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Abstract. Navigating unmanned aerial vehicles in precarious environments
is of great importance. It is necessary to rely on alternative information pro-

cessing techniques to attain spatial information that is required for navigation
in such settings. This paper introduces a novel deep learning-based approach

for navigating that exclusively relies on synthetic aperture radar (SAR) im-

ages. The proposed method utilizes deep neural networks (DNNs) for image
matching, retrieval, and registration. To this end, we introduce Deep Cosine

Similarity Neural Networks (DCSNNs) for mapping SAR images to a global

descriptive feature vector. We also introduce a fine-tuning algorithm for DC-
SNNs, and DCSNNs are used to generate a database of feature vectors for SAR

images that span a geographic area of interest, which, in turn, are compared

against a feature vector of an inquiry image. Images similar to the inquiry are
retrieved from the database by using a scalable distance measure between the

feature vector outputs of DCSNN. Methods for reranking the retrieved SAR
images that are used to update position coordinates of an inquiry SAR image
by estimating from the best retrieved SAR image are also introduced. Numer-

ical experiments comparing with baselines on the Polarimetric SAR (PolSAR)
images are presented.

1. Introduction. Unmanned aerial vehicles (UAVs) have become an integral part
of reconnaissance and defense applications, and routinely operate in hostile and un-
certain environments. UAV flight maneuvering and navigation can be autonomously
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Figure 1. Overview of the system for SAR aided navigating by
SAR image representation, matching and registration

controlled and often relies on an embedded global positioning system (GPS). Al-
though the GPS provides position, navigation and timing (PNT) information, in
the GPS-denied settings it is necessary to obtain analogous spatial and temporal
awareness via other mechanisms. Such settings may include, but are not limited
to, operations in areas with GPS jamming devices, interference and outages. In-
deed, experiments have demonstrated that even a low-power jamming device can
interfere GPS signals, resulting in possible denial of GPS service over large areas
[16]. Additionally, attackers can control a maritime surface vessel by broadcasting
counterfeit GPS signals in order to manipulate a target receiver’s position, velocity,
or time [4].

Numerous studies in the literature have considered aided navigation in the GPS-
denied environments. A classical approach relies on Dead Reckoning (DR), which
involves estimating position based on a previously determined position integrated
with velocity or acceleration. Although it has been shown to work effectively in the
absence of GPS signal, a major drawback stems from the fact that it accumulates
position errors over time.

Vision-aided navigation may be a promising alternative that has been widely
studied for a decade [39, 48, 31, 37, 7, 8, 3, 5, 18]. Visual Odometry (VO), which
was termed by Nister et al. [31], estimates position and orientation by analyzing
the sequence of images. Namely, VO estimates the UAV’s current position with
respect to a previously acquired position by accumulating inter-frame translation
and rotation. VO can also be combined with the Simultaneous Localization and
Mapping (SLAM) technique [45, 5] as well as several other fusing methods including
filtering methods such as extended Kalman filter [3, 48] and State-Dependent Riccati
Equation nonlinear filter [30]. Furthermore, there exist previous works that fused
measured information from inertial measurement unit (IMU) [48, 30, 3], and on-
board cameras [39, 5]. Another subject of emphasis within the scope considered
image registration aided navigation [37, 32]. Mo Shan et al. [37] proposed a method
that used image feature extraction via Histograms of Oriented Gradients (HOG)
[9], which demonstrated promising results on image registration on Google Maps.

Nitti et al. [32] explored the use of interferometric synthetic aperture radar (In-
SAR) images for image registration to aid navigation in GPS-denied environments.

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785



SAR IMAGE-BASED POSITIONING IN GPS-DENIED ENVIRONMENTS USING DCSNN 765

Their proposed approaches are classified into two categories: cases when both SAR
amplitude and phase images are available; and cases when SAR amplitude images
are not available. In the former, their method is based on a comparison between
SAR images acquired from on-board equipment and a terrain landmark database
that contains geographic information and ground landmarks. In the latter, they
additionally exploit terrain elevation references acquired from digital terrain model
(DTM) as well as SAR phase data. The image coordinates of the expected land-
marks of an inquiry SAR image were obtained by an Automatic Target Detection
and Recognition (ATR) algorithm [34] and correlated with coordinates stored in
the database.

More recent image matching and registration techniques have exploited capabil-
ities of deep neural networks (DNNs) [2, 42, 47, 49, 15, 33]. Convolutional neural
networks (CNNs) have been widely used for mapping complicated images to “sim-
pler” feature vectors. The feature vectors, which are also called global descriptors
of images, are used to compare and retrieve similar images from a database. Also,
faster and more scalable CNN inference allow for large-scale image retrieval tasks
[33] that would otherwise be difficult with conventional image descriptors such as
scale-invariant feature transform (SIFT) [27, 28] or LIFT [46].

In this work, we introduce a novel approach to aid navigation in GPS-denied
environments by using a CNN-based SAR image descriptor. The general procedure
and corresponding article sections are as follows. Section 2 furnishes the proce-
dure for representing SAR images using the CNN-based descriptor. This involves a
method to generate a SAR image search database, which also serves as a training
dataset for the CNN-based descriptor. We introduce a novel CNN-based image
descriptor, the Deep Cosine Similarity Neural Network (DCSNN), and its training
procedure. The DCSNN is designed to generate a SAR image descriptor, a simple
feature vector that contains salient information of the image, that can be compared
via cosine similarity. In Section 3, we present a process to estimate the positioning
of an inquiry SAR image, using the DCSNN and scalable feature vector represen-
tations via product quantization (PQ) [17]. Given an inquiry SAR image, we infer
a feature vector by the DCSNN, compare cosine similarity distances between the
feature vector and feature vectors in the database, and retrieve SAR images whose
feature vectors are similar to inquiry image’s. After retrieving SAR images, the
conventional image feature description methods such as SAR-SIFT [10] or SIFT
[28], and the image matching method, RANdom SAmple Consensus (RANSAC)
[14], are used to rerank the retrieved images. Finally, an affine transformation as-
sociated with RANSAC is utilized to estimate the position of an inquiry image by
adjusting the coordinates of the best retrieved SAR image. A flowchart depicting
the general procedure in this article is provided in Fig. 1. Numerical experiments
demonstrating the performance of our approach against several baseline methods
that employ DNN-based binary hashing methods are provided in Section 4.

