

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

42

Object Identification for Pure Object Oriented Cross

Languages Software Development

Sonar Sanjay Bhagwan
Ph.D Scholar, Rai University

Saroda, Dholka Taluka
Ahmedabad, Gujarat, India

Samrat O. Khanna, Ph.D

Professor and Head of ISTAR
Sardar Patel University

V.V. Nagar-Anand-Gujarat,
India

Karishma D. Pasawala
Ph.D Scholar, Rai University

Saroda, Dholka Taluka
Ahmedabad, Gujarat, India

ABSTRACT
Identifying generic or common objects is the most intricate

part for developing applications in pure object oriented cross

languages. Genericity or commonness in Object identification

is an iterative process, and there is no appropriate formula or

model to identify objects. It relies on the requirement

engineering and domain engineering inception. Generic

Object is a foundation of the pure object oriented software

design; it is the run time automated entity. Using this paper

we provide the infrastructure for identify generic objects. We

design the step-to-next sequential tasks and tools in the

infrastructure for Object identification. The basic tasks, tools

and approaches are the infrastructure to identify

generic/common System Objects. The two basic tasks are

requirement engineering and domain engineering. Here

Requirements engineering is based on the business model,

same Domain is engineered by the requirement design, and in

addition, the base domain is engineered by the domain

foresting (sub-domain) rules, for objects extraction using step-

to-next sequential tasks from the each foresting domain by

applying the Object Identification tools.

General Terms

Generic object identification, Step-to-next sequential tasks,

task assertion and O.I Tools for Object Identification

Keywords
Domain, Generic Object, Base Object, Active Object,

Instance, Cross Languages, Actor, Transition.

1. INTRODUCTION
Developing large and complex software application is very

challenging; it is quite different from one-time programs

where author and user are on same model. Even though we

have made significant progress in software

development[2][4], conceptually we developing large and

complex software application in cross languages for

independent platform, these is based on the Pure Object

Orientation, therefore Object Identification is vital tasks for

origin, it is foundation for the application development. Here

object is real entity a persons and things in pure object

orientation, using object you can interact, reflex and can send

various messages and react. How it behaves depends on the

current internal state of the object. Object Identification is

Brainstorming onto the requirement engineering and domain

engineering, object is also mining task for building the

software [1][6][14].

The Paper is designed as the based on the problem definition

to mining the common (generic) objects Identification,

developing applications for the Pure Object Oriented Cross

Programming Languages on independent platform, for

complex application development like on JVM and CLR

engines [22]. In problem definition there are still not steps to

next tasks and methodologies or tools for object identification.

Here we try to gives the step-to-next tasks and related tools

for common object identification for Pure Object Oriented

Cross Programming Languages.

The step-to-next tasks for Common Object Identification are

methodological sequence of the object extraction from the

business model or business logic with system/software

requirement specification. Here Requirements engineering are

designed by the Business Model/Logic and SRSs. The

Requirements Engineering tasks create the road map for the

virtual Domain selection. Here Domain is the software

application boundaries from source to sink area. The Domain

is extracted from the Requirements engineering tasks. Here

Requirements engineering is a vital and fundamental aspect of

software development, a requirement is an expression of

desired behavior. A requirement deals with objects, and the

states they can be in, and the functions that are performed to

change states or object characteristics [7][11][13].

System Common Objects are extracted from the domain, as

tangible objects, link objects, and boundary objects. The

objects are extracted by the Object Identification tools as Use

cases, Scenario, domain tasks, and EFD/IFD/DFD/ERD.

2. PROMLEM DEFINITION AND

OBJECTIVES
Complex software application is very challenging in pure

object oriented cross programming languages, because here

Objectisation is vital and sequences of steps are required for

system objects identification from the domain for the

application design, here currently vague methods to extract

Object, here methodological iterative process essential for

common object identification. The following step proceeds to

identify the Common System Object.

