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Structure-based drug design with 
equivariant diffusion models
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Structure-based drug design (SBDD) aims to design small-molecule ligands 
that bind with high affinity and specificity to pre-determined protein targets. 
Generative SBDD methods leverage structural data of drugs with their 
protein targets to propose new drug candidates. However, most existing 
methods focus exclusively on bottom-up de novo design of compounds 
or tackle other drug development challenges with task-specific models. 
The latter requires curation of suitable datasets, careful engineering of 
the models and retraining from scratch for each task. Here we show how 
a single pretrained diffusion model can be applied to a broader range of 
problems, such as off-the-shelf property optimization, explicit negative 
design and partial molecular design with inpainting. We formulate SBDD 
as a three-dimensional conditional generation problem and present 
DiffSBDD, an SE(3)-equivariant diffusion model that generates novel ligands 
conditioned on protein pockets. Furthermore, we show how additional 
constraints can be used to improve the generated drug candidates 
according to a variety of computational metrics.

The rational design of small molecules with drug-like properties 
remains an outstanding challenge in both fundamental and biophar-
maceutical research. Structure-based drug design (SBDD) aims to find 
small-molecule ligands that bind to specific three-dimensional (3D) 
sites in proteins with high affinity and specificity1. Traditionally, SBDD 
campaigns are usually initiated either by high-throughput experimental 
or virtual screening2,3 of large chemical databases. In general, these 
approaches are expensive and time-consuming, but they also restrict 
the exploration of the chemical space to previously studied molecules, 
with a further emphasis usually placed on commercial availability4. 
Moreover, the optimization of initial lead molecules is often a biased 
process, with strong reliance on human intuition5. Recent advances 
in geometric deep learning, especially in modeling 3D structures of 
biomolecules6–8, provide a promising direction for SBDD9. Despite 

considerable progress in the use of deep learning as surrogate docking 
models10–12, deep learning-based design of ligands that bind to target 
proteins remains an overarching problem in molecular modeling. Early 
attempts have been made to represent molecules as atomic density 
maps, with variational autoencoders generating new atomic density 
maps corresponding to novel molecules13. However, it is non-trivial 
to map atomic density maps back to molecular space, requiring an 
additional atom-fitting stage. An alternative is to represent molecules 
as 3D graphs with atomic coordinates and types, which naturally cir-
cumvents the postprocessing steps. Li et al.14 proposed an autoregres-
sive generative model to sample ligands given the protein pocket as a 
conditioning constraint. Peng et al.15 improved this method by using an 
E(3)-equivariant graph neural network (GNN), which respects rotation 
and translation symmetries in 3D space. Similarly, Drotár et al.16 and 
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examples of drugs whose stereochemistry affects their activity and 
toxicity. For instance, the antidepressant citalopram (Fig. 1e) has two 
enantiomers but only the S enantiomer has the desired therapeutic 
effect. The difference between the S and R forms of the molecule, how-
ever, is only detectable by a reflection-sensitive GNN (Supplementary 
Section 4). Further technical details of the diffusion framework and 
equivariant neural network (Fig. 1f) are described in ‘Denoising diffu-
sion probabilistic models’ and ‘SE(3)-equivariant GNNs’ in Methods.

To condition the 3D generative model on the structure of the 
protein pocket, we consider two distinct approaches. In the first 
approach, DiffSBDD-cond, we provide fixed 3D context in each step of 
the denoising process. To this end, we supplement the ligand atomic 
point cloud z(L)t , denoted by superscript L and diffusion time step t, 
with protein pocket nodes z(P)data, denoted by superscript P, that remain 
unchanged throughout the reverse diffusion process (Fig. 1a). For the 
second method, DiffSBDD-joint, we initially train a diffusion model to 
approximate the joint distribution p(z(L)data, z

(P)
data)  of ligand–pocket  

pairs, and inject information about target pockets only at inference 
time. The methodology is analogous to the substructure inpainting 
approach described below (‘Inpainting’ in Methods and Fig. 1c). Both 
approaches are equally applicable to the small-molecule design task 
and in practice differ in only whether the neural network expects the 
original pocket or a noisy version as input.

DiffSBDD captures the underlying data 
distribution
As a first test to our model, we probe its ability to accurately represent 
the properties of real binders, and compare the results with Pocket-
2Mol15, ResGen25, PocketFlow26 and DeepICL27, four recently published 
autoregressive models, which represent the previous state-of-the-art 
class of machine learning models for SBDD. We use publicly available 
code and weights of the models (see ‘Code availability’). Note that not 
all baseline models have been trained on identical training sets (see 
‘Experimental set-up’ in Methods).

Figure 2a shows that both DiffSBDD and Pocket2Mol Vina scores 
are centered around the reference but the spread is larger in the case 
of the diffusion models, which means that their samples contain larger 
fractions of low-scoring molecules but also ligands that potentially bind 
more tightly than the native counterparts. The greater abundance of 
high-scoring molecules is particularly important in anticipation of down-
stream design applications, where we often look for the most competi-
tive binder rather than average candidates. A similar observation holds 
for the Binding MOAD28 dataset with experimentally determined binding 
complexes. However, unlike the CrossDocked case, docking scores are 
worse on average than the scores of corresponding reference ligands 
from this dataset. We believe the reason to be twofold: the Binding 
MOAD training set is much smaller and also contains more challenging 
ground-truth ligands (native binders) whereas CrossDocked complexes 
can have unrealistic protein–ligand interactions. This hypothesis is sup-
ported by less favorable Vina scores of reference molecules from the 

Liu et al.17 used autoregressive models to generate atoms sequentially 
and incorporate angles during the generation process. However, the 
main premise of sequential generation methods may not hold in real 
scenarios, as it imposes an artificial ordering scheme in the generation 
process and, as a result, the global context of the generated ligands 
may be lost. Very recently, a number of diffusion models have been 
put forward for target-specific molecule design18–22. These models 
place all atoms simultaneously, allowing them to reason about the 
whole molecule at once and typically enabling faster sampling. While 
this class of models has already shown great promise in de novo ligand 
generation, their potential in other parts of the drug design pipeline 
has not been thoroughly explored.