The primary contributions of this work are the following:

• A novel CNN-based image descriptor, DCSNN, that utilizes a graph-based
representation of SAR image patches for training.

• The use of cosine similarity, induced by the DCSNN and equipped with PQ,
to effectively measure the distances between feature vectors of SAR image
patches in a scalable manner.

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785



766 S. Park, M Rysz, K. L. Fair and P. M. Pardalos

• A navigation procedure using SAR image matching, retrieval and registration
that obtains and correlates current coordinates of a vehicle with coordinates
retrieved from a database.

• The methodology is validated and shown to be effective for polarimetric SAR
(PolSAR) image data from UAVSAR [1].
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Figure 2. Example of a patch graph. (a) a SAR map from the
UAVSAR dataset (b) patches extracted from the SAR map and its
associated graph (c) visualization of the adjacency matrix. White
cells show zero edge values whereas black cells show nonzero values.

2. Deep cosine similarity neural networks for image matching. In this
section we first describe the procedure for extracting SAR image patches from a
SAR map and generating a corresponding graph that represents the SAR map,
which are utilized as the training dataset for the DCSNN. Thereafter, we introduce
the DCSNN as a means of efficiently mapping a given SAR patch image to a single
descriptive vector. An integrated fine-tuning procedure for the DCSNN is also

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785
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described. After fine-tuning, the output vector of the DCSNN serves as a feature
vector that is compared against feature vectors of images in a database. Namely,
given an inquiry SAR patch, images for the database with similar attributes are
matched and retrieved.

2.1. Generating SAR patch graph. To guarantee a well-posed modeling frame-
work we assume availability of sufficient SAR image map data to cover the region of
navigation. SAR maps in their entirety are usually too large to be utilized as inputs
for DNNs. To develop computationally tractable process, we therefore extract im-
age patches from a given SAR map. Fig. 2 presents a PolSAR map obtained from
the UAVSAR dataset [1] that is used throughout this study, where the red, green,
and orange rectangles represent patches as shown in Fig. 2a and 2b. Specifically,
patches of size 600 × 600 pixels with a stride of 100 pixels are extracted and used
for subsequent analysis.

A key concept in our methodology involves a connectivity mapping of the image
patches, which is represented as an undirected graph consisting of nodes correspond-
ing to different patch images, and edges representing the similarities between two
patches. Nodes are labeled according to the assigned unique patch IDs. A graph’s
characteristics are usually represented by an adjacency matrix, A ∈ RN×N , where
N is the number of nodes (patches). Given patches i, j ∈ {1, . . . , N}, let element
Aij of matrix A corresponds to the edge value defined as the common pixel area
ratio between patches i and j. Formally, the edge values, Aij , ∀i, j ∈ {1, . . . , N},
measure the similarities between patches as,

(1) Aij = max(0,
2 ·Areaij

Areai + Areaj
), ∀i, j ∈ {1, . . . , N},

where Areai and Areaj are pixel areas of patch i and j, respectively; and Areaij is
the intersection of pixel area between patches i and j. Observe that the nonzero term
in (1) corresponds to the Dice score [12], a commonly used performance measure
for image segmentation tasks. Clearly, matrix A is symmetric and sparse since any
given patch tends to be similar to its neighboring patches with overlapping pixel
areas. Fig. 2c illustrates the adjacency matrix visualization corresponding to the
PolSAR map used in our experiments.

Note that the constructed adjacency matrix A represents the similarity between
SAR patches, and that its elements can be used as labels between any pair of
patches. In other words, matrix A readily furnishes labels that would otherwise be
extremely labor intensive to obtain for large-scale data in an ad-hoc manner by a
human. Consequently, given the low computational expense for obtaining the SAR
patches and corresponding matrix A, a neural network can be trained efficiently in
a supervised way.

Next, a SAR image search database consisting of information derived from the
image patches and their corresponding adjacency matrix A is constructed (see Fig.
1). It is assumed that location coordinates of all image patches are also known and
stored. Denote the set of image patches in the database by X =

{
x(1), . . . ,x(N)

}
,

where x(i) represents an image patch i ∈ {1, . . . , N}. The patches in X and matrix
A are used as the training dataset. Details about training the DCSNN model to
generate global descriptive feature vector are described in the next subsections.

2.2. Deep cosine similarity neural network. CNN-based descriptors have been
effectively used in numerous image analysis and retrieval applications. Structuring

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785
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our methodology accordingly, the primary goal of the DCSNN model is to efficiently
construct a “simple” descriptive vector of a given SAR image. The descriptive
feature vector of an inquiry patch image can then be compared against feature
vectors of patch images stored in a database, thereby, retrieving similar patches
along with their location coordinates (e.g., latitude and longitude).

Previous efforts demonstrate that the pretrained CNN-based descriptors, which
is trained on general image datasets such as ImageNet [11], work well for such
downstream tasks [2, 42, 49]. To increase the performance of tasks that use SAR
data, a new CNN-based descriptor can be trained on the SAR data by using the
pretrained CNN-based descriptor as an initialization for the new descriptor, which is
also known as fine-tuning. To “fine-tune” the neural network model in a supervised
manner, we use the adjacency matrix A described in Subsection 2.1 as labels of the
SAR images. We first define a loss function to train the DCSNN and present the
stochastic algorithm to minimize the loss function in the following subsection.

