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Leveraging graph neural networks
for supporting automatic triage
of patients

Annamaria Defilippo?, Pierangelo Veltri?, Pietro Lié3 & Pietro Hiram Guzzi®***

Patient triage is crucial in emergency departments, ensuring timely and appropriate care based

on correctly evaluating the emergency grade of patient conditions. Triage methods are generally
performed by human operator based on her own experience and information that are gathered
from the patient management process. Thus, it is a process that can generate errors in emergency-
level associations. Recently, Traditional triage methods heavily rely on human decisions, which

can be subjective and prone to errors. A growing interest has recently been focused on leveraging
artificial intelligence (Al) to develop algorithms to maximize information gathering and minimize
errors in patient triage processing. We define and implement an Al-based module to manage
patients’ emergency code assignments in emergency departments. It uses historical data from the
emergency department to train the medical decision-making process. Data containing relevant
patient information, such as vital signs, symptoms, and medical history, accurately classify patients
into triage categories. Experimental results demonstrate that the proposed algorithm achieved high
accuracy outperforming traditional triage methods. By using the proposed method, we claim that
healthcare professionals can predict severity index to guide patient management processing and
resource allocation.
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Emergency department (ED) management faces a significant challenge in handling the influx of patients. Prop-
erly managing queues can help enhance hospital quality, contain costs, and ensure proper reimbursement’. The
management of patient queues in the ED adheres to rules defined by national healthcare system laws. In Italy,
healthcare services are accessible to all citizens without restrictions. However, in recent years, demographic shifts
and pandemics have led to frequent overcrowding in emergency departments, underscoring the relevance of
this issue?>. Managing queues in EDs is critical, considering both economic and social aspects, as unfair patient
prioritization can lead to potentially fatal outcomes. Prioritization in patient management, regarding treatment
and evaluation, is facilitated through a process called triage. Triage involves gathering information during an
initial rapid patient assessment, measuring vital signs, and assigning an emergency level to each patient to deter-
mine treatment priority. Each priority level corresponds to an emergency code, guiding treatment protocols.

Therefore, proper queue prioritization for new patients (i.e., classification) depends on patients’ clini-
cal and health conditions to ensure appropriate treatment prioritization for those arriving at the emergency
department®’.

Various methods and techniques for defining triage have been established and adopted on a large scale®. In
Italy, the rules for the triage process are outlined in the Italian healthcare management guidelines, which define
triage in four phases:

(1) Immediate Evaluation Phase (known as “on the door”): Identifying patients’ conditions to screen those
needing immediate intervention.

(2) Subjective and Objective Evaluation Phase: Assessing conditions through interviews and clinical analysis
to detect signs and vital parameters.

(3) Triage Decision Phase: Assigning a priority code to each patient and organizing waiting queues.

(4) Re-evaluation Phase: Periodically analyzing patients to confirm or modify priority codes.
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Considering the global scenario, several widely adopted triage systems include the Canadian Triage and Acu-
ity Scale (CTAS), the Australasian Triage System (ATS), the Manchester Triage System (MTS), the Emergency
Severity Index (ESI), the Korean Triage and Acuity Scale (KTAS), the Taiwan Triage Acuity Scale (TTAS), and
the South African Acuity Scale (SAAS)'%-'7. These systems typically involve the categorization of patients based
on their conditions and directing them to different areas of the ED.

The application of triage rules relies heavily on operator decisions (nurses and physicians) interacting with
patient parameters and data. Triage assessment considers various factors determining the urgency of each incom-
ing patient. However, manual triage approaches share common limitations, including inconsistencies in assess-
ment due to various factors influencing patient urgency'®. Consequently, there’s been a push towards defining and
implementing computational-based triage code assignment mechanisms to minimize human-related errors'*%.

Many authors have explored the potential of automated systems based on computational intelligence to
improve triage by suggesting emergency codes'**. Furthermore, machine learning (ML) and artificial intelligence
(AI) algorithms have demonstrated the ability to analyze electronic medical records (EMRs) and unstructured
patient data from sensors or wearable devices**2. As triage systems rely on patient data observation, ML and Al
have been investigated to enhance classical clinical scoring systems’.

Numerous prediction models have been developed to refine the triage process, offering more nuanced patient
stratification within traditional groups and improving clinical outcomes®®. For instance, Olivia et al.>* employed
supervised learning algorithms to predict patients’ medical conditions accurately. Similarly, Caicedo-Torres
et al.* used machine learning techniques in a pediatric ED to determine patients requiring rapid admission and
pediatric treatment. Joseph et al.® conducted a comprehensive study using deep learning to identify critically
ill patients based on limited triage information. These studies underscore the significant potential of machine
learning in managing patient triage in the emergency department.

