute to designing safety parameters for
regulated therapies [1].

Despite numerous studies proposing methods to improve the interpretability of
AI systems, there remains a significant gap in understanding when and at what level
the explainability is necessary. This absence can lead to confusion about the best
approaches to apply in different scenarios. To address these issues, the AI research
community is in need of a framework that outlines when and how to use local and
global explainability techniques. This would in turn signpost the appropriate appli-
cation of XAI in medicine, and other fields, ensuring that AI tools not only deliver
accurate results, but are also transparent and trustworthy.

The categories of explanation necessity

We propose a categorization of four distinct classes that define the need for explana-
tion and indicate when to use local versus global explanations. This categorization is
based on the robustness of the evaluation protocol, the degree of variability in expert
opinions, and the representation dimensionality of the specific tasks. The classes are:

1. Self-explainable applications pertaining to tasks where interpretation of the internal
mechanisms of AI are unnecessary due to very low variability in experts’ opinion,
a very robust evaluation protocol, a low representation dimensionality of AI appli-
cation, and the direct understanding of AI predictions. No explanation is needed
in such cases.

2. Semi-explainable applications that have a robust evaluation protocol with low vari-
ability in the opinion of experts and low to medium representation dimensionality
of the AI application, requiring the provision of explanations within the AI learn-
ing process to ensure effective training. This category demands partial explanation
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to confirm the accuracy of the AI’s training process. There is a need for local
explanations.

3. Non-explainable AI applications are characterized by the lack of a robust evaluation
protocol, high variability in expert opinions, and medium to high representation
dimensionality of the AI application. In such cases, there is a need for both local
and global explanations.

4. New-patterns discovery AI applications are characterized by a lack of a robust
evaluation protocol, significant variability in expert opinions, high representation
dimensionality of the AI application, and a substantial gap in understanding the
mechanisms and functions behind AI predictions. In such cases, there is a need for
both local and global explanations, along with further evaluation to validate the
new patterns captured through these explanations.

In the final section of this manuscript, we will present examples of these categories to
better illustrate the terminology.

Parameters for classifying explanation necessity

To distinguish the different categories of XAI necessity, we used three key parame-
ter: i) the variability in experts’ observations (variability in observations for observers
with same level of experience); ii) the robustness of the evaluation protocol (vari-
ability in observations for observers with different level of experience); and iii) the
representational dimensional of the AI application.

Variability of experts’ observations and robustness of the
evaluation protocol

To assess the variability in experts’ observations, we propose capturing the diversity in
annotations or answers provided by experts for each case. In this manuscript we adapt
the Guidelines for Reporting Reliability and Agreement Studies (GRRAS) terminol-
ogy. We primarily focus on ”Agreement” which denotes the degree to which scores or
observations are the same, and ”Inter-rater (or inter-observer) agreement” which sig-
nifies the degree to which two or more observers achieve identical results under similar
assessment conditions [11]. A common approach for scoring inter-observer agreement is
the calculation of Kappa (κ) statistics and their variations, including Cohen’s, Fleiss’s,
Light’s, and weighted κ, as reported in thirty-one prior studies (0.39) [12]. Addition-
ally, the utilization of the Landis and Koch interpretation of κ is prevalent, found in
forty-four prior studies (0.56) [12].