Define the DCSNN model as a CNN-based mapping fθ parameterized by θ, where
the parameters θ are learned during fine-tuning. Let d ∈ Rl be a feature vector
of feature length l that is obtained from the DCSNN as d = fθ(x). Clearly, to
exclusively use the feature vector d for comparing patch images during the retrieval
process, it is required that it be sufficiently “compact” yet descriptive of the image
x. For image patches stored in the database, we additionally construct an anchor
matrix D ∈ Rl×N such that the ith column corresponds to the feature vector d(i)

of the patch x(i) ∈ X.
We define the loss function, L(i), of the DCSNN as follows. For each patch x(i)

in the database, L(i) consists of a cross-entropy loss L
(i)
ce and a regularization loss

L
(i)
reg:

(2) L(i) = L(i)
ce + λL(i)

reg,

where λ > 0 is a regularization factor. Let Ai be the ith row vector of the adjacency
matrix A (i.e., Ai is associated with the patch i), then the cross-entropy loss takes
the form,

L(i)
ce = −

(
AT
i log Ω(i) + (1−AT

i ) log (1− Ω(i))
)

(3)

where Ω(i) = σ

(
DTd(i)

s

)
,(4)

and σ(·) is an element-wise sigmoid function, i.e., σ(x) = 1
1+exp−x , that forces the

dot product of feature vectors to range between 0 and 1. Since the gradient of
the sigmoid function σ(·) approaches 0 as its value nears ±∞, it results in longer
training times. To mitigate this, in (4) we impose a similarity factor s > 0, which
was introduced in previous literature [24]. Observing that an element Aij of the
adjacency matrix A must be in the range [0,1], Aij can be interpreted as a prob-
ability that the patch i is equivalent to the patch j. Thus, Ai in (3) can serve as
“ground truth” probabilities, whereas Ω(i) is the predicted probability that patch i
is similar to other patches.

Observe that the j th element of Ω(i), denoted by Ω
(i)
j , corresponds to the esti-

mated probability that patch i is similar to patch j. Thus, the higher the value

of an element Aij is, the higher the value of Ω
(i)
j that the DCSNN is expected to

generate. Accordingly, we apply a regularization loss, L
(i)
reg, such that the norm

of the feature vector produced by the DCSNN is expected to be approximately 1

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785
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Algorithm 1 Fine-tuning DCSNN

1: Input: learning rate η, minibatch size NB, stochastic anchor matrix size ND.
2: Initialize D by computing d(i) = fθ(x(i)), ∀x(i) ∈ X.
3: repeat
4: Select a random subset B of {1, · · · , N} of size NB.
5: Select a random subset D of {1, · · · , N} of size ND.

6: Define D̃ and Ã whose columns correspond to d(i) and Ai ∀i ∈ D, respec-
tively

7: 4θ ← 1
NB

∑
i∈B

∂
∂θ

(
L̃
(i)
ce + λL

(i)
reg

)
8: θ ← θ − η4θ
9: Update D with d(i), ∀i ∈ B

10: until θ has converged
11: Output: learned parameters θ of DCSNN.

upon successful fine-tuning. To this effect, the regularization loss considered in (2)
is defined as,

(5) L(i)
reg = (‖d(i)‖2 − 1)2.

After training, by using “regularized” feature vectors from the DCSNN, it is
expected that the dot products of the feature vectors are consistent with their
cosine similarities. Thus, the cosine similarity between feature vectors generated
by the model measures the extent of adjacency of the image patches. This fact
motivated the adopted name “DCSNN”.

Finally, by averaging over the N patches, the total loss function takes the form

(6) L = Lce + λLreg =
1

N

N∑
i=1

(
L(i)
ce + λL(i)

reg

)
.

2.3. A stochastic gradient descent algorithm for fine-tuning the DCSNN.
This subsection describes a procedure for fine-tuning the DCSNN. The most com-
mon training approach for cases with a large number of images are stochastic opti-
mization algorithms. Indeed, typical first and second order stochastic optimization
algorithms [20, 13, 35] can efficiently minimize the loss function (6). In this article,
we utilize stochastic gradient descent (SGD), which is the most prototypical first-
order stochastic optimization algorithm. Our procedure is illustrated in Algorithm
1 and described next.

The algorithm is initialized with a fixed learning rate η, minibatch size NB,
stochastic anchor matrix size ND, and anchor matrix D (lines 1-2). To manage a
large number of image patches in the database, we use subsets of patches to estimate
the value of the loss function and its derivative stochastically. During each iteration,
a subset of randomly selected patches, B ⊆ {1, . . . , N}, of size NB is created. The
images x(i), ∀i ∈ B, are used to estimate the gradient of the loss function with
respect to the parameters of the DCSNN model (line 7) and the feature vectors,
d(i), ∀i ∈ B, are used to update the anchor matrix, D (line 9). Similarly, a subset
of randomly selected patches, D ⊆ {1, . . . , N}, of size ND is generated and used

to construct the approximated anchor matrix, D̃ ∈ Rl×ND , such that its columns
correspond to the feature vectors d(i) where i ∈ D (lines 5 and 6). Further, a

submatrix Ã is constructed from the columns of A that correspond to the patches

Inverse Problems and Imaging Volume 15, No. 4 (2021), 763–785
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in D (line 6). The cross-entropy loss of each patch i ∈ B in (3) can then be estimated
by the following loss function:

(7)

L̃(i)
ce = −

(
ÃT
i log Ω̃(i) + (1− ÃT

i ) log (1− Ω̃(i))
)

where Ω̃(i) = σ

(
D̃Td(i)

s

)

and Ãi is the ith row vector of Ã. The above approximate cross-entropy loss and
the regularization loss is evaluated at each iteration to update the parameters θ of
the DCSNN (lines 7-8). We utilize backpropagation to determine the first gradients
of the approximate loss function. The anchor matrix D is updated and the process
is repeated until θ converges. Note that we assume that the anchor matrix, D, is
detached from the gradient calculation, i.e., ∂

∂θD
T d = DT ∂d

∂θ .