Existing prediction models use data collected at triage, including demographic information, vital signs, pri-
mary complaints, nursing observations, and initial diagnostics®’. Some models also incorporate historical data
such as patient access frequencies and medical records. Thus, leveraging patient data from ED admission and
treatment could enrich and improve triage and patient management processes.

Often, data obtained later in a patient’s ED visit, such as laboratory tests and diagnoses, are more effective in
predicting admissions. Although we do not have access to the complete patient medical record containing all the
features mentioned, in our study we utilised variables directly obtainable during the triage phase (such as blood
pressure) and other patient history information (such as diabetes pedigree). It is necessary to point out that these
features have been associated as attributes of the graph nodes to take them into account in the embedding and
prediction phase improving the results. Our proposal could be adapted in case of any other available medical
features to be included for the node classification.

Identifying similarities among patients’ conditions and their previous visits could aid in predicting admis-
sions at the triage stage. Current solutions often employ broad categories for chronic conditions, but enriching
electronic health record (EHR) data to train models could enhance prediction accuracy**-%. Although approaches
using gradient boosting and deep neural networks improve prediction efficacy, explicit modeling of patient
similarity is lacking in existing methods®. In fact, most of the existing approaches in the literature treat data in
tabular format or model patient features in graph form, but possible similarities among patients are not taken
into account. Instead, consider the similarity between patients could influence the model’s performances and
enhance the model’s ability to capture hidden patterns®. Modelling data as graphs and using embedding has been
shown good performances in node classification task. Graphs contains properties of the nodes (also referred to
as attributes) and structure information (e.g. similarity among nodes) which help in classification®-*%

We propose to model patients as graphs and then to use graph embedding and classification techniques to
develop a novel clinical algorithm based on artificial intelligence and network science for assigning patient pri-
ority. Clinical patient data, including analytical and subjective observations, are extracted from patient records
and undergo preprocessing to identify noise and outliers. Each patient is represented as a graph node, with edges
indicating similarity among observation data. The graph is then embedded into a latent space, and patients are
classified into risk groups using a node classification algorithm, as depicted in Fig. 1.

Given the potential of machine learning in medicine, and in particular in managing patient triage in the
emergency department, we presented the possibilities to model patients in different similarity networks explored
with three Graph Neural Network architectures. Existing prediction models utilize data collected at triage in the
form of tabular data. However, identifying similarities among patients could aid in predicting admissions at the
triage stage®. Therefore, we propose modelling not only the patient’s features in the networks, but also the patient
entity with its related attributes and weighted edges showing the similarities between patients.

In a classical triage system, patients requiring admission to ED are classified into severity levels using standard
algorithms that produce a severity index based on the patient data. Such data may be obtained by the nurse’s
observation of the patient and evaluation of biochemical parameters. Such data are usually stored in hospital
registries and EHRs. We start by considering these data to build a patient similarity network where each patient
is a node. The edges among patients are weighted by calculating the similarity of patients based on their data.
Each node is also labelled with the previously assigned severity level. The network is embedded into a latent
space, and a node classifier is trained. Once that the classifier is trained, each new patient can be automatically
assigned to a severity index by using the classifier as summarised in Fig. 1.

To sum up, our solution is based on modeling patient similarity using networks (each patient is a node of the
network) for the application of Graph Neural Networks (GNNs) for node classification. GNNs allow the pos-
sibility to take advantage of tabular data modeled in networks in order to discover hidden relationships in the
data. GNNSs not only take into account the variables present in the dataset modeled as node attributes, but they
exploit the topology of the graph by considering the links between patients (i.e. between nodes). Despite data
on a single patient may be scarce, similarity with other patients could aid in correct prioritisation. In addition,
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Figure 1. Figure compares automatic vs traditional triage systems. In the traditional triage system, patients go
to the Emergency Departments for admission. Vital signs and biochemical parameters are evaluated, and an
emergency code is assigned. In the scenario, we envision data from previous admissions being used initially to
build a network representing patient similarity. The network is then used to learn a Graph Neural Network to
classify patients in a latent space (the assignment of the severity index is translated into a multiclass classification
problem). Finally, each patient entering the emergency room is automatically classified after acquiring clinical
data.

our approach not only provides a novel design but also offers reusable and available code, whose accessibility is
specified in the dedicated section.

Our approach offers an inductive embedding, enabling the addition of novel patients to the graph for
classification®***, We evaluated our pipeline using public data to demonstrate its effectiveness and improvement
over state-of-the-art approaches.

Related work

Triage is a critical and systematic emergency department (ED) process. It helps prioritize patients based on
the severity of their condition’, the urgency of their need for care, and the availability of resources within the
healthcare facility. The goal is to ensure that patients who need immediate attention receive it promptly' while
those with less critical needs are attended to in an order that maximizes the overall efficiency and effectiveness
of emergency medical services.