In medical applications, inter-observer variability (observers with same level of
experience), a κ-value between 0.00 and 0.20 is classified as ”slight,” while values
between 0.21 and 0.40 are deemed ”fair.” ”Moderate” agreement falls between 0.41
and 0.60, while ”substantial” agreement ranges from 0.61 to 0.80, and ”almost perfect”
agreement is between 0.81 and 1.00 [11, 12]. Generally, values of 0.60, 0.70, or 0.80
serve as the minimum standards for the labels for reliability coefficients, but higher
values, like 0.90 or 0.95, are recommended for critical individual decisions [13–15].
To take as an example the segmentation of lesions or other pathologies from medical
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Fig. 1 Variability of experts’ observations and robustness of the evaluation protocol for the
classification of explanation necessity and the threshold regions.
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a. Based on the Guidelines for Reporting Reliability and Agreement Studies (GRRAS) ”Inter-
rater (or inter-observer) agreement,” scores of κ-value between 0.00 and 0.20 are classified
as ”slight,” while values between 0.21 and 0.40 are deemed ”fair.” ”Moderate” agreement
falls between 0.41 and 0.60, while ”substantial” agreement ranges from 0.61 to 0.80, and
”almost perfect” agreement is between 0.81 and 0.99 ”perfect” is between 0.99 and 1.00 [11].
For the agreement dice similarity coefficient (DSC), the values 0.00 to 0.25, are classified as
”slight,” while values between 0.26 and 0.50 are deemed ”fair.” ”Moderate” agreement falls
between 0.51 and 0.70, while ”substantial” agreement ranges from 0.71 to 0.80, and ”almost
perfect” agreement is between 0.81 and 0.86 and ”perfect” is between 0.86 and 1.00. The
red transparent box highlights where the agreement rate is very low and not acceptable for
medical applications. b. To classify the different categories of explanation necessity, we used
as key parameters: (i) the robustness of the evaluation protocol; and (ii) the variability in
experts’ observations. The robustness of the evaluation protocol (’Observers with different
level of experience’) is measured as the variability across different observers with varying levels
of experience (Inexperienced, Experienced, Expert). The threshold ratios are 0.00-0.10, 0.11-
0.20, 0.21-0.30, and 0.31-0.40, for the self-explainable, semi-explainable, non-explainable, and
new pattern discovery classes, respectively. The variability in experts’ observations (observers
with same level of experience) is measured directly with threshold ratios: 0.00-0.05, 0.06-0.15,
0.16-0.25, and 0.26-0.40, for the self-explainable, semi-explainable, non-explainable, and new
pattern discovery classes, respectively.
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images, the agreement DSC is utilized with thresholds: DSC ≥ 0.85 considered ”High
Agreement,” 0.85 > DSC ≥ 0.70 as ”Medium Agreement,” 0.7 > DSC ≥ 0.5 as ”Low
Agreement,” and DSC < 0.5 as ”Very Low Agreement” [16, 17] (see Fig. 1a.). The
proposed number of experts is two to four with the same level of experience in the
topic of interest.

The second key parameter of the explanation necessity is the robustness of the eval-
uation protocol. We suggest measuring the variability among observers with varying
levels of experience (Inexperienced, Experienced, Expert). A robust evaluation proto-
col is defined by low variability in responses, indicating a clear, well-defined explainable
protocol that can be adapted to different experience levels. To this end, we modify
the proposed boundaries of the GRRAS Inter-rater agreement discussed above by ±
5% to account for the uncertainty arising from varying levels of experience. Typically,
a suitable sample size for obtaining robust results consists of two to four observers
selected across differing levels of experience (see Fig. 1b.).

Fig. 1b. presents the thresholds that categorize the explanation needs of an AI
application based on the robustness of the evaluation protocol (variability in observer
experience, ’purple dashed line’) and the variability in expert opinions (’purple line’).
The thresholds are set according to the level of uncertainty given by the probability
1− κ (for classification, regression, etc.) or 1−DSC (for segmentation, registration,
overlapping regions etc.) value (see Fig. 1b.), that can be tolerated for a specific task,
helping to classify the explanation requirements for different AI applications. These
thresholds may vary depending on the application, as in some cases diversity of opinion
amongst experts can be significant (such as in survival protocols or critical individual
decisions [13–15]).