2.4. A comparison between DCSNN and binary hashing methods. Binary
representations of images can significantly decrease the required storage memory,
which is especially meaningful when managing a large image search database. They
can, however, result in substantial information loss when the real-valued outputs of
a CNN-based descriptor are approximated to binary values. The DCSNN utilizes
a “loose” regularization term, thus would be expected not to lose much descriptive
information of the SAR images. Nevertheless, it lacks the capability of using bi-
nary hashing to retrieve similar patches directly. For comparison with the DCSNN,
we revisit existing binary hashing methods via DNNs for image retrieval (also re-
ferred to as deep hashing neural networks), and presents a technique to address this
drawback in Section 3.1.

We consider three recent methods including the DPSH [23], DHN [50], and
DHNN-L2 [24]. Firstly, the loss function of the DPSH [23] is defined as,

(8) L = − 1

N

N∑
i=1

(
AT
i log σ(DTd(i)) + λ(b(i) − d(i))2

)
,

where b(i) is the binary representation of d(i). For the elements of the vectors,

b
(i)
j = sign(d

(i)
j ), ∀j ∈ {1, . . . , l}, where the sign(·) function maps an element of the

feature vector to -1 or 1. A distinguishing factor of our approach relative to the
DPSH is that the loss function of the DCSNN uses the similarity factor s and the
loose regularization term (5).

The loss function of the DHN [50] is defined as,

(9) L = − 1

N

N∑
i=1

(
AT
i log σ(DTd(i)) + λ‖|d(i)| − 1|‖1

)
where 1 is a vector of ones and | · | represents an element-wise absolute function.
The authors also introduced a smooth surrogate of the regularization of (9):

(10)

L = − 1

N

N∑
i=1

AT
i log σ(DTd(i))

+λ
1

N

N∑
i=1

l∑
j=1

log cosh(|d(i)
j | − 1).
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Lastly, the DHNN-L2 [24] was particularly proposed for remote sensing image
retrieval, with the loss function defined by

(11) L = − 1

N

N∑
i=1

(
AT
i log σ

(
DTd(i)

s

)
+ λ‖b(i) − d(i)‖22

)
.

The sole difference between the loss function of the DPSH (8) and that of the
DHNN-L2 is the use of the similarity factor s. Comparative studies between the
above binary hashing methods and the DCSNN are furnished in Section 4.

3. SAR image retrieval and registration with DCSNN for Positioning.
This section introduces a product quantization (PQ) technique and asymmetric
quantizer distance (AQD) for fast and scalable retrieval of SAR image patches
from the database. A reranking method that enhances the performance of image
retrieval and registration is also described.

SAR patch 𝒙

DCSNN 𝑓𝜽

Normalized feature 
vector 𝒅

𝒅1
(1)

Partitioning for 
whole training 

patches

𝑑(1)

𝒅2
(1)

𝑑𝑀
(1)

… …

𝒅1
(𝑁)

𝒅2
(𝑁)

𝒅𝑀
(𝑁)

…

𝑑(𝑁)

𝒄1,1 𝒄1,2

𝒄1,3

Cluster 1
Cluster 2

Cluster 3

Subvector representation for 𝑚 = 1

Figure 3. Overview of Product Quantization (PQ) with DCSNN

3.1. Approximate SAR retrieval via product quantization. After the fine-
tuned DCSNN generates feature vectors, their relative distances are computed and
used to retrieve images from the database that are similar to a given inquiry image.
Since the regularization loss term in (5) results in feature vectors whose norm values
are approximately 1, we employ cosine similarity as a distance metric between the
vectors. In particular, given an inquiry SAR image’s feature vector, images stored
in the database whose feature vectors produce high cosine similarity values are
retrieved. Suppose d(i) and d(j) are feature vectors for images i and j, respectively,
then the cosine similarity CS is defined as

(12) CS(d(i),d(j)) =
d(i)Td(j)

‖d(i)‖2‖d(j)‖2
.

Note that cosine similarity and Euclidean distance are proportional when the norms
of the feature vectors are 1. For simplicity, below we assume that a given feature vec-
tor is already normalized, i.e., ‖d(i)‖2 = ‖d(j)‖2 = 1 and CS(d(i),d(j)) = d(i)Td(j).

Clearly, the computational cost of calculating distances is proportional to the
number of images N and can be prohibitive when N � 1. To make real-time
application of the proposed method feasible, we employ the PQ method in [17] to
increase the scalability of computing (12). For each feature vector d ∈ RD, takeM ∈
Z+ subvectors of size T ∈ Z+ such that l = MT , i.e., d = [d1, . . . ,dM ] and di ∈ RT ,
∀i ∈ {1, . . . ,M}. For example, if d = [1.1, 1.2, 1.3, 1.4]T and M = 2, the subvectors
are d1 = [1.1, 1.2]T and d2 = [1.3, 1.4]. In this case, the size of subvector T = 2.
Then, for each subvector, K clusters with corresponding representative vectors are
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generated using the k -means algorithm [29]. Given the mth subvectors, d
(i)
m , i ∈

{1, . . . , N}, denote the representative vectors by cm,k ∈ RT , ∀k = {1, . . . ,K},
which are given by the mean of the subvectors in their respective clusters. Next,
each subvector is assigned to the cluster whose representative vector is closest. To

represent this, define a binary assignment vector, b
(i)
m ∈ {0, 1}K , corresponding to

feature vector d(i), such that its jth element, b
(i)
m,j , is given by

(13) b
(i)
m,j =

{
1, if j = argmaxkCS(d

(i)
m , cm,k),

0, otherwise

for all j ∈ {1, . . . ,K}. As a result, instead of d(i), the binary assignment b
(i)
m and

the representative vectors cm,k for all m and k are stored in the database. The
sequence of the described PQ procedure is depicted in Fig. 3.