The triage process in an emergency department involves several key steps and principles®, which are as fol-
lows. Upon arrival at the ED, each patient undergoes an initial assessment by a triage nurse or a trained health-
care professional to assign a urgency categorization, ranging from immediate life-saving intervention needed
(highest priority) to non-urgent care (lowest priority)'*'*. This assessment is designed to quickly gather critical
information about the patient’s condition, including the chief complaint, vital signs (such as temperature, blood
pressure, heart rate, and respiratory rate), and a brief history of the present illness or injury.

Triage categorization directly influences the allocation of resources'*, because triage is not a one-time assess-
ment but a continuous process. Patients with the highest urgency levels are treated immediately and often
directed to specialized areas within the ED equipped to handle severe cases (e.g., resuscitation rooms). Those
with lower urgency levels may wait longer and be seen in order of priority based on their triage category'. It is
not excluded that patients’ conditions can change, necessitating a reassessment and potential re-categorization
of their urgency level .

Triage involves ethical considerations, such as fairness, equity, and the principle of doing the most good
for the greatest number of people®. Healthcare professionals must make unbiased decisions based on clinical
urgency and the potential for benefit from medical intervention rather than factors like financial status, age, or
social position®. The triage process faces various challenges, including overcrowding in emergency departments,
fluctuating patient volumes, and limited resources. Effective triage requires flexibility and the ability to adapt to
changing circumstances, such as public health emergencies or disasters, which may necessitate modifications to
triage protocols and prioritization strategies®®. Despite their worldwide adoption and diffusion, triage systems
are affected by some common problems®, such as dependence on subjective medical staff assessment and the
possibility of having many missing variables.

Conversely, in an automatic triage system, the categorization of patients is fully automated and the severity
level is determined by computer algorithms as summarised in?®. Automatic (or computing-based), triage systems
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present some advantages such as: (i) stability of assignment®, (ii) filtering out noise in the patient variables, (iii)
modelling and analyse patient similarity, (i.e. by modelling the set of patients in a network which evidences
patient similarity>®*"~%; (iv) avoiding patients under triaged into low severity levels*'; (vi) avoid of racial, gender,
age bias*’. Literature contains many approaches of the use of machine learning for patients emergency classifica-
tion, as reported in the Tables 1 and 2.

Singh et al.,** developed a cascading classifier for psychiatric patient triage, achieving high accuracy and
reducing expert effort. Graca (2023) highlighted the potential of machine learning in ICU triage and patient
transfer during crises, such as the Covid-19 pandemic. Olivia et al.,* and Yan et al.,* both emphasized the
significance of machine learning in emergency department triage, focusing the effectiveness of Support Vector
Machine, Naive Bayes and Decision Tree models.

It should be noted that the examples just mentioned are only some of the methods present in the literature.
Other examples of significant interest are shown in Table 1, showing aims and methods to provide an overview
of existing solutions. In addition, further details on the topic are available in®.

The methods presented are based on ML (or DL) algorithms with similar aims and tasks of our solution.
However, as mentioned in the introduction section, patient data are conventionally managed in tabular formats,
differently from our approach based on similarity networks for representing patient data. Although our solution
is innovative, it is appropriate to provide an overview of some solutions that exploit network modelling for the
analysis of ED patient data. Many deep learning-based medical prediction methods are focused on the patient’s
individual information. Due to missing data, noise, and incompleteness a single EHR cannot provide complete
health information®. In this regard, considering patients similarities could enhance models’ performances.

Table 2 summarizes some network-based approaches for the managing of ED by outlining, not only the
purpose and the methods, but also the key features that differentiate them from our proposal. For example,
although it is not a paper strictly related to ED, Liu et al.,* address the possible relationships between symptoms
and diagnoses in the medical field modelling chatbot data in multi-relation graph with multiple type of nodes
and edges. It shows how graph-based methods are flexible, capturing intricate health-related data structures
effectively. Ying et al.,*> propose MERGE, a Multi-graph attentive Representation learning framework for the
integration of group information from similar patients for medical prediction. Valls et al.,*” analyse the use of
GNNs on Knowledge Graphs, highlighting the importance of domain knowledge in GNN connectivity for link
predictions in the clinical triage context. Still in the background of application in emergency departments, Tong
et al.,* present the modelling of patients in similarity networks with costumed pairwise similarity score, using
LSTM-GNN for the prediction of mortality and length of stay.