With these parameters, the proposed framework on explanation necessity is as
follows: the self-explainable AI applications cover tasks where the protocols are estab-
lished (0.00-0.10 observer with different level of experience; Fig. 1b.) and the variability
in experts is low (0.00-0.05 observer with same level of experience; Fig. 1b;). The semi-
explainable category is applied for AI applications where the protocols are established
(0.11-0.20 observer with different level of experience; Fig. 1b.) and the variability in
experts is low to middle (0.06-0.15 observer with same level of experience; Fig. 1b;).
The non-explainable category is applied in AI applications where the protocols are not
established (0.21-0.30 observer with different level of experience; Fig. 1b.) and the vari-
ability in experts is middle to high (0.16-0.25 observer with same level of experience;
Fig. 1b;). Lastly, the new-patterns discovery category is applied in AI applications
where the protocols are very unstable (0.31-0.40 observer with different level of expe-
rience; Fig. 1b.) and the variability in experts is high (0.26-0.40 observer with same
level of experience; Fig. 1b;). For thresholds lower than 0.60 agreement we assume
that the acceptance rate is invalid due to an error in the annotation process by the
observers or a flaw in the protocol.

In studies involving high risks and critical individual decisions [13–15], it becomes
imperative to adapt our proposed thresholds accordingly. In such cases, the accept-
able ’Inter-rater agreement’ values should ideally surpass the standard thresholds of
0.70, 0.80, or even 0.95, serving as the minimum benchmarks for reliability coeffi-
cients (the standard threshold for acceptance rate for ’Inter-rater agreement’ typically
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exceeds 0.60; see Fig. 1.). This adjustment ensures a heightened level of reliability and
robustness in decision-making processes, crucial for maintaining safety and minimizing
potential risks.

Aside from medical applications, the parameterization of explanation necessity in
ecological studies utilizes similar categorical variables to gauge agreement between
citizen scientists and experts. This approach enhances the reliability of environmen-
tal assessments [18, 19] following similar thresholds as proposed in GRRAS. The
(driverless) automotive vision sector presents unique challenges in inter-observer vari-
ability assessment, primarily focused on navigation accuracy and safety [20]. While
XAI plays a crucial role in optimizing AI models for safety purposes, the focus shifts
from explainability to robustness and transparency to prevent potential traffic acci-
dents [20]. This highlights the importance of maintaining reliability and robustness in
automated, safety-critical systems, emphasizing the need for standardized evaluation
protocols in diverse domains. However, further investigations are needed to identify
similar thresholds (like Fig. 1) for other computer vision fields.

Representational dimensionality of AI applications

Explanations in applications typically fall in two or three dimensions. The complexity
of the representation dimensionality of the application can be further correlated with
the level of explanation needed. Thus, low representation dimensionality applications
in medical applications, common in semi-explainable and self-explainable applications
(see Fig. 2,a; [21, 22]). However, more complex dimensions and applications, for exam-
ple involving time-series data or multiple modalities inputs, are generally classified as
non-explainable and new pattern discovery (Fig. 2,a). These tasks are more variable,
involving complex protocols and intricate expert annotations, making them challeng-
ing to explain and evaluate (see Fig. 2,b). Furthermore, in these highly challenging
fields, ordinary 2D explainability and validation of only local explanations will fall
short and may even prove erroneous (Fig. 2,b). Thus, when assessing the need for
explanations, it is important to consider the dimensionality representation of the AI
application. This should be considered alongside the two key parameters and the
mathematical formulation already provided.

Remote sensing from satellites ([23, 24]), automotive vision, and other similar AI
applications ([25, 26]) typically deal with 2D to 3D inputs (images and video) and
can be categorized into self-explanatory, semi-explanatory, and non-explanatory (see
Fig. 2,a). The concept of discovering new patterns is not well-defined in these fields.
We suggest that multi-modality applications, where the complexity of AI increases
significantly, might be suitable for this purpose.

Mathematical formulation of the problem

For an input x ∈ Rd, we define a deep learning model function f(x; θ) with f : Rd →
Rc, where c is the output dimension, d is the input dimension and θ consists of the
parameters of the model in a computer vision problem (e.g. in computer vision, for
a classification task c is the number of classes, and for a segmentation task c ≤ d).
The inference of the model is denoted as y = f(x; θ) where y ∈ Rc is the predicted

7



probability of the corresponding dimension c (Fig. 3c). An explanation method g from
a post-hoc family of explanation methods G takes as inputs the f , x and y and returns
an explanation map z.