Feature vector d(i) is then estimated using the binary assignment and its clusters’
representative vectors as follows. Define a matrix whose columns are given by the
representative vectors, i.e., Cm ∈ RT×K = [cm,1, . . . , cm,K ]. For a SAR image

patch i ∈ {1, . . . , N} in the database, the subvector d
(i)
m of d(i) can therefore be

approximated by Cmb
(i)
m . Consequently, feature vector d(i) can be estimated by

concatenating the approximated subvectors:

(14) d(i) ≈ d̂(i) = [C1b
(i)
1 , . . . ,CMb

(i)
M ].

Finally, given an inquiry image with a feature vector d, we employ AQD [6] to

calculate the approximate cosine similarity distances CS(d, d̂(i)), ∀i ∈ {1, . . . , N},
where

(15) CS(d,d(i)) ≈ CS(d, d̂(i)) =

M∑
m=1

dTmCmb(i)
m .

It is important to emphasize that the binary assignment vectors and represen-
tative vectors can be calculated offline and stored in the database. Moreover, due
to the fact that the computational cost of AQD depends on T and K, but not
N , the distance calculations become much more scalable. Note that in AQD the

distance measure used is asymmetric, i.e., CS(d, d̂(i)) 6= CS(d̂(i),d) [6]. It is not
necessary to compute the binary assignment vector of an inquiry image’s feature
vector, resulting in reduced computational costs.

3.2. Reranking retrieved SAR images and positioning based on image
registration. For a given inquiry image, patches with high AQD distances are
retrieved from the database. To further enhance the accuracy of retrieval, they are
reranked using conventional image feature detection methods and image matching
techniques. The process for reranking is two-fold. First, points of interest in SAR
images are identified by using the feature detecting methods SIFT [27, 28] and
SAR-SIFT [10]. Second, we perform image matching by comparing the inquiry
image with retrieved images based on location differences of the points of interest
and their descriptions.

A popular feature detecting method for extracting points of interest, also called
keypoints, is SIFT [27, 28]. The underlying procedure of SIFT relies on using the
Difference of Gaussian (DoG) as an approximation of the Laplacian of Gaussian
(LoG) to construct an image “pyramid”. This is then used to extract scale invariant
characteristics of the image. The resulting output consists of keypoints and their
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(a) (b)

Figure 4. Comparison between keypoints generated by (a) SAR-
SIFT and (b) SIFT

(a) (b)

Figure 5. (a) SAR-SIFT based keypoints on two adjacent SAR
patches (b) image matching of the keypoints via RANSAC

local descriptors. A keypoint provides location information about the point of
interest, while the local descriptor uses a square neighborhood/region to define
histograms of gradient orientations weighted by gradient magnitudes. The local
descriptors are obtained by normalizing and concatenating the histograms for each
scale (see [27, 28] for details).

Although SIFT has been widely used in numerous applications including image
indexing, image retrieval and video tracking, it does not work well on SAR images.
Because it relies on square neighborhoods of pixels to calculate the gradients, and
SAR images are prone to contain high levels of speckle noise, it prevents SIFT from
measuring the gradients accurately. There have been numerous attempts to modify
SIFT for processing SAR and remote sensing optical images [26, 41, 44, 10, 43].
These improvements include adapting a prefilter [26] or denoising of images [41].
Additional information such as digital elevation model (DEM) or orbit information
can be used to complement SIFT-based local descriptors on SAR images [44]. A
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Table 1. Descriptions of the PolSAR map from UAVSAR [1]

Region (Dataset Name) Usage Acquired Date
Pixel Size

(Height×Width)
#Patches

Hayward Fault Zone
Training Oct 9, 2018 23506× 3300 6440
Test May 30, 2019 23476× 3300 6412

Yukon–Kuskokwim
Delta

Training Aug 28, 2018 19066× 3300 5180
Test Sep 17, 2019 19148× 3300 5208

popular method that mitigates this drawback is known as SAR-SIFT [10]. To
detect keypoints in SAR images, SAR-SIFT employs a gradient definition based on
a multiscale Harris function and gradient by ratio. The authors suggested that using
a circular descriptor (rather than a square) to generate histograms is a better suited
to obtain robust local descriptors in SAR images. By comparison, Fig. 4 shows that
SAR-SIFT and SIFT generate vastly different keypoints when applied to the same
SAR image. Observe that keypoints from SAR-SIFT better distinguish boundaries
of the city terrain of a SAR image. It is important to note that the keypoints and
local descriptors can be precomputed using SAR-SIFT or SIFT for all images in the
database. In Section 4, we compare SAR and SAR-SIFT for reranking retrieved
SAR image patches.

Next, RANSAC [14] is utilized for matching retrieved images to an inquiry image.
RANSAC determines whether keypoints are inliers or outliers (for its consensus)
in order to find the best possible affine (or other) transformation for global defor-
mations between two images. Past research has shown that global relationships
between two SAR images can be successfully described by affine transformation
because SAR images are roughly “flat scenes” [51, 10]. For the SAR images in
Fig. 5a, the red dots in Fig. 5b represent locations of inliers, whereas green lines
indicate the affine transformations between images. The score for each retrieved
image is then defined as the number of inlier keypoints. The retrieved SAR images
are reranked according to their scores.

After reranking, a retrieved image with the highest score is selected for regis-
tration and positioning. As previously indicted, it is assumed that the location
coordinates of images in the database are stored and can be used for navigation.
Given the location coordinates of the top reranked image, say x1 and y1, we estimate
the coordinates of an inquiry image, x2 and y2, as,

(16)

[
x2
y2

]
=

[
b1
b2

]
+

[
a11 a12
a21 a22

] [
x1
y1

]
.

The coefficients a and b are obtained after completing image matching via RANSAC.
Experimental results for the proposed methodology are presented next.