Title

Aim

Methods

Machine learning based electronic triage for emergency
department®

Predicting the patient’s medical condition, given their signs
and symptoms

NB, SVM, DT and, NN classification models

A machine learning model for triage in lean pediatric
emergency departments®

Pediatric ED to correctly predict which patients should be
ad-mitted, given their signs and symptoms

LR, SVM with Polynomial and Gaussian kernels and the
MLP NN

Deep-learning approaches to identify critically Ill
patients at emergency department triage using limited
information®

Predicting critical illness at triage

Four progressively complex deep-learning models

Machine-Learning-Based Electronic Triage More Accu-
rately Differentiates Patients With Respect to Clinical
Outcomes Compared With the Emergency Severity Index*

Predicting likelihood of acute outcomes enabling improved
patient differentiation

E-triage composed of a random forest model

A Novel Interpretable Deep-Learning-Based System
for Triage Prediction in the Emergency Department: A
Prospective Study?”

Predicting hospitalization based on prospectively collected
data in the ED, including vital signs and chief complaints

Interpretable novel triage prediction system

Predicting hospital admission at emergency department
triage using machine learning®

Predicting hospital admission at the time of ED triage
using patient history in addition to information collected
at triage

Nine binary classifiers using LR, XGBoost, and DNN

Machine Learning and Initial Nursing Assessment-Based
Triage System for Emergency Department®”

Predicting adverse clinical outcome in ED based on initial
nursing assessment (INA)

Four classifiers using LR and a DL model

Machine Learning-Based Prediction of Korean Triage and
Acuity Scale Level in Emergency Department Patients®

Predicting the KTAS level

Logistic regression, random forest, and XGBoost

Machine learning models predicting undertriage in
telephone triage*!

Predicting undertriage in the prehospital setting and
identifying the predictors of risk factors associated with
undertriage

SVM, Lasso Regression, RF, XGB, and DNN

A Racially Unbiased, Machine Learning Approach to Pre-
diction of Mortality: Algorithm Development Study*?

Minimizing bias in in-hospital mortality predictions
between white and nonwhite patient groups

XGBoost, a gradient boosting technique

Machine learning for psychiatric patient triaging: an inves-
tigation of cascading classifiers*

Triaging psychiatric patients using textual patient records

One-class-at-a-time approach, a multistage cascading clas-
sifier for psychiatric patient triage

Technology Road Mapping of Two Machine Learning
Methods for Triaging Emergency Department Patients in
Australia**

Exploring the application of ML to improve the triage
process for ED patients in Australia

NB and NN on EHRs

Table 1. Exploring some machine learning approaches for analyzing patients in emergency department!. ! NV
= Naive Bayes, SVM = Support Vector Machine, DT = Decision Tree, NN = Neural Neteorks, LR = Logistic
Regression, MLP = Multilayer Perceptron, XGBoost = Gradient Boosting, XGB = Gradient-Boosted Decision
Tree, DNN = Deep Neural Networks, DL = Deep Learning, RF = Random Forest.
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Title

Aim

Methods

Main difference

Graph Network Techniques to Model and
Analyze Emergency Department Patient
Flow*

Modeling, storing, and analyzing patient
journeys through the emergency depart-
ment

Neo4j as a time-varying graph to model
patient flows during ED stays

Graph network to model the sequence of
events of a patient

Medical Triage Chatbot Diagnosis Improve-
ment via Multi-relational Hyperbolic Graph
Neural Network®®

Analyzing the relationship between symp-
toms and potential diagnoses in healthcare
datasets

Multi-relational Hyperbolic Diagnosis Pre-
dictor? to build a disease predictive model

Multi-relational graph based on the chatbot
data with three types of nodes along with
two types of relations

Information Flow in Graph Neural Net-
works: A Clinical Triage Use Case*’

Understanding how GNN parameters and
domain knowledge influence the accuracy
of predicting the appropriate patient cares

GNNs on KG to optimize link prediction
for clinical triage

Link prediction as task, multi-relational KG
as modelling method

Design of Intelligent Question Answering
System for Hospital Online Triage based on
Knowledge Graph*’

Implementation of a medical question
answering system to efficiently access
relevant medical information by asking
questions

Leverages KG in Ne04j to enhance the intel-
ligence in the medical field

KG to construct a medical knowledge map
for enhancing medical question answering
systems

Predicting Patient Outcomes with Graph
Representation Learning®

In-hospital mortality and length of stay pre-
diction (patient outcome prediction tasks)

LSTM-GNN for: a hybrid model combining
LSTMs for extracting temporal features and
GNNs for extracting the patient neighbour-
hood information

Incorporating temporal features for out-
come prediction, using costumed pairwise
similarity score

MERGE: A Multi-graph Attentive Repre-
sentation learning framework integrating
Group information from similar patients*

Evaluating patient similarity and obtaining
similar patient groups for clinical prediction
tasks using EHRs

MERGE integrates group information from
similar patients for clinical prediction tasks
based on temporal EHRs

General medical prediction using dynamic
and static patient feature to construct
similar patient affinity graphs

Table 2. Exploring some approaches for analyzing patients in Emergency Department using Networks.?. 2
KN = Knowledge Graph, GNN = Graph Neural Network, Neo4j = a graphing database, LSTM = Long Short-
Term Memory network, EHR = Electronic Health Record * a novel multi-relational hyperbolic GNN based
approach.