Fig. 2 Representational dimensionality of AI applications and the need of explanation.

a

Application Self-explainable Semi-explainable Non-explainable New-patterns discovery

Nature 2D space 2D-3D space 2D-3D space multi-modality space

Automotive 2D space 2D-3D space 2D-3D space multi-modality space

Medical 2D space 2D-3D space 3D-4D space 4D or multi-modality space
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a, The table presents the representational dimensionality for each AI application and the
corresponding level of explanation necessity, categorized as self-explainable, semi-explainable,
non-explainable, and new-patterns discovery. b, The figure illustrates the importance of three-
dimensional space in computer vision tasks in medical imaging compared to animals as a
traditional computer vision classification task.

The G(x,y, f) contains multiple explanation methods, denoted as gj where j is
the index of each post-hoc method. The explanation map of each input x can be given
by z = g(x,y, f) where z ∈ Rd and has the same dimension space as the input x.
For computer vision applications, we define D : Rd × Rc × Rd 7→ R≥ 0 as a tuple of
datasets D = (xi,yi, zi)

n
i=1, that denotes input-output-explanations triples, where n

is the total number of the validation examples. Dx denotes all xi, Dy denotes all yi
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and Dz denotes all zi in D. In this study, we define as ”global explanation” a map
gz that represents all the local explanations for the whole validation dataset Dz. The
global explanation can be viewed as a dimensionality reduction function gz = R(z) of
the whole local explanations Dz (for example, in a setting of a principal component
analysis, gz it would correspond to the eigenvectors). We define four distinct applica-
tions of explainability needs: self-explainable, semi-explainable, non-explainable, and
new-pattern learning (Fig. 3c).

The mathematical representation of the self-explainable application involves an
interpretable function g(x,y) that solely employs the inputs x and outputs y of the
deep learning model f . Given an established, clear evaluation protocol, low variability
in experts’ observations, low representation dimensionality of the AI application, and
sufficient correlation between the inputs and outputs of the deep learning network,
there is no necessity for explaining the hidden parameters of the network. Therefore,
this application in literature is named as a ’white box application’ (Fig. 3a).

The mathematical description of the semi-explainable application comprises a set
of explanation methods g(x,y, f) that utilize both the inputs x and outputs y, along
with the hidden parameters of the deep learning model f(x; θ). Due to the estab-
lished evaluation protocol, low to medium variability in experts’ observations, low
to medium representation dimensionality of the AI application, and insufficient cor-
relation between the inputs and outputs of the deep learning network, a sub-group
SD = (xi,yi, zi)

o
i=1 of local explanations z of the hidden parameters are needed (where

o represents a fixed number of samples from the validation dataset D, SD ⊂ D and
o < n). Consequently, this application in literature is named as a ’grey box application’
(Fig. 3b).

The mathematical representation of non-explainable applications involves a set of
explanation methods g(x,y, f) that relies on the inputs x and outputs y in addition
to the hidden parameters of the deep learning model f(x; θ).

With a non established and clear evaluation protocol, medium to high variability
in experts’ observations and medium to high representation dimensionality of the
AI application, the correlation between the inputs and outputs of the deep learning
network is inadequate. Thus, there is a requirement for local and additionally global
explanations, gz, by using the whole validation dataset D = (xi,yi, zi)

n
i=1 (where

n encompasses the total number of samples from the validation dataset D). This
application in the literature is named a ’black box application’ (Fig. 3d). In the new-
patterns discovery application, a collection of potentially significant markers can be
computed for the initial AI task by aligning the global explanations gz with a ground
truth statistical model RS(x

′). This statistical model is generated by inputs x′ of
a super dataset Dx′ of the validation dataset Dx (Dx ⊆ Dx′). The ground truth
statistical model tries to capture the generalized features of interest and the generalized
shape related with the AI task. The model’s inference is given by rx′ = RS(x