In this study, we propose DiffSBDD, an SE(3)-equivariant 3D condi-
tional diffusion model for SBDD that respects translation, rotation and 
permutation symmetries. To evaluate our approach, we first show that 
diffusion models are a powerful framework for learning the distribution 
of 3D molecular data by generating new target-specific ligands de novo 
without additional constraints or optimizing a particular property 
(‘DiffSBDD captures the underlying data distribution’ section). We then 
demonstrate how the flexibility of diffusion models enables partial 
molecular redesign to incorporate specific design constraints without 
needing to develop specialized models (‘Generating chemical matter 
from known substructures’ section), and iterative improvement of 
molecular properties measured by user-specified oracles (‘Iterative 
search for better molecule candidates’ section). While we provide 
empirical results for only our model, the methodology can be readily 
used in combination with other recently published diffusion models 
for small-molecule design18–22.

Equivariant diffusion models for SBDD
We leverage equivariant denoising diffusion probabilistic models 
(DDPMs)23,24 to generate molecules and binding conformations jointly 
for a given protein target. Figure 1a schematically depicts the 3D dif-
fusion procedure. During training, varying amounts of random noise 
are applied to 3D structures of real ligands and a neural network learns 
to predict the noiseless features of the molecules. For sampling, these 
predictions are used to parameterize denoising transition probabilities, 
which allow us to gradually move a sample from a standard normal 
distribution onto the data manifold. Both the protein and the ligand 
are represented as 3D point clouds, where atom types are encoded as 
one-hot vectors and all objects are processed as graphs. For improved 
computational efficiency, we define independently tunable distance 
cut-offs for intermolecular edges between nodes of the ligand and 
pocket and intramolecular edges between two nodes from the same 
molecule (Fig. 1b). This means that information is propagated only 
between spatially proximal atoms. Our neural network is designed to 
respect natural symmetries of the molecular system, which include 
rotations and translations but exclude non-superposable transforma-
tions. That is, we process rigid transformations in an equivariant way 
but not reflections. This design choice is motivated by well-studied 

Fig. 1 | Method overview. a, The diffusion process q yields a noised version z(L)t  of 
the original atomic point cloud z(L)data for a time step t ≤ T. The neural network 
model is trained to approximate the reverse process conditioned on the target 
protein structure z(P)data. Once trained, an initial noisy point cloud is sampled from 
a Gaussian distribution z(L)T ∼ 𝒩𝒩 (0, I) and progressively denoised using the 
learned transition probability pθ. Covalent bonds are added to the resultant point 
cloud at the end of the generation. Optionally, fixed substructures (for instance, 
fragments) can be provided to condition the generative process. Carbon, oxygen 
and nitrogen atoms are shown in orange, red and blue, respectively. b, Each state 
is processed as a graph where edges are introduced according to edge 
type-specific distance thresholds, for instance, dL−L

max and dL−P
max. c, To generate new 

chemical matter conditioned on molecular substructures, we apply the learned 
denoising process to the entire molecule (superscript ‘gen’), but at every step we 

replace the prediction for the static substructure with the ground-truth noised 
version computed with q (superscript ‘input’). The protein context (gray) 
remains unchanged in every step. d, To tune molecular features, we find 
variations of a starting molecule by applying small amounts of noise and running 
an appropriate number of denoising steps. The new set of molecules is ranked by 
an oracle and the procedure is repeated for the best-scoring candidates.  
e, DiffSBDD is sensitive to reflections and can thus distinguish molecules with 
different stereochemistry. f, The neural network backbone is composed of MLPs 
that map scalar features h of ligand and pockets nodes into a joint embedding 
space, and SE(3)-equivariant message passing layers that operate on these 
features, each node’s coordinates x and a time step embedding t. It outputs the 
predicted noise values ϵ̂ for every vertex.
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synthetic dataset on average (−7.68 versus −9.17). This result underscores 
the importance of high-quality training sets for SBDD models that aim to 
design high-affinity binders. Lastly, the DiffSBDD models also produce 
molecules that are slightly more similar to the reference on average 
(Fig. 2a,d) and contain a comparable amount of five- and six-membered 
rings to natural ligands (Fig. 2b,e). However, very small and very large ring 
systems consisting of less than four or more than seven atoms, respec-
tively, are typically over-represented in DiffSBDD molecules. It is worth 
mentioning that differences between the two conditioning approaches 
(DiffSBDD-cond and DiffSBDD-joint) are typically much smaller than the 
differences between DiffSBDD and other models. Thus, the empirical 
evidence does not clearly favor one conditioned diffusion approach 
over the other. Additional tests of the distribution learning capabilities 
are summarized in Supplementary Section 5.1.

Figure 2c,f shows a representative selection of molecules for one 
target from each test set. The selection is filtered to contain examples 
that are drug-like (quantitative estimate of drug-likeness (QED) > 0.5) 
and similar to purchasable molecules from the Enamine Screening 
Collection. These filters represent favorable properties one might 
look for in a drug design campaign. The target with Protein Data Bank 
(PDB) identifier 6c0b, for example, is a human receptor that is involved 
in microbial infection29 and possibly tumor suppression30. The refer-
ence molecule, a long fatty acid (Fig. 2f, bottom) that aids receptor 
binding29, has too high a number of rotatable bonds and low a num-
ber of hydrogen bond donors/acceptors to be considered a suitable 

drug-like compound (QED = 0.36). Our model, however, generates 
drug-like (QED = 0.87 in the first example) and suitably sized molecules 
by adding aromatic rings connected by a few rotatable bonds, which 
allows the molecules to adopt a complementary binding geometry 
and is entropically favorable by reducing the degrees of freedom, a 
classic approach in medicinal chemistry31. Larger random samples of 
generated molecules are presented in Supplementary Figs. 8 and 9. 
Moreover, Supplementary Table 4 summarizes the fractions of novel 
and unique generated molecules.