Architecture of the proposed system

Our methodology leverages Graph Representation Learning applied to networks through Graph Neural Net-
works. Graph Representation Learning (GRL) is a method for encoding structural information of a graph into
low-dimensional vectors. The mapping derived from projecting nodes or subgraphs of a graph into a vector space
reflects the original graph’s structure. GRL enables the use of learned embeddings as feature inputs for down-
stream machine learning tasks, leveraging graph structures for various applications such as node classification,
link prediction, and graph visualization. Many GRL approaches have been developed over time, but we have
chosen Graph Neural Networks that deal with node labels based on inductive strategies.

Figure 2 describes the system’s architecture. The system receives patient data as input to build the patient
similarity network, where each node is a patient, and the weighted edges model the similarity among them. The
current implementation of the system uses four known measures for evaluating similarity: cosine similarity,
Euclidean, Manhattan, and Minkowsky distances.

The network embedding (or graph representation learning) module is responsible for projecting the network
into a latent space using node embedding. GRL projects each node into a separate point in a subspace while
preserving the initial distance between nodes.

The node classification module is responsible for assigning a triage level to each new patient requiring the
assignment. Both the graph representation learning module and node classification module leverage the compu-
tational intelligence of Graph Neural Networks methods. From the existing techniques for GRL, we select those
that can deal with node labels based on inductive strategies. For instance, Graph Neural Networks are used for
node embedding®® because they present two main advantages: (i) they take into account data related to nodes,
(i.e. node features); (ii) they are inherently inductive, so they do not need to recalculate the whole embedding
in case of any graph modification (e.g. node/edge insertion or removal)***"2. The current implementation uses

Graph Neural Network

OUTPUT

Node + Node
embedding classification

i@k

Patient

Similarity Network Triage Level

Patient Data

Figure 2. The architecture of the system.
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three state-of-the-art methods:Graph Convolutional Networks®, GATv2Conv®, and GraphSage®*°¢, which in
general have better performances compared to the state of the art.

Graph Convolutional Networks (GCNs)*” are specialized neural network architectures for processing data
structured as graphs. These networks are particularly effective in scenarios where data points are interconnected,
such as social networks, molecular structures, or communication networks. Unlike traditional convolutional
neural networks that operate on grid-like data (e.g., images), GCNs leverage the graph structure to process data
on nodes and their connections®. They apply convolution operations directly on the graph, aggregating informa-
tion from a node’s neighbours, capturing the features of individual nodes and the complex relationships between
them. The flexibility of GCNs in handling irregular graph structures makes them highly suitable for tasks like
node classification, link prediction, and graph classification.

Graph Attention Networks (GATs)*® use an attention mechanism to dynamically determine the relevance of
each neighbour’s features, allowing for a more nuanced and context-aware aggregation of neighbour information.
This approach differs from traditional graph convolutional networks that aggregate neighbouring node features
uniformly or predetermined.

In GATs, the attention mechanism assigns different weights to more relevant nodes in a neighbourhood, which
is particularly useful in dealing with complex graph structures where the relevance of neighbouring nodes can
vary significantly. This approach leads to more effective feature representation and learning. The implementation
of GAT is defined as follows with two GATv2Conv layers:

e first layer with input dimension equal to 16 as the number of features, output dimension equal to 8 and 4
attention heads to implement the mechanism of attention.

e second layer with input dimension equal to the output dimension of the previous layer (hidden dimension
* number of attention heads) to obtain the output of dimension 4 as the size of the target class.

GraphSAGE® is a framework for generating node embeddings for large graphs. Unlike conventional graph-
based methods, it samples and aggregates from a node’s local neighbourhood to efficiently scale to large graphs.
It can perform aggregation using various functions and capture diverse neighbourhood structures effectively.
GraphSAGE has inductive learning capability and is effective in classification, prediction, and recommendation
systems for large-scale and dynamic graph data.

Experimental results

To test the performances of our method, we designed and performed a set of experiments as depicted in Fig. 3.
The input dataset is translated into networks using cosine similarity, Minkowski, Manhattan, and Euclidean
distance. We built many networks for each measure using different threshold levels. Then, for each network, we
perform node embedding, and we train a a classifier using GCN, GAT and GraphSage. Finally, we evaluated the
performance of each classifier.
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Figure 3. The figure represents the experiments we performed to test the approach. The input dataset is
converted into a network using cosine similarity, Euclidean, Manhattan, and Minkowski Distances. For each
measure, we generated a set of networks using different thresholds. Then, each single network is used to learn a
classifier, and finally, results are evaluated.
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Dataset

We tested our methods on a publicly available dataset on the Kaggle platform (https://www.kaggle.com/datasets/
hossamahmedaly/patient-priority-classification). The dataset contains 6962 instances (rows) of patient admission
and 16 features for each instance. Each row describes the parameters of a patient such as symptoms and some
biochemical parameters used to determine the severity level as summarised in Table 3. Each row also contains
the assigned triage level as follows with decrescent level of risk:

® Red: the patient needs immediate attention;

® red: the patient needs intervention in a short time;

®  Yellow: urgent condition needing interventions that can be deferred;

® Green: condition with minor urgency because there are no alterations of vital functions and no critical
symptoms.