′) where
rx′ is the output of the ground truth statistical model that best describes the Dx′

dataset. The alignment can be done by a rigid transformation function Al(gz, rx′) of
the rx′ and the gz (Fig. 3e). The new-patterns discovery category is used in cases with
non-established and clear evaluation protocols, high variability in experts’ observations
and high representation dimensionality of the AI application.
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Fig. 3 A mathematical formulation of the explainability need across deep learning applications
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a, The mathematical representation presents the overall XAI framework for a specific method
g across different explainability applications. b, Self-explanations utilize methods g(x, y)
focusing solely on the inputs x and outputs y of the deep learning model f . With a clear
evaluation protocol and strong input-output correlation, explaining the hidden parameters
becomes unnecessary. This application categorized as a ’white box application’. c, Semi-
explanations employ methods g(x, y, f) integrating inputs x, outputs y′, and the hidden
parameters of f(θ, x). Due to varied annotation and insufficient input-output correlation,
local explanations for specific samples in the validation dataset D become necessary. This
application is categorized as a ’grey box application’. d, Non-explanations involve methods
g(x, y, f) relying on inputs x, outputs y, and the hidden parameters of f(θ, x). Due to sig-
nificant variance in annotations and discrepancies in ground truth extractions, a necessity
arises for global explanations gz using the entire dataset D = (xi, yi, zi)

n
i=1. This application

is categorized as a ’black box application’. e, In the new-patterns discovery application, cru-
cial markers for the initial classification task are derived by aligning global explanations gz
with a ground truth statistical model R(x′) generated from a supergroup Dx′ describing the
classification application’s overall shape. A rigid transformation function Al(gz , rx′) is used
to align the output of the statistical shape model with the global explanations.
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The proposed framework

In this study, we propose a framework to classify the explanation necessity of AI
medical applications. The framework consists of two main flows: one for deter-
mining inter-observer variability (First Flow; see Fig. 2) and one for representing
dimensionality (Second Flow; see Fig. 2).

Firstly, the user needs to compute the average values of inter-observer variability
from a group of observers with the same and different experience levels to justify
the variability of experts’ observations (’Same level of experience’; Fig. 2), and the
robustness of the evaluation protocol (’Different level of experience’; Fig. 2). Using the
average thresholds (’Calculate Average Threshhold’; Fig. 2) of these two inter-observer
variabilities, the user identifies the two ’Initial Explanation necessity classification’
(see Fig. 2; Table 1. ; Table 2.). If the two categories are not the same, an adjudicating
expert identifies which class is more appropriate for the case and they continue to the
next step.

The second flow of the framework involves the representation dimensionality of
the application (’Representation dimentionality’; Fig. 2). Lastly, the results of the two
flows are passed through an ’XAI Need Decision’ statement where if the results are the
same the final class of XAI need is determined (’Category decision’). If the explanation
class is not the same, an adjudicating expert identifies which class is more appropriate
for the application (see Fig. 2)

Examples and applications

By utilizing our proposed framework, anyone can determine when and at the expla-
nation necessity of an application. In this section, we present some examples and
applications of our framework in a variety of medical imaging applications.

Some applications in medicine require minimal understanding of the inner mecha-
nisms of AI due to low variability in the evaluation protocols (0.00-0.10; Fig. 1), low
variability between experts’ observations (0.00-0.05; Fig. 1), the two-dimensionality
representation of the application, and the straightforward nature of AI predictions.
Examples include human organ segmentation from abdominal computed tomography
(CT) and registration of multi-modal images from the same individual [5, 27]. These
types of applications might benefit from XAI methods for optimization purposes rather
than for enhancing trust. Consequently, the performance of AI models can be reliably
assessed without the need for additional explanation.

Other applications involve greater variability in evaluation protocols, requir-
ing local explanations to ensure proper training, such as in classification tasks
with established disease evaluation protocols (0.05-0.15; Fig. 1) and two-dimensional
representation of the applications [21].

With an aging global population, neurodegenerative diseases are likely to become
increasingly prevalent. Binary AI classification from MRI scans of the brain for diag-
nosing Alzheimer’s disease or healthy aging is a task with low inter-observer variability
(0.05-0.15; Fig. 1) as brain atrophy is clearly visible when present, and does not
require multi-modality datasets for high performance (low representation dimension-
ality). This kind of application is self-explainable or semi-explainable based on the
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proposed framework (see Fig. 2). Detecting early stages many years before diagnosis
is significantly more challenging [28].