1. Design the Requirement and domain engineering tasks

2. Design Methodological step-to-next Object Identification

tasks

3. Approaches of the object Identification tools.

4. Design the Generic algorithms for object identification.

3. PREVIOUS TECHNIQUES OF

OBJECT IDENTIFICATION

Booch’s object identification approach requires a processing

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

43

narrative of the given problem to be first developed. The

processing narrative describes the problem and discusses how

it can be solved. The objects are identified by noting down the

nouns in the processing narrative. Synonym of a noun must be

Eliminated, if an object is required to implement a solution,

then it is said to be part of the solution space. Otherwise, if an

object is necessary only to describe the problem, then it is said

to be a part of the problem space [6][9][15]. Booch's original

object-oriented design method began with a dataflow analysis

which was then used to help identify objects by looking for

both concrete and abstract objects in the problem space found

from the bubbles and data stores in a data flow diagram

(DFD). Next, methods are obtained from the process bubbles

of the DFD [6][9]. And The Shlaer-Mellor method offers five

categories: tangible entities, roles, incidents, interactions and

specifications. This is all very well, but rather fuzzy and

certainly not complete [13]. Coad (1999) says that there are

exactly five kinds of standard objects and gives standard

features for each one. Each standard is associated with a color

based on the colors of commercially available pads of paper

stickers. His standards are objects representing: 1.

descriptions (blue) 2. Parties (e.g. people, organizations),

places or things (green) 3. Roles (yellow) 4. Moments in or

intervals of time (pink) and 5. Interfaces and plug-points. As

the same by Hood, and some other methods used textual

analysis but otherwise there are no precise, normative

techniques to identify objects [2]. Approaches to objects

identification by Somerville are,

1. Use a grammatical approach based on a natural language

description of the system (used in Hood OOD method).

2. Base the identification on tangible things in the

application domain.

3. Use a behavioral approach and identify objects based on

what participates in what behavior.

4. Use a scenario-based analysis. The objects, attributes

and methods in each scenario are identified [10].

3.1 Traditional Techniques of Objects

Identification
3.1.1 Grammatical Approach
Widely accepted object identification approach is the

grammatical analysis approach proposed by Grady Booch and

Russell J. Abbot. This technique involves grammatical

analysis of the problem statement to identify list of potential

objects. The logical steps of this approach are,

i. Identify and mark the nouns, pronouns and noun

phrases from the above problem statements

ii. List of potential classes is obtained based on the

category of the nouns (details given later). For

example, nouns that direct refer to any person,

place, or entity in general, correspond to different

objects. And so does singular proper nouns. On the

other hand, plural nouns and common nouns are

candidates that usually map into classes[12] [15].

3.1.2 Derivation from Data Flow.

3.1.3 Derivation from Entity Relationship.

3.2 Objects Identification by Rumbaugh

and Jacobson
3.2.1 Identifying Entity Objects
Entity Object needs to be saved in permanent storage. Any

object must be tracked across different execution of the

system can be classified by the entity object. And entity object

saved in an object oriented database or can be mapped to one

or more rows in a relational database. In addition to entities,

activities and events that need to be tracked by the software

system are legitimate entity objects as entities that generate or

receive data are also considered entity object [12].

3.2.2 Identifying Interface Objects
Interface Objects represent the input/output interaction

between the actors and the software system. Like error

message, warning message, user carrying input/output report

generation, print or display. Identify forms the user needs to

enter data into the system Interface Objects are transient

objects that do not need to be saved as permanent they are

created and destroyed dynamically during the operations

[8][9].

3.2.3 Identifying Control Objects
The Control Object encompasses the control flow behavior

needed to perform the use cases. Typically For each use case,

one control object is created using business logic. It covers the

actor behavior within the use

Case this object also created and destroyed when instance

created and destroyed. Control object can create or Initiate

other control objects also control objects can create other

interface during their execution. Once objects are identified

by the above three technique, the attributes, methods visibility

and requirements are specified [9][12].

4. EXPERIMENTAL DESIGN

4.1 Step-to-Next Object Identification tasks

This is the Sequential steps to acquire the Object from the

Business Model and SRSs. Firstly, the Requirements are

engineered by the given steps, from the business model, using

this the base domain is identified by the given steps, then the

foresting rules is applied for sub-domains (using Forest rule)

are designed as source to sink area of each sub-domain. Then

Related Object is identified from each sub-domain by the

applying related Object Identification tools. After that

interactions and interfaces applied for each sub-domain for

integration of the system.

javascript:void(0)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

44

Fig 1: (OI) Step-to-Next tasks of Object Identification

4.2 Step-to-Next Object Identification

workout

The System Requirements Specification and Software

Requirements Specification with business logic are the

founder tasks of the requirement engineering. And

requirement engineering is the identification of the system

needs. Using these tasks, the domain is designed, for cover the

area for system achievement [21]. Using requirement

engineering, the following decomposition tasks are to be

carried out for acquires system outlet.