Data are pre-processed as follows (as reported in Fig. 4):

1) Duplicates and null values: this phase involved removing 5.9% of the data. Null values amounted to 411 rows,
of which 410 had missing triage codes (with a NaN value) and 1 was missing gender information. Conse-
quently, before implementing other pre-processing phases, 6551 rows remained, accounting for 94.1% of
the initial dataset.

2) Inconsistent (or incomplete) records: missing values are replaced with the mode of the values of the whole
corresponding column.

3) Label Encoder for categorical features: Dataset contains three categorical features: Residence type, Smoking
status and the third is the target feature.

Parameter Description

Age age of the patient.
Gender patient’s sex.

Chest pain type the type of chest pain.

Blood pressure

blood pressure value.

Cholesterol cholesterol level.

Max heart rate

maximum heart rate value.

Exercise angina

presence of angina.

Plasma glucose

glucose level in blood plasma.

Skin thickness any thickening of the skin.
Insulin insulin level.
BMI body mass index

Diabetes Pedigree | genetic predisposition to diabetes.

Hypertension

elevated blood pressure.

Heart disease presence of heart disease.

Residence type

type of residence place.

Smoking status

defines whether or not the patient is a smoker.

Residence type: Urban,Rural

Smoking status:

never smoked,smoke, previously smoked,Unknown.

Table 3. Features of the patients.
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Figure 4. Figure reports the preprocessing workflow.
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4) Oversampling and Undersampling: Since classes are unbalanced, we use SMOTE (Synthetic Minority Over-
sampling Technique)* to perform the sampling.

5) Normalization with Min-Max Scaler: Finally data are normalized using a Min-Max approach, so a maximum
value of each column is equal to 1 and a minimum value equal to 0.

Networks generated using cosine similarity
We first generated patient networks using cosine similarity to define edges. We used different thresholds (0.98,
0.95,0.94, 0.92, 0.90). In this case, an edge connects two nodes when the cosine similarity exceeds the threshold.
We stopped at 0.90 since we reached a completely connected graph. Table 4 summarises the characteristics of
the networks generated by using cosine similarity at different level of threshold.

As can be noticed, decreasing the value of the thresholds reduces the isolated nodes and increases the number
of edges. In this way, it is possible to connect more patients due to the possibility of creating an edge between
two nodes with some more dissimilarities.

Networks generated using Euclidean distance
We first generated patient networks using Euclidean Distance to define edges. We used different thresholds (0.20,
0.23, 0.25,0.28,0.31, 0.38). In this case, an edge connects two nodes when the Euclidean distance is lower than
the threshold. We stopped at 0.38 since we reached a completely connected graph.

Table 5 summarises the characteristics of the networks generated by using Euclidean Distance at different
levels of threshold.

The considerations are similar to the case concerning cosine similarity, with the difference that the number of
isolated nodes is lower than the first obtained previously. It may be associated with considering distance allows
for more connections between a larger number of nodes.

Networks generated using Manhattan distance
Table 6 summarises the characteristics of the networks generated by using Manhattan Distance at different level
of threshold.

In this scenario, the number of edges is initially lower than in previous cases, as is the number of isolated
nodes. On the contrary, after the first two, much less stringent thresholds were chosen, causing a substantial
increase in the number of edges and a reduction to zero in the number of isolated nodes.

Networks generated using Minkowsky distance
In this subsequent phase, it is interesting to generate graphs from tabular data, by exploring the Minkowski
distance. It serves as a generalization of both Euclidean and Manhattan distances. Therefore, it is appropriate to
vary the value of p, which characterizes the modification of this metric. Table 7 summarises the network char-
acteristics generated by using Minkowsky Distance (p = 10) at different level of threshold.

Table 8 summarises the network characteristics generated by using Minkowsky Distance (p = 4) at different
level of threshold.

Threshold | Isolated Nodes | Edges
0.98 761 1.578.490
0.95 22 8.103.196
0.94 7 10.810.687
0.92 2 16.505.521
0.90 1 22.148.695

Table 4. Characteristics of the networks generated using different threshold levels and cosine similarity levels
as measure. Bold highlights best performances.