Generating chemical matter from known 
substructures
In drug discovery, it is common to design molecules around previously 
identified active substructures. For example, some important tasks are 
to design a scaffold around a set of functional groups (scaffold hopping) 
or extend an existing fragment to make a whole molecule (fragment 
growing). Generating compounds, or parts thereof, conditioned on 
a given molecular context is reminiscent of inpainting, a technique 
originally introduced for completing missing parts of images32,33 but 
also adopted in other domains, including biomolecular structures34. 
We can realize a number of drug discovery sub-tasks via an inpainting 
technique known as the ‘replacement method’33,35, whereby we add 
new atoms in and around fixed regions of the substructure to design 
whole molecules (Fig. 1c and ‘Inpainting’ in Methods). Unlike previous 
methods, using DiffSBDD in this way does not require retraining a model 
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Fig. 2 | Evaluation of distribution learning capabilities and generated 
examples. All targets are taken from the CrossDocked and Binding MOAD test 
sets. a, Comparison of generated molecules with the reference molecule from the 
same pocket. We compare the Tanimoto similarity of the molecular fingerprints 
and compute the difference Vinagen − Vinaref between their Vina docking scores. 
n = 7,800, 7,800, 7,642, 8,932, 7,800 and 7,733, from left to right. b, Average 
number of rings of different sizes per generated molecule. c, Example molecules 
generated by DiffSBDD-cond for a pocket from the CrossDocked test set. We 
compared all generated molecules with the approximately 4.2 million compounds 

from the Enamine Screening Collection, and selected the three closest hits 
with drug-likeness QED > 0.5. Vina docking score, QED drug-likeness score 
and fingerprint similarity to the most similar Enamine molecules are reported 
in each case. d–f, The same analyses as in a–c but for target pockets from the 
Binding MOAD test set. n = 11,623, 11,581, 15,718, 13,072 and 11,900, from left to 
right. Carbon atoms are shown in orange or magenta. Oxygen, nitrogen, sulfur, 
chlorine and fluorine are shown in red, dark blue, yellow, green and light blue, 
respectively. All box plots within violins include the median line, a box denoting 
the interquartile range (IQR) and whiskers showing data within ±1.5 × IQR.
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on any specialized or synthetic datasets. Curating such datasets is often 
time and labor intensive, and typically relies on potentially sub-optimal 
assumptions (for example, definition of fragments) to convert a gen-
eral dataset of small molecules into a task-specific dataset that can 
be used to train specialized models. With our proposed approach, by 
contrast, the simple definition of an arbitrary binary mask is sufficient 
for the diffusion model to generalize to any inpainting task while using 
a neural network trained on all available protein–ligand data in raw 
form. Examples of five different design applications can be found in 
Extended Data Fig. 1. A systematic test on the Binding MOAD test set 
in the tasks of linker design, scaffold hopping and scaffold elaboration 
is presented in Supplementary Section 5.5. We find that constraining 
fixed regions to highly complementary substructures within the protein 
pocket substantially enhances Vina scores compared with the baseline 
version of DiffSBDD in all three tasks. For fragment linking, our general 
sampling strategy even achieves results comparable to the specialist 
model DiffLinker36.

Iterative search for better molecule candidates
For hit identification and optimization of lead molecules in real 
use cases, it is not enough to just sample molecules from the whole 
training data distribution. Instead, we are usually interested in the 
better-performing tail of the distribution, and only want to pursue 
the most promising candidates. As we could show that DiffSBDD reca-
pitulates the chemical space of the training set including high-scoring 
molecules, we should always find promising drug candidates with 
strong docking scores, synthetic accessibility and other desired prop-
erties. Here we propose a simple protocol to access them efficiently 
through repeated noising/denoising combined with selection of the 
most promising candidates in each iteration (Fig. 1d and ‘Implementa-
tion details’ in Methods). Optimization of synthetic accessibility, QED 
and Vina scores is demonstrated in Extended Data Fig. 2a–d.

Furthermore, we consider the challenging case of highly selec-
tive kinase inhibitor design (Extended Data Fig. 2e–g). In our experi-
ment, we perform positive design against our on-target kinase  
BIKE (PDB code 4w9w) while simultaneously performing negative 
design against the structurally similar off-target kinase MPSK1 (PDB 
code 2buj) (Extended Data Fig. 2e). Within five rounds of optimization, 
we managed to improve the on-target docking score from −7.2 to −13.9 
while simultaneously decreasing the off-target value from −10.8 to −8.7, 
demonstrating substantially improved specificity.

Conclusion
Many machine learning methods for SBDD focus exclusively on the 
de novo generation of new ligands from scratch, which often limits 
their sample quality and synthesizability, and ultimately hinders lab 
validation of designs. While the purely de novo design of chemical mat-
ter remains challenging for our diffusion model, we could show that 
learning-based tools are ready to be incorporated in drug development 
pipelines if additional design constraints are enforced. Constraining 
the problem to realistic substructures such as fragments or scaffolds 
leads to better designs because it prevents the neural network from 
overly hallucinating. Retaining substructures of previously synthesized 
molecules holds promise in facilitating chemical synthesis and experi-
mental testing. Moreover, the capability to further ‘locally’ (in chemi-
cal space) optimize designed ligands is important in real-world drug 
discovery and effectively improves the quality of the initial designs. For 
similar applications, previous studies typically resorted to specialized 
models that were trained on tailored datasets and performed well on 
only narrowly defined tasks. Here we provided evidence that a powerful 
general diffusion model can be used as a drop-in replacement for these 
specialized models if the sampling procedure is modified appropri-
ately. This means in the future we can expect better performance in 
all discussed sub-tasks, solely by improving the distribution learning 
capabilities and sample quality of the main model.