Even among experienced professionals, knowledge gaps can persist, where AI has
the potential to offer insights and stabilize the validity and key aspects of the protocols
(0.25-0.40; Fig. 1; [29]). This is particularly true for classification tasks where disease
evaluation protocols are not yet firmly established (new-patterns discovery) [30].

Ovarian cancer is one of the most common cancers in women, with an uncer-
tain prognosis (0.20-0.40; Fig. 1), and is difficult to detect at an early stage even
with multi-modal imaging (MRI, ultrasound, and computed tomography; [31]). This
AI application is categorized as non-explainable or even as a new-patterns discovery
applications.

Sepsis is a life-threatening acute immune response to infection that causes organ
damage. Early-stage diagnosis, when treatments are effective, is complex. Prognosis is
particularly poor where access to healthcare is limited. Along with clinical and labo-
ratory assessments, chest X-rays [32] and whole-body computed tomography [33] are
helpful in diagnosis and disease management. Thus, in the majority of AI applications
in this medical topic, inter-observer variability among experts is high (0.25-0.40; Fig.
1), the evaluation protocol robustness is low (0.30-0.40; Fig. 1), and the representa-
tion dimensionality of the application needs to be multi-modality. These applications
are new-patterns discovery applications.

The proposed framework can be applied in various computer vision fields such
as natural or automotive. For the sake of generalization, we provide examples of
applications in these fields. However, accurate determination of protocols and thresh-
olds (Fig. 1) are necessary in each field. In natural computer vision applications,
like animal classification in images and climate regression, typically local explanation
(semi-explainable) is required. This need arises because expert knowledge varies mini-
mally (0.05-0.10; Fig. 1), the robustness of the evaluation protocols is straightforward
[23] and the dimensionality representation of the application is usually two-dimensions.
In contrast, automotive computer vision, which encompasses tasks like vehicle and
object classification and semantic segmentation for self-driving cars, generally does
not require explanation. This is because these tasks are relatively straightforward
with clear evaluation metrics, minimal expert involvement and mainly two- to
three-dimensionality representation of the application (self-explainable); [25, 34].

Outlook

Explainability, together with accuracy and consistency, are important aspects of AI
systems to gain the trust of scientists and healthcare professionals, even without them
fully understanding how the algorithms work. While the use of XAI is generally impor-
tant, it becomes crucial in clinical contexts as decisions taken relying on AI-driven
tools may directly impact a patient’s health. While many studies focus on enhancing
the interpretability of AI systems, we highlight the lack of user-directed recommen-
dations on when to utilize explainability techniques and to what extent (global, local,
or both).
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In this perspective, we address this important gap in the literature by catego-
rizing the necessity for AI explanations into four distinct groups: self-explainable,
semi-explainable, non-explainable applications, and new-patterns discovery. These
classifications are informed by the variability of experts’ observations, the stability of
the evaluation protocol and the representation dimensionality of the application.

By accessing the average variability of experts’ observations across different expe-
rience levels and comparing them with the average variability of observations from
experts of the same level, we can establish an initial categorization. If the clinical
application is identified as high-risk, it becomes imperative to adjust the proposed
thresholds to align with the risk level of the application. For instance, rather than the
less than 0.60 non-acceptance rate initially proposed, the application may necessitate
higher thresholds, such as 0.80, 0.90, or even 0.95.

We also take into account the dimensionality representation of the AI application
to revise the explanation necessity category according to our recommendations. Con-
sistent with the proposed framework, we present a mathematical formulation of these
classes to cover a broad range of explanation requirements. This mathematical formu-
lation and suggested framework can be employed to provide the essential explanations
required for the AI application.

We have developed a comprehensive framework that researchers can readily cus-
tomize for their AI applications. Our framework assists in determining the most
suitable explanation necessity for their specific medical application. This enables them
to furnish the requisite explanations, supporting the delivery of a transparent, safe, and
trustworthy AI framework while also strengthening safety parameters for regulated
therapies.
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