4. Computational experiment.

4.1. Experiment settings. The UAVSAR dataset [1] was used to validate the
performance of the DCSNN and positioning estimations. UAVSAR comprises the
PolSAR and InSAR dataset that are used for studying dynamic changes on the
Earth’s surface. The datasets provide location coordinates acquired from real-time
GPS. We use L-band PolSAR data because it is more conducive to navigation tasks
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(a) (b)

Figure 6. PolSAR data from UAVSAR dataset for our exper-
iments. (From left) VVVV(R), HVHV(G), HHHH(B) channels,
and total RGB image. Best viewed in color. (a) PolSAR map
for Hayward Fault Zone in California, US. (b) PolSAR map for
Yukon–Kuskokwim Delta in Alaska, US.

because PolSAR consists of the amplitude and/or phase of backscattered signals
that can be collected during a single flight. Multi-look cross (MLC) products of
PolSAR were considered, and VVVV, HVHV, and HHHH SAR images of MLC
were used. These correspond to red, green, and blue channels of the total SAR map
image, respectively, as depicted in Fig. 6.

We examined two geographically distinct regions on the Earth’s surface: the Hay-
ward Fault Zone in California, US, shown in Fig. 6a; and the Yukon–Kuskokwim
Delta in Alaska, US, shown in Fig. 6b. The former contains many man-made struc-
tures; whereas the latter consists of only natural formations. Two SAR maps were
prepared for each region. The first map was for training and was preprocessed to
extract image patches and to construct the associated graph and adjacency ma-
trix A. After fine-tuning the DCSNN on the training dataset, binary assignment
vectors and representative vectors of PQ were generated and stored in an image
search database. The second map served for testing purpose and was therefore used
to extract inquiry SAR patches. Details of the maps used in our experiments are
illustrated in Table 1. Both SIFT and SAR-SIFT procedures were implemented on
the image patches in the database and the resulting output data was stored.

All experiments were conducted in Python on a Linux Ubuntu 16.04 operating
system. The DCSNN models were implemented based on PyTorch [36]. The DC-
SNN models were run on GeForce GTX 1080Ti with 11GB RAM, while implemen-
tations of PQ, AQD, SIFT/SAR-SIFT, and RANSAC were run on Intel I7-7700K
CPU with 16GB RAM.

4.2. DCSNN configuration. Two types of CNN-based backbone architectures
were used to construct the DCSNNs. The first was AlexNet [21] – considered a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Precision recall curves on Hayward Fault Zone (Top
rows) and Yukon–Kuskokwim Delta (Bottom rows) PolSAR maps.
From left column, the feature length is 24, 48, 96, and 120. AlexNet
is used as a backbone.

simpler model – which has five convolutional layers followed by two fully connected
(FC) layers. It contains approximately 61 millions trainable parameters. The second
was VGG-11 [40], which has 8 convolutional layers followed by 3 FC layers. It
contains approximately 134 million trainable parameters and, consequently, requires
more time to train and make predictions. For both architectures we used transfer
learning from the pretrained convolutional layers on ImageNet dataset [11]. The
ImageNet dataset contains 1000 classes and was used for classification purpose, thus
only the convolutional layers from both pretrained architectures were utilized. Two
FC layers that output l/2 and l activations, respectively, were added after the last
convolutional layer output.

The performances of the pretrained models with and without fine-tuning were
also examined. We employed SGD with a weight decay of 1E−4 for fine-tuning the
DCSNN. The learning rate was initialized at 0.01 and reduced by a factor of 10 at
150th epoch for both SAR datasets and both architectures. The total number of
epochs was set to 200. The minibatch size, NB, was set to 128, and the stochastic
anchor matrix size, ND, was set to 512 for all experiments. All generated image
patches had a size of 600 × 600 pixels and were resized to 224 × 224. Each patch
covers a regional area of approximately 16km2.

Data augmentation was used on the training patches to mitigate the effects of
speckles noise and prevent overfitting. Gaussian blur was applied on 80% of the
training patches (randomly selected) with radius ranged from 0.5 to 2.0. The regu-
larization coefficient λ was set to 0.1 after hyperparameter tuning considering λ ∈
{100, 10, 1, 0.1, 0.01, 0.001}. Further, for the DCSNNs, the similarity factor, s, was
set to 0.5 after hyperparameter tuning considering s ∈ {0.01, 0.1, 0.25, 0.5, 1.0, 10.0}.
For other binary hashing baselines such as the DPSH, DHN, DHNN-L2, coefficients
recommended in the previous studies [24, 23, 50] were used.
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Table 2. Mean average precision (mAP) results of DCSNN and
binary hashing methods before reranking on Hayward Fault Zone
PolSAR map.

Methods Feature length l AlexNet [21] VGG-11 [40]

Pretrained
(BH)

l = 24
l = 48
l = 96
l = 120

0.0478
0.0761
0.1547
0.1566

0.0313
0.0522
0.1200
0.1219

Pretrained
(PQ+AQD)

l = 24
l = 48
l = 96
l = 120

0.2332
0.3208
0.3231
0.3856

0.1706
0.2055
0.2676
0.3161

DHN [50]

l = 24
l = 48
l = 96
l = 120

0.1182
0.1642
0.2274
0.3202

0.1255
0.1693
0.2153
0.2449

DPSH [23]

l = 24
l = 48
l = 96
l = 120

0.0895
0.2825
0.4545
0.5213

0.1220
0.2632
0.4005
0.4334

DHNN-L2 [24]

l = 24
l = 48
l = 96
l = 120

0.0451
0.0683
0.2044
0.2190

0.1147
0.1291
0.1329
0.1304

DCSNN
(ours)

l = 24
l = 48
l = 96
l = 120

0.2519
0.6145
0.6481
0.6813

0.4889
0.6301
0.5783
0.5819

The DCSNN was compared against the baselines using the mean average pre-
cision (mAP) as well as the precision-recall curve. The mAP metric, which was
widely adopted in past studies [22, 50, 25, 38, 19], is formally defined as,

(17) mAP =
1

|Q|

|Q|∑
i=1

1

R

R∑
j=1

precision(Rji ),

where Q is inquiry image set and R is the number of retrieved image patches from
the database for qi ∈ Q. Rji is a ranked patch set containing the top j ranked

retrieved patches for qi, which is determined using AQD. The term precision(Rji )
is the precision value representing the ratio of relevant image patches among the j
retrieved patches. Note that Rji can be re-ordered after the reranking procedure
introduced in Section 3.2 is applied.
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Table 3. mAP results of the DCSNN and binary hashing methods
before reranking on Yukon–Kuskokwim Delta PolSAR map.