1. Requirement Inception

 Origin the sources of information acquire getting

business logic and SRSs

 Initialize the scope of requirement

 Find out the sources of Information acquisition

2. Requirement Specification

 Identify the source and sink of requirement

 Decompose the requirement for Information

acquisition

 Identify the source and sink of each disintegration

tasks

 Identifies the common requirements

3. Requirement Elicitation

 Extract the requirement of each decomposition tasks

 Specifies and Clean the requirements

 Documents of each tasks of the requirements

 Design the Base and Derived requirements

4. Requirement Design

 Encompasses the decomposed tasks

 Interface and interaction between each decomposed

tasks

 Design the structures of the each tasks

 Design the requirements framework

After the requirement engineering, the source and sink of

Domain to be engineered, using the Domain Engineering, also

designs sub-domains, the following tasks applied for domain

design.

1. Domain Inception & Identification

 Identifies the source and sink of domain

 Design the domain scopes

2. Domain Elicitation & Specification

 Extract the domain areas

 Specifies the domain

3. Domain Decomposition

 Decompose the domain as foresting method

 Identifies the requirement tasks of each sub-domain

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

45

4. Domain Design

 Encompasses the decomposed domain using

Domain Interfaces

 Integrate each decomposed domain using Interface

and interaction between them

 Design the domain framework

After the domain engineering, the System objects like

tangible, link and boundary objects are identified, also

identified the common objects with common attributes and

common operations of the each object, also identification of

the related attributes and operations of the each identified

object.

4.3 Object Identification tools
4.3.1 Use Cases:

Use Cases most important tool to identify the primary

elements and processes that form the system. Here primary

elements are Actors and processes are called use-cases. Both

tasks indicate which actor interacts with each use-case.

Basically link and tangible object are identified using use

cases as well as business logics are incepted [5][14]. The

Actors are must be tangible or boundary objects, and use-

cases incept operations and transaction/automation by the

business logic, and come out the link objects from the

operations as well as unveil the lexicons.

 Fig 2: Link & Tangible Object Identify by Use

Cases

4.3.2 Scenario
Scenario is also most important tool using scenario it is

specified sequence of actions/events and interaction between

actors and system. Scenario is also called use case instance

.An event occurs whenever information is exchanged between

an object in the system and out site agents, such as users, a

sensor, or another task. The information values exchanged are

parameters of the events. Scenario encompasses the individual

actor tasks/operations to be performed in the module, sub

module or system [12]. Here primary work of the scenario is

design and encompass the work tasks of each actor to be

performed for events using business logic using this below

objects are identified from the scenario. Also using the

scenario design, it is identified the interface and interactions

among the objects.

Fig 3: Instance/Activate Object Identify by Scenario

4.3.3 Domain Specification:
A Domain is boundary form source to sink, incepted and

specified by the requirement engineering. It is the conceptual

model depicts the objects that are easily identified. Using

Domain engineering, the domain is divided into forest (sub-

domain) for the extract the objects from each sub-domain and

we can identify the all three type of objects as tangible, link

and boundary objects. Basically domain specification is

depends on requirements engineering and requirements

engineering is extracted from the system and software

requirement specification.

Base Domain:

Fig 4: Relational Interfaces in Domain Foresting

4.3.4 EFD, IFD, DFD and ERD:
Derivation from Event flow diagram, Information Flow

Diagram, Data Flow Diagram and Entity Relationship

Diagram are the foundation of the tangible objects as well as

control/link objects. Using this diagram, all tangible objects

are identified [3]. Using Event Flow Diagram the Actor and

tasks of the actors are identified, Using Information Flow

Diagram, the interaction and interface between object are

identified as well as actors operations are identified. Using

Data Flow Diagram the Entity/Tangible objects are identified

and data store objects as well as active and dynamic object are

extracted by the Data Flow Diagrams. As the same Entity

Relationship Diagram identifies the tangible objects and

identifies the interface between the objects.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

46

Fig 5: Event Flow Diagram

Above diagram denotes the Actor(s) interactions between

Actors. The Interaction constructs the Link Objects form the

Dialogs between Objects. The <<?>> Denotes the types of

interactions between object.