Methods
Denoising diffusion probabilistic models
DDPMs23 are a class of generative models inspired by non-equilibrium 
thermodynamics. In brief, they define a Markovian chain of random dif-
fusion steps by slowly adding noise to sample data and then learning the 
reverse of this process (typically via a neural network) to reconstruct 
data samples from noise.

In this work, we closely follow the framework developed by Hooge-
boom et al.24. In our setting, data samples are atomic point clouds 
zdata = [x, h] with 3D geometric coordinates x ∈ ℝN×3 and categorical fea-
tures h ∈ ℝN×d, where N is the number of atoms. A fixed noise process

q (zt|zdata) = 𝒩𝒩 (zt|αtzdata,σ2t I) (1)

adds noise to the data zdata and produces a latent noised representation 
zt for t = 0, …, T. σ2t  is the variance of the Gaussian noise distribution.  
αt controls the signal-to-noise ratio SNR (t) = α2

t /σ2t  and follows either a 
learned or pre-defined schedule from α0 ≈ 1 to αT ≈ 0 (ref. 37).  
We choose a variance-preserving noising process32 with αt = √1 − σ2t . I 
is an identity matrix.

As the noising process is Markovian, we can write the denoising 
transition from time step t to s < t in closed form as

q(zs|zdata, zt) = 𝒩𝒩 (zs
||||
αt|sσ2s
σ2t

zt +
αsσ2t|s
σ2t

zdata,
σ2t|sσ

2
s

σ2t
I) (2)

with αt|s =
αt

αs
 and σ2t|s = σ2t − α2

t|sσ
2
s  following the notation of Hoogeboom 

et al.24. This true denoising process depends on the data sample zdata, 
which is not available when using the model for generating new sam-
ples. Instead, a neural network ϕθ, where θ indicates trainable param-
eters, is used to approximate the sample ẑdata. More specifically, we can 
reparameterize equation (1) as zt = αtzdata + σtϵ with ϵ ∼ 𝒩𝒩(0, I)  and 
directly predict the Gaussian noise ϵ̂θ = ϕθ(zt, t). Thus, ẑdata is simply 
given as ẑdata =

1
αt
zt −

σt
αt
ϵ̂θ.

The neural network is trained to maximize the likelihood of 
observed data by optimizing a variational lower bound on the data, 
which is equivalent to the simplified training objective 
ℒtrain =

1
2
||ϵ − ϕθ(zt, t)||2 up to a scale factor23,37. See Supplementary Sec-

tion 1 for details.

Equivariance
Structural biology remains a rather data-sparse domain. It is there-
fore common practice to encode known geometric constraints, 
typically equivariance to rotations and translations, directly into 
the neural network architecture, thereby facilitating the learning 
task because possible neural operations are limited to a meaningful 
subset. In the 3D molecule-generation setting, we explicitly exclude 
reflection-equivariant operations because they would make the 
model blind to some aspects of stereochemistry. It is known that dif-
ferent stereoisomers can have fundamentally different therapeutic 
effects (for example, ref. 38; Fig. 1e) and might even lead to unfore-
seen off-target activity and hence toxicity. We therefore developed 
a reflection-sensitive system that is SE(3)-equivariant rather than 
E(3)-equivariant although the latter is more commonly adopted in 
related studies18,24,39.

Technically, we ensure SE(3)-equivariance in the following sense: 
evaluating the likelihood of a molecule x(L) ∈ ℝ3×NL given the 3D repre-
sentation of a protein pocket x(P) ∈ ℝ3×NP should not depend on global 
SE(3)-transformations of the system, meaning p(Rx(L) + t∣Rx(P) + t)  
= p(x(L)∣x(P)) for orthogonal R ∈ ℝ3×3 with RTR = I, det(R) = 1 and t ∈ ℝ3 
added column-wise. At the same time, it should be possible to generate 
samples x(L) ~ p(x(L)∣x(P)) from this conditional probability distribution 
so that equivalently transformed ligands Rx(L) + t are sampled with the 
same probability if the input pocket is rotated and translated and we 
sample from p(Rx(L) + t∣Rx(P) + t). This definition explicitly excludes 
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reflections that are connected with chirality and can alter the biomol-
ecule’s properties. Node-type features, which transform invariantly, 
are ignored in this discussion for simpler notation.

In our set-up, equivariance to the orthogonal group O(3) (compris-
ing rotations and reflections) is achieved because we model both prior 
and transition probabilities with isotropic Gaussians where the mean 
vector transforms equivariantly with respect to rotations of the context 
(see Hoogeboom et al.24 and Supplementary Section 3). Ensuring trans-
lation equivariance, however, is harder because the transition proba-
bilities p(zt−1∣zt) are not inherently translation-equivariant. To 
circumvent this issue, we follow previous studies24,40 by limiting the 
whole sampling process to a linear subspace where the center of mass 
(COM) of the system is zero. In practice, this is achieved by subtracting 
the COM of the system before performing likelihood computations or 
denoising steps. As equivariance of the transition probabilities depends 
on the parameterization of the noise predictor ϵ̂θ, we can make the 
model sensitive to reflections with a simple additive cross-product 
term in the neural network’s coordinate update as discussed in the next 
section and Supplementary Section 4.

SE(3)-equivariant GNNs
A function f ∶ 𝒳𝒳 𝒳 𝒳𝒳 is said to be equivariant with respect to the group 
G if f(g.x) = g.f(x), where g. denotes the action of the group element g ∈ G 
on 𝒳𝒳  and 𝒳𝒳 (ref. 41). GNNs are learnable functions that process 
graph-structured data in a permutation-equivariant way, making them 
particularly useful for molecular systems where nodes do not have an 
intrinsic order. Permutation invariance means that GNN(ΠX) = ΠGNN(X) 
where Π is an n × n permutation matrix acting on the node 
feature matrix.