Methods Feature length l AlexNet [21] VGG-11 [40]

Pretrained
(BH)

l = 24
l = 48
l = 96
l = 120

0.0566
0.1048
0.1927
0.2196

0.0396
0.0550
0.1227
0.1174

Pretrained
(PQ+AQD)

l = 24
l = 48
l = 96
l = 120

0.2684
0.3580
0.3718
0.4184

0.1736
0.2091
0.2579
0.2690

DHN [50]

l = 24
l = 48
l = 96
l = 120

0.1219
0.2072
0.2715
0.3627

0.1610
0.1910
0.2447
0.2239

DPSH [23]

l = 24
l = 48
l = 96
l = 120

0.1347
0.2371
0.3649
0.4098

0.1170
0.2516
0.3281
0.3331

DHNN-L2 [24]

l = 24
l = 48
l = 96
l = 120

0.0621
0.1556
0.2916
0.3227

0.1132
0.1812
0.3166
0.2822

DCSNN
(ours)

l = 24
l = 48
l = 96
l = 120

0.4393
0.5424
0.5734
0.5996

0.4324
0.5196
0.4913
0.4831

Table 4. mAP values before and after reranking with SAR-SIFT
or SIFT on Hayward Fault Zone PolSAR map.

CNN backbone Feature length l
Before

reranking

After
reranking

(SAR-SIFT/SIFT)

AlexNet [21]

l = 24 0.2519 0.4074/0.3533
l = 48 0.6145 0.7394/0.6850
l = 96 0.6481 0.7548/0.6998
l = 120 0.6813 0.7760/0.7252

VGG-11 [40]

l = 24 0.4889 0.6512/0.5813
l = 48 0.6301 0.7540/0.6923
l = 96 0.5783 0.6799/0.6231
l = 120 0.5819 0.6787/0.6216
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Figure 8. Examples of the retrieved SAR patches before and after
reranking processes. First column represents examples of inquiry
SAR patches. The first two rows ((a) and (b)) are from Hayward
Fault Zone PolSAR and the later two rows ((c) and (d)) are from
Yukon-Kuskokwim Delta PolSAR data. Having green box indicates
it is correctly retrieved, whereas having red box indicates that it is
incorrectly retrieved.

4.3. Performance results. Performances of the DCSNN with the two mentioned
CNN architectures were investigated. We considered the DPSH, DHN and DHNN-
L2 described in Subsection 2.4 as baselines. The baselines used the Hamming dis-
tance (instead of AQD) as a measure for comparison and retrieval because they
generate binary descriptor vectors. To compare computational performances, we
varied the feature length l to be 24, 48, 96, 120, and measured the corresponding
mAP values. The number of retrieved images from the database, R, was set to
10 for all experiments. That is, for each inquiry image from the test SAR map we
retrieve the top 10 images. Although our choice of R is relatively smaller than those
in previous studies [33], it is more conducive to simulating real-time applications
when computational time is limited. Also, we used M = 12 and K = 27 for PQ.

Tables 2 and 3 illustrate the mAP values obtained from the Hayward Fault Zone
and Yukon-Kuskokwim Delta PolSAR datasets, respectively. The values in bold
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Table 5. mAP values of the DCSNN before and after rerank-
ing with SAR-SIFT or SIFT on Yukon–Kuskokwim Delta PolSAR
map.

CNN backbone Feature length l
Before

reranking

After
reranking

(SAR-SIFT/SIFT)

AlexNet [21]

l = 24 0.4393 0.5831/0.5965
l = 48 0.5424 0.6591/0.6693
l = 96 0.5734 0.6782/0.6888
l = 120 0.5996 0.7021/0.7123

VGG-11 [40]

l = 24 0.4324 0.5909/0.6030
l = 48 0.5196 0.6418/0.6521
l = 96 0.4913 0.5939/0.6036
l = 120 0.4831 0.5840/0.5940

Table 6. Positioning accuracy examples.

Inquiry SAR Patch
Actual

Coordinates [deg]
Estimated

Coordinates [deg]
Error [m]

Fig.8(a) 38.0625, -122.2733 38.0625, -122.2734 5.7288
Fig.8(b) 37.9836, -122.3599 37.9836, -122.3600 5.7347
Fig.8(c) 61.0926, -164.1878 61.0926, -164.1879 4.2529
Fig.8(d) 61.0808, -164.1208 61.0808, -164.1208 5.0970

Table 7. Mean and standard deviation of positioning error results.

Data Name Success Cases Ratio [%] Distance Error [m]

Hayward Fault Zone 98.50 4.9635±0.1755

Yukon–Kuskokwim Delta 97.70 4.9522±0.4038

indicate the best results for each feature length, and the underlined value indicates
the best result for each SAR dataset. “Pretrained (BH)” in the tables represents
the results from the pretrained model on ImageNet dataset without performing
fine-tuning and using hamming distance (H) with binary representations (B) of
the output features. Similarly, “Pretrained (PQ+AQD)” represents the results ob-
tained from the pretrained model that uses PQ and AQD to retrieve patches from
the database. By comparison, the pretrained (PQ+AQD) produced better results
than pretrained (BH) over all the configurations. This can be attributed to the
fact that using a binary representation of a real-valued feature vector loses a signifi-
cant portion of descriptive information about a SAR image. Among binary hashing
methods, fine-tuning with the DPSH produced superior results on both datasets.
Additionally, all binary hashing methods are better than the pretrained model, Pre-
trained (BH), which suggests that the fine-tuning methods with binary hashing can
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improve the performance of SAR image retrieval tasks. Nevertheless, the proposed
fine-tuned DCSNN outperformed all the binary baselines by a significant margin.
We also note that the mAP values of the DCSNN were significantly larger than
those of Pretrained (PQ+AQD).