5. EXPERIMENTAL RESULT

5.1 Generic algorithm of Object

Identifications
The Sequential steps are designed by the following algorithm

to extract the generic objects from Domain, here domain is

engineered into the foresting in component design, and

System objects are extracted from each Domain foresting

(Sub-Domain) by the above Object Identification Tools, and

further engineered for the Base Objects and genericity for

commonness, after that Component and Deployment design

applied for Object Interfaces. The following algorithm

denotes the sequential steps to identify the common objects

 Step 1. Mining the requirements using the SRS, SRS and

Business Model/Logic

 Step 2. Design Requirement Engineering

 Step 3. Identify the Domain, by Requirement Engineering

Step 4. Foresting (Domain dissection) according to business

model

Step 5. Apply the Object Identification tools to each sub-

domain

Step 6. Identifies related Objects from each sub- domains

Step 7. IF each sub-domain <> SRS and SRS and Business

logic THEN

 GOTO Step 6

 Else GOTO Step 8

Step 8. Encompass sub-domains

Step 9. Design Interface and interaction between each sub-

domain

Step 10. IF Domain <> SRS and SRS and Business logic

THEN

 GOTO Step 6

Step 11. Bifurcation of the objects by attributes and

operations, related to business model

Step 12. Identify Base Objects and generic Objects from

Tangible and Link Objects

Step 13. Design the sub-domain relation

Step 14. Finish

5.2 Sequential Step-to-Next tasks of I.O

using PERT chart

 Step-to-Next
 Sequence
Tasks

S
te

p
 1

S
te

p
 2

S
te

p
 3

S
te

p
 4

S
te

p
 5

S
te

p
 6

S
te

p
 7

S
te

p
 8

S
te

p
 9

S
te

p
 1

0

Get hold of business

model

Requirement

Engineering

Domain Engineering

(Base Domain)

Domain Foresting

(sub-domain)

Appling O.I tools to

each sub-domain

Identify Related

Objects from each

sub-domain

Relational interface of

Domain foresting

Bifurcation of Objects

Identify Base and

generic Objects

Design the sub-

domain relation

Graph 1: Sequential Step-to-Next tasks of I.O using PERT

Above graph 1 PERT Chart are designed for variation of the

Step-to-Next tasks to be forwarded for an Object

Identification. The chart also denotes the independent and

parallel tasks are to be carried out from business model to

domain relation design. Here independent task denotes the

entirely committed tasks, to forward to go next sequential

step. The darken area denotes the work being carried out of

the each task either in independent or parallel.

5.3 Assertion of the each task
The above PERT chart denotes the sequential step-to-next

task, but some task has a reformation for correction. Here

table 1 design denotes the assertion of the each task of the

step-to-next sequence to be reformation, fully committed,

dependant and independent task. These task(s) are carried out

sequentially or parallel for go to next step. Also denote the

some tasks forward with commit and some without commit,

seeing genericity of the task.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

47

Table 1: Assertion of the each Sequential task using

tabular form

 Assertion

 Tasks

R
ef

o
rm

at
io

n
 t

as
k

R
ef

o
rm

at
io

n
 w

it
h
 c

o
m

m
it

E
n

ti
re

ly
 c

o
m

m
it

te
d

 t
as

k
s

D
ep

en
d

ed
 o

n
 p

re
v
io

u
s

co
m

m
it

te
d
 t

as
k

s

F
o
rw

ar
d

 w
it

h
o

u
t

co
m

m
it

te
d

 t
as

k

F
o
rw

ar
d

 w
it

h
 c

o
m

m
it

te
d

 t
as

k

D
ep

en
d

en
t

ta
sk

In
d

ep
en

d
en

t
ta

sk

Get hold of business model # £ Ω

Requirement Engineering # £ Ω β ± @

Domain Engineering

(Base Domain)
£ Ω β ± @

Domain Foresting (sub-

domain design)
£ Ω β & ± @

Appling O.I tools to each

sub-domain
 Ω β & ± $

Identify Related Objects
from each sub-domain

£ Ω β & ± @

Relational interface of

Domain foresting
£ ±

Bifurcation of Objects # β ± @

Identify Base and generic
Objects

£ β ± @ $

Design the sub-domain

relation
 Ω β ± @

 Reformation task = #

Reformation with commit = £

Entirely committed tasks = Ω

Depended on previous committed tasks = β

Forward without committed task = &

Forward with committed task = ±

Dependent task = @

Independent task = $

6. CONCLUSION
Object Identification is vital and challenging tasks to

developing large and complex software application in cross

languages for independent platform, Object is the foundation

for the application development, exhausting from the problem

of require architectural framework for object identification,

and it is essential for software developments in cross

programming languages; we are trying to give the

experimental step-to-next object identification tasks and

Object Identification tools as well as generic algorithm for

acquiring common/Generic Objects from the domain which is

extracted from the Requirements engineering tasks. Here

Requirements engineering is a vital and fundamental aspect of

software, a requirement is an expression of desired behavior.