As the nodes of the molecular graph represent the 3D coordinates 
of atoms, we are interested in additional equivariance with respect to the 
Euclidean group E(3) or rigid transformations. An E(3)-equivariant GNN 
(EGNN) satisfies EGNN(ΠXA + b) = Π EGNN(X)A + b for an orthogonal 3 × 3  
matrix A with A⊤A = I and some translation vector b added row-wise.

In our case, as the nodes have both geometric atomic coordinates 
x as well as atomic type features h, we can use a simple implementation 
of EGNN proposed by Satorras et al.39, in which the updates for features 
h and coordinates x of node i at layer l are computed as follows:

mij = ϕe (hl
i,h

l
j ,d

2
ij ,aij) , ̃eij = ϕatt (mij) (3)

hl+1
i = ϕh (hl

i,∑
j≠i

̃eijmij) (4)

xl+1
i = xl

i +∑
j≠i

xl
i − xl

j

dij + 1
ϕx (hl

i,h
l
j ,d

2
ij,aij) (5)

where ϕe, ϕatt, ϕh and ϕx are learnable multilayer perceptrons (MLPs) 
and dij and aij are the relative distances and edge features between nodes 
i and j respectively. mij and ̃eij are messages and attention coefficients, 
respectively. Following Igashov et al.36, we do not update the coordi-
nates of nodes that belong to the pocket to ensure the 3D protein 
context remains fixed throughout the EGNN layers.

We can break the symmetry to reflections and thereby make the 
GNN layer SE(3)-equivariant by adding a cross-product-dependent 
term to the coordinate update, which changes sign under reflection:

xl+1
i = xl

i +∑
j≠i

xl
i − xl

j

dij + 1
ϕd

x (hl
i,h

l
j ,d

2
ij,aij) (6)

+
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j − x̄l)

∥ (xl
i − x̄l) × (xl

j − x̄l) ∥ +1
ϕ×

x (hl
i,h

l
j ,d

2
ij,aij) . (7)

Here, x̄l denotes the COM of all nodes at layer l. ϕ×
x  is an additional MLP. 

The desired SE(3)-equivariance of this modification is discussed in 
Supplementary Section 4.

Inpainting
For molecular inpainting as shown in Fig. 1c, a subset of all atoms is 
fixed and serves as the molecular context we want to condition on.  
All other atoms are generated by the DDPM. To this end, we sample a 
diffused representation zinputt  of the fixed atoms zdata at every time step 
t in addition to the predicted latent representation zgen

t . A set of mask 
indices ℳ  uniquely identifies nodes corresponding to fixed atoms in 
zgen
t . Note that zinputt  contains exactly |ℳ| atoms while zgen

t  is bigger.  
For every denoising step, we then replace the generated atoms cor-
responding to fixed nodes (zgen

t−1,i∈ℳ ) with their forward noised 
counterparts:

zinputt−1 ∼ q (zt−1|zdata) (8)

zgent−1 ∼ pθ (zt−1|zt) (9)

zt−1 = [zinputt−1 , zgent−1,i∉ℳ] . (10)

In this manner, we traverse the Markov chain in reverse order from 
t = T to t = 0 to generate conditional samples. Because the noise sched-
ule decreases the noising process’s variance to almost zero at t = 0 
(‘Denoising diffusion probabilistic models’ section), the final sam-
ple is guaranteed to contain an unperturbed representation of the 
fixed atoms. This approach was applied to pocket-conditioned ligand 
inpainting by fixing all pocket nodes when sampling from the joint dis-
tribution model (DiffSBDD-joint). It was also used in the substructure  
design experiments.

Equivariance. As the equivariant diffusion process is defined for a 
COM-free system, we must ensure that this requirement remains satis-
fied after the substitution step in equation (10). To prevent a COM shift, 
we therefore translate the fixed atom representation so that its COM 
coincides with the predicted representation:

̃xinput
t−1 = xinput

t−1 + 1
n ∑

i∈ℳ
xgen
t−1,i −

1
n ∑

i∈ℳ
xinput
t−1,i (11)

before creating the new combined representation

zt−1 = [ ̃zinputt−1 , zgent−1,i∉ℳ] (12)

with ̃zinputt−1 = [ ̃xinput
t−1 ,hinput

t−1 ] and n = |ℳ|.

Resampling. Trippe et al.42 showed that this simple replacement 
method inevitably introduces approximation error that can lead to 
inconsistent inpainted regions. In our experiments, we observe that 
the inpainting solution sometimes generates disconnected molecules 
that are not properly positioned in the target pocket (see Supple-
mentary Fig. 1a for an example). Trippe et al.42 proposed to address 
this limitation with a particle filtering scheme that upweights more 
consistent samples in each denoising step. We, however, choose to 
adopt the conceptually simpler idea of resampling33, where each 
latent representation is repeatedly diffused back and forth before 
advancing to the next time step as demonstrated in the algorithm in 
Supplementary Section 6.4. This enables the model to harmonize its 
prediction for the generated part and the noisy sample from the fixed 
part, which does not include any information about the generated 
part. We choose r = 10 resamplings per denoising step for our experi-
ments with DiffSBDD-joint based on empirical results discussed in 
Supplementary Section 5.4.
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Implementation details
Molecule size. As part of a sample’s overall likelihood, we compute 
the empirical joint distribution of ligand and pocket nodes p(NL, NP) 
observed in the training set and smooth it with a Gaussian filter (σ = 1).  
In the conditional generation scenario, we derive the distribution 
p(NL∣NP) and use it for likelihood computations.

For sampling, we can either fix molecule sizes manually or sam-
ple the number of ligand nodes from the same distribution given the 
number of nodes in the target pocket:

NL ∼ p(NL|NP). (13)

For the experiments discussed in ‘DiffSBDD captures the underly-
ing data distribution’ section, we increase the mean size of sampled 
molecules by five (CrossDocked) and ten (Binding MOAD) atoms, 
respectively, to approximately match the sizes of molecules found in 
the test set. This modification makes the reported Vina scores more 
comparable as the in silico docking score is highly correlated with 
the molecular size, which is demonstrated in Supplementary Fig. 4. 
Average molecule sizes after applying the correction are shown in Sup-
plementary Table 7 together with corresponding values for generated 
molecules from other methods.