Threshold | Isolated Nodes | Edges
0.20 125 3.348.231
0.23 33 5.403.317
0.25 14 7.120.567
0.28 5 10.279.280
0.31 0 14.086.639
0.38 0 25.226.436

Table 5. Characteristics of the networks generated using different threshold levels and Euclidean Distance as
similarity measure. Bold highlights best performances.
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Threshold Isolated Nodes Edges

0.10 947 1.186.583
0.13 175 2.838.619
0.22 0 14.688.023
0.31 0 35.306.331
0.33 0 41.217.110

Table 6. Characteristics of the networks generated using different threshold levels and Manhattan Distance as
similarity measure. Bold highlights best performances.

Threshold Isolated Nodes Edges
0.20 892 988.835
0.25 225 2.146.676
0.30 83 3.942.436
0.35 37 6.403.802
0.40 13 9.481.995

Table 7. Characteristics of the network generated by using different levels of thresholds and Minkowsky

Distance (p = 10) as similarity measure. Bold highlights best performances.

Threshold Isolated Nodes Edges
0.20 394 1.630.369
0.25 92 3.527.312

Table 8. Characteristics of the network generated by using different levels of thresholds and Minkowsky
Distance (p = 4) as similarity measure. Significant values are in bold.

It may be observed that choosing p = 10 results in a notable reduction in network connections, differently
from choosing p = 4 in which the values are closer to other measures.

Graph convolutional networks
We used GCN to analyze graphs created based on Cosine similarity and Manhattan on Euclidean distance. We
employed two architectures of GCN, the first one for cosine and Manhattan and the last for the networks gener-
ated using Euclidean distance.

The first architecture is composed by five GCNConv layers:

e Jayer 1 of dimensions (16,64), where the first one represents the input feature dimension for each node in the
graph: each node is described by a vector of 16 features.

® layers 2,3,4 of dimensions (64,64) representing hidden layers’ dimension during GCN convolutions, followed
by dropout function with a fraction of characteristics to be reset equal to 20%, during training and ReLu
function for each layer.

® Jayer 5 of dimensions (64,4) with an output dimension appropriate to the number of classes to be identified
as targets.

Similarly, the second architecture is composed, excluding the fifth layer and using 32 as the hidden dimension
during GCN convolutions. The input size is set to 16 (in agreement with the number of features), while the output
equals 4 (in agreement with the number of feature target classes). Furthermore, the same number of Dropout
layers are inserted with the same fraction of characteristics to be reset.

Graph attention networks
The analysis module based on Graph Attention Network has been implemented as follows with two GATv2Conv
layers:

e first layer with input dimension equal to 16 as the number of features, output dimension equal to 8 and 4
attention heads to implement the mechanism of attention.

e second layer with input dimension equal to the output dimension of the previous layer (hidden dimension
* number of attention heads) to obtain the output of dimension 4 as the size of the target class.
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The two Dropout layers have been introduced at a rate of 20%

GraphSage

Firstly, the available data is further subjected to a phase which consists of the creation of batches to be able to
apply the training on the mini-batches that are better manageable for training the GNN. The torch geometric.
loader module provides the Neighborloader function with the possibility to choose both the size of each batch and
the number of neighbours to consider at each iteration. Five sub-graphs are obtained for each considered graph
choosing a dimension equal to 3000 for the batch size and some neighbours equal to 10 to be considered at each
iteration for each node for 5 iterations. For all the graphs created by the similarity and distance measures, the
same model is implemented using five SAGEConv layers. SAGEConv is better than simple GraphSage allowing to
capture further details regarding the graph structure, thanks to its aggregate representation based on the degree
of the nodes in the neighborhood. In the current implementation, each layer has an input dimension equal to
the output dimension of the previous layer, with a sequence of 64, 32, 16, 8. Naturally, the input dimension of
the first layer always reflects the number of features, and the output dimension of the last layer corresponds to
the number of possible values for the target. Each SAGEConv layer uses the max pooling aggregation function,
except for the third layer with the mean aggregation function. Similar to the architectures described earlier,
each layer applies a ReLU activation function after the aggregation. Also, a dropout of 20% is applied, but only
after the fourth layer.

Classification performances

We measured the classification performances for each network previously built. This helped us to study how
some variations in the parameters of the system affect the conclusions of a model. Indeed, the obtained results
are visualized in Figs. 5 and 6.

Additionally, it can be observed that for all the considered metrics, opting for a less strict threshold enhances
the model’s performance. The only exception is the Minkowski distance with p=4, for which the performance
slightly decreases. For this reason, further experiments were conducted with additional arbitrary thresholds,
focusing only on the Minkowski distance with p = 10 and excluding p = 4.

Based on the preliminary results obtained, increasing the number of threshold points used to create the graph
structures shown in the previous tables for each metric seems appropriate. The aim will be to display the perfor-
mance growth or the performance loss. All the values of the arbitrarily considered thresholds are reported in the
previous tables, while in the following section, the resulting performances are presented as illustrated in Fig. 7.