A requirement deals with objects and it is instinctive from the

business model. The step-to-next tasks are methodological

sequence of the object extraction.

7. ACKNOWLEDGEMENT
We would like to thanks Respected Dr. Samrat. O Khanna,

Head of the IT Departments of ISTAR institute of the V.V

Nagar-Anand-Gujarat-India, to inspire and encouraged to

perform over best. And we also Thanks to all Software firms

who gave me the best support to abstract my goal.

8. REFERENCES
[1] Bernd Bruegge, Allen H. Dutoit. “Object Oriented

Software Engineering, Using UML, Patterns, and

Java”, Second Edition, Pearson Education, 2010.

[2] Code P. Yourdon. E. “Object Oriented Analysis”, 2nd

Addi., Yorden press, Englewood Cliffs,1991.

[3] Craig Larman. “Applying UML and Patterns”, 3rd

Addition, Pearson Education Inc. 2005.

[4] Desmond Francis D’ Souza and Alan Cameron Wills.

“Objects, Components, and Framework with UML”, 2nd

Addition, Addition-Wesley Object Technology Series

1999.

[5] Geri Schneider, Jason P. Winters. “Applying Use Cases”,

2nd Addition, Addition-Wesley Object Technology

Series 1998.

[6] Grady Booch. “Object Solutions”, 2nd Addition,

Addition-Wesley Object Technology Series 1996.

[7] Heninger K.L, “Specifying software requirements for

complex systems”, New techniques and their

applications. IEEE Transactions on Software

Engineering 6 (1), p. 2-13, 1980.

[8] Ivan. Jacobson, G. Booch, and J. Rumbaugh, “The

Unified Software Development Process”, Addison-

Wesley, 3rd Edition, 1999.

[9] Ivan. Jacobson, G. Booch, and J. Rumbaugh, “UML

Modeling Language Reference Manual”, Addison-

Wesley An Important Addition, 1999.

[10] Ian Somerville, “Software Engineering”, 6th Edition,

Pearson Education, 2005.

[11] James J, Odell, “Advanced Object Oriented Analysis and

Design by UML”, Pearson Education, Cambridge

University Press, 1998.

[12] James Rumbhaugh, Michael Blaha, William Premerlani,

Frederick Eddy, William Lorensen, “Object Oriented

Modeling and Design”, Prentice- Hall India Edition, 3rd

Edition, 2001.

[13] Jaya Vijayan, G. Raju., “Requirements Elicitation Using

Paper Prototype”, Advanced in Software Engineering,

International Conference 2010, Springer p. 30-37, 2010.

[14] Jim Arlow, Ila Neustadt. “UML and the Unified Process”,

2nd Addition, Addition-Wesley, Object Technology

Series, 2002.

[15] Rajib Mall, “Fundamental of Software Engineering”, 3rd

Edition, Prentice- Hall India eddi. 2008.

[16] Civello F “Roles for composite Objects in Object

Oriented Analysis and Design, OOPSLA, ACM SIGSOFT

Vol. 28 No. 10 ,pp 376-393.

[17] Hoyalsvik G M and Sindre G “ On the purposr of Object

Oriented Analysis”, OOPSLA’93, ACM SIGSOFT, Vol. 28

No. 10, pp 240-253.

[18] James Rambaugh “ Object in the Constitution”,

Enterprise modeling, Object Oriented Programming ,

Vol. 6 No 8, pp 10-15.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 9 – No.3, June 2015 – www.ijais.org

48

[19] Kim W Bertino, J Chou, H T Garza and Woelk D

”Composite Object Support in Object Oriented Database

System”, OOPSLA’87 Proceeding (1987), pp 118-125.

[20] Liveri J, “Relationships, Aggregations and Complex

Objects”, Information Modeling and Knowledge Base III

Amsterdam, IOS Press (1992).

[21] Sonar sanjay Bhagwan “The Common Interface Oriented

Architectural Framework to Improve Compatibility of

the Pure Object Oriented Cross Languages

Interoperability”, The International Journal of Computer

Science Trends and Technology (IJCST), Volume 2 Issue

3, 2014.

[22] Sonar sanjay Bhagwan “Interoperability in the JVM and

CLR Engines for Cross Languages Application

Developments” The International Journal of Advanced

Research in Computer Science (IJARCS), ID 6892

published in Vol. 5, No. 7,sep- 2014.