Featurization. All molecules are expressed as graphs in which every 
atom is represented by a node. To process ligand and pocket nodes 
with a single GNN, atom types and residue types are first embed-
ded in a joint node embedding space by separate learnable MLPs 
(Fig. 1f). We also experimented with coarse-grained Cα descriptions 
of the pockets to reduce processing time but found this represen-
tation to be inferior in most cases (Supplementary Section 5.9).  
The full atom model uses the same one-hot encoding of atom types 
for ligand and protein nodes. For the Cα-only model, the node fea-
tures of the protein are set as one-hot encodings of the amino acid 
type instead.

Noise schedule. We use the pre-defined polynomial noise schedule 
introduced in ref. 24:

̃αt = 1 − ( t
T
)
2
, t = 0,… ,T. (14)

Following refs. 24,43, values of ̃α2
t|s = ( ̃αt

̃αs
)
2

 are clipped between 0.001 
and 1 for numerical stability near t = T, and ̃αt  is recomputed as

̃αt =
t

∏
τ=0

̃ατ|τ−1. (15)

A tiny offset ϵ = 10−5 is used to avoid numerical problems at t = 0 defining 
the final noise schedule:

α2
t = (1 − 2ϵ) ⋅ ̃α2

t + ϵ. (16)

Feature scaling. We scale the node-type features h by a factor of 0.25 
relative to the coordinates x, which was empirically found to improve 
model performance in previous work24. To train joint probability mod-
els in the all-atom scenario, it was necessary to scale down the coordi-
nates (and corresponding distance cut-offs) by a factor of 0.2 instead 
to avoid introducing too many edges in the graph near the end of the 
diffusion process at t = T.

Postprocessing. For postprocessing of generated molecules, we 
use a similar procedure as in ref. 44. Given a list of atom types and  
coordinates, bonds are first added using OpenBabel45. We then 
use RDKit to sanitize molecules and filter for the largest molecular 
fragment.

Quantitative evaluation of inpainting for the whole Binding MOAD 
test set. For all inpainting experiments across the whole test set, we 
perform automatic masking of atoms that are to be fixed. For scaffold 
elaboration, we extract the Bemis–Murcko scaffold46 using RDKit and 
compute a binary mask to fix the scaffold, while functional groups are 
redesigned. For scaffold hopping, we simply take the inverse of the 
mask used for scaffold elaboration. For linker design, we fragment 
each molecule in the test set in multiple ways as in Igashov et al.36.  
To benchmark against DiffLinker, we use the model weights and pro-
tocol as described in Igashov et al.36 except we give the ground-truth 
linker size as input, rather than predict it using the auxiliary model, for 
fairness. In small-scale experiments where finer control is desirable 
(for example, as in the fragment merging example described below), 
the binary mask is defined manually.

Depending on the use case, we find it desirable to perform molecu-
lar inpainting within two regimes: (1) designing a completely new 
inpainted region de novo (DiffSBDD-de novo) to explore the entire 
chemical fitness landscape; or (2) redesigning an existing region via 
partial noising then denoising (Supplementary Section 5.7), thus locally 
exploring desired properties by exploitation (DiffSBDD-diversify). 
The first case is more amenable to situations in which we have no prior 
information other than the fixed substructure (for example, fragment 
linking after a fragment screen), meaning that unconstrained explora-
tion of the chemical fitness landscape is the preferred approach for the 
majority of SBDD. The second case is more relevant in scenarios where 
we have prior information about the desired chemical and topological 
composition of the designed region that we can use to bias generation 
(with the choice of t being a hyperparameter). This is particularly rele-
vant in the case of scaffold hopping, where we try to keep the properties 
of a molecule relatively unchanged while designing a new topology47.

Molecular-inpainting case studies. All molecular-inpainting experi-
ments shown in Extended Data Fig. 1a–e use a version of DiffSBDD-cond 
trained on Binding MOAD.

Scaffold hopping is performed for a mitotic kinesin Eg5 inhibitor 
(PDB code 2gm1)48 where we fix the functional groups mediating the 
binding to the pocket while designing a new scaffold structure.

The opposite case of scaffold elaboration is applied to a rationally 
designed inhibitor targeting the actin-associated protein ENAH EVH1 (PDB 
code 6rcj)49 where we fix the scaffold and design new functional groups.

Fragment merging is the task of combining fragments with an 
overlapping binding site50. For the example in this study, we replicate 
the results of Gahbauer et al.51, who performed fragment merging of 
two fragments (PDB codes 5rsw and 5rue) identified by experimental 
screening52 for the SARS-CoV-2 non-structural protein 3 (Nsp3) using 
the chemoinformatics-based method Fragmenstein53. To perform the 
fragment merge, instead of masking out and reinserting atoms, we 
instead choose to fix all atoms during generation except the atom on 
each fragment closest to the other. We need to perform t = 200 steps 
of the DiffSBDD-diversify procedure to allow the model to arrange 
the atom positions as well as change the atom types. All PDB files were 
already structurally aligned.

Fragment growing is performed around the central motif of 
another inhibitor for the ENAH EVH1 target (PDB entry 5ndu)49.

The fragment linking example is based on the same target (PDB 
entry 5ndu). Here we are designing not only a small linker made of a few 
atoms but rather an entirely new fragment with two connecting linkers 
to join two outer fragments of the reference ligand.