It can also be seen that performances generally improved as the feature length l
increased. Despite the fact that the VGG-11 architecture is more advanced and con-
tains more parameters than AlexNet, observe that the DCSNN model with AlexNet
gave superior results as l increased. This suggests that the more sophisticated learn-
ing scheme embedded in VGG-11 was outweighed by the increased computational
expense. Therefore, the DCSNN with AlexNet was better suited in this setting.

Precision-recall curves of the AlexNet backbone in Fig. 7 clearly demonstrate
that the accuracy of the DCSNN is superior to the other baselines. This is pre-
dominantly attributed to the regularization term of the DCSNN, which does not
sacrifice descriptive information of SAR images and enables efficient and concise
feature vectors representations.

Computational times for a single forward pass for prediction of the DCSNN with
the AlexNet and VGG-11 architectures on the Hayward Fault zone dataset with
6412 patch images were on average 0.6407ms and 2.1705ms, respectively. We note
that single forward passes can be done in parallel for multiple inquiry patches by
utilizing a GPU.

4.4. Performance results on reranking. We next examine performance en-
hancements from the reranking procedure by comparing mAP values before and af-
ter its implementation. Both SIFT and SAR-SIFT methods were used for reranking.
The mAP results are illustrated in Tables 4 and 5 for Hayward Fault Zone PolSAR
and Yukon-Kuskokwim Delta PolSAR data, respectively. As shown, reranking via
either SIFT or SAR-SIFT improved the outcomes overall. When compared side-by-
side, the SAR-SIFT-based reranking outperformed the SIFT-based reranking for the
Hayward Fault Zone dataset, whereas the SIFT-based reranking gave slightly bet-
ter mAP values than SAR-SIFT-based reranking for the Yukon-Kuskokwim Delta
dataset. This stems from the fact that SAR-SIFT reduces the effects of speckle
noise on small local features in the city-region SAR images. Fig. 8 shows several
examples of inquiry images and corresponding retrieved images. It can be seen that
the order of retrieved patches tends to be corrected after reranking is employed,
thereby leading to higher mAP values.

4.5. Performance results on location positioning. The performance of the
developed approach was explored in the context of navigation. Per Section 3.2,
the affine transformation associated with RANSAC (see (16)) was used to estimate
the coordinates of a given inquiry SAR image. Table 6 furnishes the estimated
coordinates produced by our approach for the inquiry SAR image examples shown
in Figure 8. A DCSNN with AlexNet architecture, feature length of l = 120, and
the SAR-SIFT methods for generating keypoints, were used for this experiment.
The “Actual Coordinates” and “Estimated Coordinates” in Table 6 represent the
latitude and longitude pairs of ground truth and prediction, respectively. Errors
were computed using the geodesic distance between actual and estimate coordinates.
Observe that the errors are quite small, the largest of which was only 5.7m. This
suggests that the proposed technique can be effective for navigational tasks.

Table 7 shows the average and standard deviation of distance errors over all
the SAR inquiry images. The “Success Cases Ratio” furnishes the ratio of the
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SAR image patches that were processed to estimate the coordinates successfully,
which were 97.7% and 98.5% for the Yukon-Kiskokwim Delta and Hayward Fault
Zone, respectively. Average distance errors and standard deviations (Std. Dev.) of
distance errors were measured only on success cases. We note that the SAR images
for which coordinates were not estimated successfully failed to generate keypoints
via SAR-SIFT, which is attributed to the images not containing meaningful pixel
variations for calculating gradients of pixels. For example, if a SAR image only
contains a sea or lake region, there may be no keypoints other than small tides.
Consequently, the affine transformation of RANSAC cannot be applied effectively
for such images. To address this, it may be possible to consider majority voting
or consensus of coordinate estimations and incidence angles of patches across the
swath direction of the SAR map. For example, the SAR maps in our experiments
had the swath width of 3300 pixels and patches of 600× 600 pixels were extracted
with the stride of 100 pixels. Thus, for each swath, we had 28 patches that could
have possibly been used to attain better coordinate estimates – a procedure that
we reserve for future work. Nevertheless, based on the small average distance errors
and standard deviations shown in Table 7, it can be concluded that the proposed
approach for position identification was successful on the adopted datasets.

5. Conclusion. This work introduced a navigational approach that relies on SAR
image processing via deep neural networks to enable effective image matching, re-
trieval, and registration. We developed a deep neural network-based SAR descrip-
tor, the DCSNN, and a fine-tuning procedure that was used to describe a SAR
image with a “simple” feature vector. By using asymmetric quadratic distance as
a scalable metric for comparing feature vectors, images from a database that are
similar to an inquiry image can be efficiently retrieved. It was also demonstrated
that reranking via SIFT or SAR-SIFT can increase the performance of the image
retrieval process. Affine transformations used for keypoints matching via RANSAC,
which were obtained as a biproduct, were used for image registration to estimate
location coordinates of inquiry SAR images. Finally, we demonstrated that our
approach was highly effective on PolSAR datasets.

Image matching techniques such as SIFT and SAR-SIFT can fail to generate
keypoints in cases when, for example, a retrieved SAR image patch does not con-
tain a meaningful scene, thus lacking coordinates information. In future studies,
we will investigate navigation methodologies that overcome this drawback. These
may include using deep neural network-based approach for reranking rather than
partially relying on the classical image matching and registration techniques that
can be learned in an end-to-end manner, and using multiple patches in the same
swath direction to generate consensus on estimations. Moreover, we will consider
different scales of SAR patches by constructing image pyramid inputs to the deep
neural network.
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