Iterative molecule optimization. To perform property optimization 
as shown in Fig. 1d, we first noise a molecule from an experimental 
protein–ligand complex for t steps, where t ≪ T, using the forward dif-
fusion process. From this partially noised sample, we can then denoise 
the appropriate number of steps with the reverse process until t = 0.  
The stochasticity in this quick noise/denoise process allows us to 

http://www.nature.com/natcomputsci
https://doi.org/10.2210/pdb2gm1/pdb
https://doi.org/10.2210/pdb6rcj/pdb
https://doi.org/10.2210/pdb5rsw/pdb
https://doi.org/10.2210/pdb5rue/pdb
https://doi.org/10.2210/pdb5ndu/pdb
https://doi.org/10.2210/pdb5ndu/pdb


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-024-00737-x

sample new and diverse candidates of various properties while staying 
in the same region of chemical space, assuming t is small (Supplemen-
tary Fig. 3). Note that this approach, which is inspired by Luo et al.54, 
does not allow for direct optimization of specific properties. Instead, 
it can be regarded as an exploration around the local chemical space 
while maintaining high shape and chemical complementary via the 
conditional denoising model.

We extend this idea by combining the partial noising/denoising 
procedure with a simple evolutionary algorithm that optimizes for 
specific molecular properties (Fig. 1d). At every stage in the optimiza-
tion process, we generate 100 new molecules (from either the previ-
ous generation or the original molecule in the first case). Molecules 
are modified via partial noising/denoising with a randomly chosen t 
between 10 and 150. The new molecules are then passed to an oracle/
score function (for instance, a docking program or synthetic acces-
sibility predictor) to be ranked. The top-k molecules are then selected 
to seed the new population. In our study, we use k = 10.

For the selective kinase design experiment, we additionally pruned 
any candidates that regress with regard to the on- and off-target dock-
ing scores of the original molecule before selecting the top molecules 
(that is those above or left of the red star in Extended Data Fig. 2f) 
to bias the molecules to have high affinity to the on-target kinase 
as well as specificity. The starting molecule has ChEMBL identifier 
CHEMBL388978.

Experimental set-up
Datasets. We use the CrossDocked dataset55 with 100,000 high-quality 
protein–ligand pairs for training and 100 proteins for testing, following 
the sequence-based data split of previous studies15,44.

We also evaluate our method on a curated dataset of experimen-
tally determined complexed protein–ligand structures from Binding 
MOAD28. We keep pockets with moderately ‘drug-like’ ligands with 
QED score >0.3 that pass the database’s validity criteria (http://www.
bindingmoad.org/). We further discard small molecules that contain 
atom types ∉ {C, N, O, S, B, Br, Cl, P, I, F} as well as binding pockets 
with non-standard amino acids. We define binding pockets as the set 
of residues that have any atom within 8 Å of any ligand atom. Ligand 
redundancy is reduced by randomly sampling at most 50 molecules 
with the same chemical component identifier (3-letter-code). After 
removing corrupted entries that could not be processed, 40,344 train-
ing pairs and 130 testing pairs remain. A validation set of size 246 is used 
to monitor estimated log-likelihoods during training. The split is made 
to ensure different sets do not contain proteins from the same Enzyme 
Commission Number main class.

As various proteins could not be successfully processed by one 
or several baseline methods, our analysis of the distribution learning 
capabilities is performed for only pockets for which samples from all 
methods are available. These are 78 and 119 targets from CrossDocked 
and Binding MOAD, respectively.

Baselines. We select four recently published autoregressive deep 
learning methods for SBDD. Pocket2Mol15, ResGen25 and PocketFlow26 
are sequential schemes relying on graph representations of the protein 
pocket and previously placed atoms to predict probabilities based on 
which new atoms are added. DeepICL27 pursues a similar sequential 
approach but strives to improve generalizability in the face of limited 
data by incorporating prior knowledge in the form of protein–ligand 
interaction patterns. They are currently the state of the art among this 
class of models. For Pocket2Mol, we re-evaluate already generated 
ligands on the CrossDocked dataset kindly provided by the authors. 
All other results were produced using the official implementations 
available online with default sampling parameters. Note that, unlike 
DiffSBDD, we therefore sample for the Binding MOAD test set with Pock-
et2Mol and ResGen models that have been trained on CrossDocked. 
As these two sets overlap (30 test set proteins from Binding MOAD are 

found in the CrossDocked training set), there is potential data leakage. 
In practice, however, we do not observe substantially different results 
when these targets are excluded from the analysis. We also attempted 
to train Pocket2Mol on Binding MOAD, but did not manage to robustly 
train the model on this dataset due to instability during training. Pock-
etFlow was pretrained on about 8 million molecules from the ZINC 
database56 and finetuned on a different subset of the CrossDocked 
dataset. DeepICL was trained on a much smaller dataset with about 
11,000 structures from the PDBbind database57.

For the fragment linking task, we compare against DiffLinker36. 
DiffLinker is an equivariant diffusion model similar to ours, but takes 
the pocket and fixed fragments as inputs and then designs only a linker.

Evaluation metrics. We use widely used metrics to assess the quality of 
our generated molecules14,15. (1) Vina score is an empirical estimate of 
the binding free energy of protein–small-molecule complexes. While it 
is not an ideal predictor of binding affinity, we chose the Vina score as a 
fast proxy that shows a certain level of correlation with experimentally 
determined values (see Extended Data Fig. 3 in ref. 36). (2) Convolutional 
neural network affinity is another predicted affinity score reported by 
the GNINA docking software58. (3) QED is a quantitative estimation of 
drug-likeness combining several desirable molecular properties59. (4) 
SA estimates synthetic accessibility, that is, the difficulty of synthesis60. 
(5) logP is the predicted octanol–water partition coefficient, a meas-
ure of hydrophobicity61. (6) Lipinski measures how many rules in the 
Lipinski rule of five62 are satisfied (in addition to the original four rules 
we require ten or fewer rotatable bonds). (7) Diversity is computed as 
the average pairwise dissimilarity (1 − Tanimoto similarity) between 
molecular fingerprints of all generated molecules for each pocket. 
(8) Inference time is the average sampling time per target. Chemical 
properties are calculated with RDKit63. Docking scores are obtained 
after local minimization with an empirical force field using the GNINA 
implementation58 or, if specified, after redocking with QuickVina264.

Statistics and reproducibility. No statistical method was used to 
predetermine sample size. While we aimed to sample 100 ligands per 
pocket for the results in the ‘DiffSBDD captures the underlying data 
distribution’ section, the exact number of available molecules varies 
slightly due to technical reasons and the characteristics of the different 
methods (Supplementary Table 9). Some metrics could be calculated 
only for molecules that pass RDKit’s sanitization step. Molecules not 
passing this filter were therefore excluded from the affected analyses. 
Furthermore, we exclude DeepICL from the comparison with Binding 
MOAD as we did not manage to sample any molecules for more than 
half of the test set proteins. Nevertheless we report distribution learn-
ing results of all methods on this substantially reduced set of targets in 
Supplementary Section 5.2.

Software. All code was written in Python (v3.10.4). For dataset 
preparation, we used numpy (v1.22.4), BioPython (v1.81) and RDKit 
(v2023.9.4). The neural network models were implemented and trained 
with PyTorch (v1.12.1), PyTorch Lightning (v1.7.4), PyTorch Geometric 
(v2.2) and Weights & Biases (v0.13.1). OpenBabel (v3.1.1) and RDKit 
(v2023.9.4) were used to post-process molecules. Docking/scoring was 
performed using the Gnina (v1.1) and QuickVina (v2.1) softwares. The 
data were analyzed and visualized using Pandas (v1.4.2), SciPy (v1.7.3), 
Matplotlib (v3.4.3) and Seaborn (v0.12.0).

The code required to run the baseline models is available in public 
repositories. Pocket2Mol can be found at https://github.com/pengxin-
gang/Pocket2Mol, ResGen at https://github.com/HaotianZhangAI4S-
cience/ResGen, PocketFlow (latest) at https://github.com/Saoge123/
PocketFlow, and DeepICL (v1.1.0) at https://github.com/ACE-KAIST/
DeepICL. Finally, DiffLinker (v1.0) is available at https://github.com/
igashov/DiffLinker. The Pocket2Mol and ResGen repositories do not 
provide version releases.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The subset of the CrossDocked dataset used in this study was curated 
in a previous work and is available online https://github.com/pengx-
ingang/Pocket2Mol/tree/main/data. The raw Binding MOAD data 
can be downloaded from http://www.bindingmoad.org/. We provide 
further instructions on how to process these data in our code reposi-
tory at https://github.com/arneschneuing/DiffSBDD. Pre-processed 
versions of both datasets65 as well as sampled molecules66 are avail-
able on Zenodo. Structural models of the discussed protein targets 
are available under PDB accession codes 2buj (ref. 67), 2gm1 (ref. 68), 
4tos (ref. 69), 4w9w (ref. 70), 5ndu (ref. 71), 5rsw (ref. 72), 5rue (ref. 73), 
5spd (ref. 74), 6c0b (ref. 75) and 6rcj (ref. 76). The starting molecule 
from the selective kinase design experiment has ChEMBL identifier 
CHEMBL388978. Source data are provided with this paper.

Code availability
Our source codes are publicly available at https://github.com/arnesch-
neuing/DiffSBDD (ref. 77). Model weights can be downloaded from 
Zenodo at https://doi.org/10.5281/zenodo.8183747 (ref. 78).
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Extended Data Fig. 1 | Molecular inpainting results. Design examples for 
scaffold hopping (A), scaffold elaboration (B), fragment merging (C), fragment 
growing (D) and fragment linking (E). The inputs to our model (the fixed atoms) 
are shown in blue, the outputs (designed molecules) are shown in green and the 
original molecules are shown in magenta for reference. PDB codes are shown 
for the ground truth structure. In the case of fragment merging, we compose 
fragments with two different crystal structures with PDB codes shown.  
(F) Importance of resampling for generating realistic and connected molecules. 

The designed region (green) finally harmonizes with the molecular context at 
high resamplings. (G) Effect of the number of resampling steps on molecular 
connectivity. Carbon atoms are shown in light blue, green, or magenta 
depending on atom character. Oxygen, nitrogen, sulfur and chlorine are shown 
in red, dark blue, yellow, and light green, respectively. Means and 95% confidence 
intervals are plotted for 3 design tasks. For this experiment we used 20 randomly 
selected targets from the test set.
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Extended Data Fig. 2 | Results on molecular optimization using DiffSBDD.  
(A-D) Experiments on single property molecular optimization. (A) Starting 
inhibitor from PDB code 5ndu. (B) QED optimization over 8 generations.  
(C) SA optimization over 7 generations. (D) docking score optimization over 
3 generations. We found that optimization over subsequent generations 
continuously optimized the docking score, but that was at expense of molecular 
quality. (E-G) Kinase inhibitor specificity optimization experiment. (E) Cartoon 
representation showing the high degree of structural similarity between our two 
kinases of interest (BIKE and MPSK1). (F) Trajectory plot showing the highest 
scoring molecule at each iteration during kinase inhibitor optimization.  

(G) Visual representation of the molecular graphs and bound conformations of 
the native and final molecules with corresponding Vina docking scores. Boxes 
in panels (B-D) represent the upper and lower quartile as well as the median of 
the data. Whiskers denote 1.5 times the interquartile range. Outliers outside this 
range are shown as flier points. Sample sizes for each generation are 80, 4474, 
4390, 4460, 4459, 4470, 4472, 4474 for panel B, 84, 4500, 4500, 4500, 4500, 
4500, 4500 for panel C and 118, 432, 437 for panel D. Carbon, oxygen, nitrogen 
and sulfur are shown in magenta, red, dark blue and yellow, respectively. QED: 
Quantitative Estimation of Drug-likeness; SA: Synthetic Accessibility; Sim.: 
Tanimoto molecular fingerprint similarity to the reference.
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