For each experiment considering a different metric, some thresholds negatively influenced the models’ per-
formances. These models underperform compared to the others. In addition, the results are worse also than the
baseline. On the contrary:

[ Graph Structure Test Accuracy GraphSage
[Graph created by Cosine similarity (threshold 0.98) 99.35%

[Graph created by Cosine similarity (threshold 0.95) 99.60%

[Graph created by Manhattan distance (threshold 0.10) 96.03%

[Graph created by Manhattan distance (threshold 0.13) 97.48% ]
[Graph created by Euclidean distance (threshold 0.20) 95.87% ]
[Graph created by Euclidean distance (threshold 0.23) 95.94% ]

Figure 5. Comparison of test accuracy considering an additional threshold for each metric.

[ Graph Structure I Test Accuracy GraphSage
{ Y
Graph created by Minkowski distance, p = 10 94.61%
(threshold 0.20) R
e < <
Graph created by Minkowski distance, p = 10 95.40%
(threshold 0.25) e
<> <
Graph created by Minkowski distance, p = 4 99.14%
(threshold 0.20) e
’ <
Graph created by Minkowski distance, p =4 97 349
(threshold 0.25) S
A A J
Figure 6. Comparison of test accuracy considering an additional metric.
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Figure 7. Comparison of test accuracy in relation to the threshold value used for edge creation in each network
for each considered metric.

For the cosine similarity, choosing a threshold lower by a few points is positive for the performances of the
model, maybe because it helps to find more similarities useful for the classification. On the other hand, if the
threshold is lower than 0.94, it isn’t good.

Differently from the previous case, an intermediate value of Manhattan distance could be the better choice,
outperforming also the baseline.

Considering the Euclidean distance, higher thresholds deteriorate the results in some cases, as it can be seen
more clearly for thresholds like 0.23 and 0.25.

Ultimately, for the Minkowski distance, to outperform the baseline, the model requires thresholds to be
increased in relation to the initial values.

Node classification
For all the previous methods, we used the following parameters to build the classifier:

the CrossEntropyLoss computed between the model predictions and the training labels to measure how well
the model is learning.

the Adam optimizer that is employed to update the model weights with a weight decay = 5e-4 and a learning
rate of 0.01. This last one is used in all cases except for the model based on GAT layers, which has been set
to 0.005.

Comparison with respect classification on tabular data

It could be useful to compare the results obtained with networks related to classification on tabular data. There-
fore, two types of algorithms were trained: Support Vector Machine and K-Nearest Neighbors on the same patient
data used for classification on graphs.

Similarly, the same pre-processing phase was carried out.
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The tabular data were splitted in train, test and evaluation set with a proportion of 30% for test set. In addi-
tion, a percentage of 30% of the test set was used for evaluation. The results obtained (shown in Fig. 8) were
higher than GCN and GAT applied on graph structures but are lesser than GraphSage results. Supporting the
evidence, the test performances of the classification on tabular data are also associated to the Sensitivity Analysis
results in the previous figures.

Ablation study
To better test the performances of our approach, we performed an ablatio study®®®' considering GraphSage, as it
emerged as the best-performing model in the initial analysis phase and using the graph, which resulted in best
performances, i.e. cosine similarity with a threshold of 0.95.

In this case, the study was conducted by removing one layer at a time, the second, third, and fourth layers, and
finally, all three layers while varying the number of neurons and considering initially eight neurons and then 64
neurons. In Fig. 9, the results obtained are reported, on which it is possible to make the following considerations:

e The removal of the fourth layer slightly reduces performance compared to removing the other layers.

e the removal of the third layer reduces performance slightly more than removing the second layer.

e the removal of the second, third, and fourth layers, considering 8 neurons, leads to the minimum accuracy
value achieved in testing.

e The removal of the second, third, and fourth layers, considering 64 neurons, reduces the accuracy value
achieved in testing, but it remains higher than that obtained under the same conditions with 8 neurons and
higher than that obtained by removing only the second or third layer.

Moreover, it could be argued that the fourth layer may be more important than others in aiding node classification.

Case study on MIMIC-1V-ED dataset

We also tested our methodology on the demo version of the MIMIC-IV-ED dataset®** by using the GraphSage
configuration since it reported best results in the previous dataset. The dataset we used stores patient data related
to triage such as diagnosis, biochemical paratemres and visual inspection.

We selected fourteen features related to triage (‘temperature, "heartrate), ‘resprate; ‘o2sat, ’sbp, ‘dbp; ’pain;,
‘gender’, race) ‘arrival transport, disposition, ‘name’, etcdescription, *times minutes’) and reported in the Table 9,
to predict the target variable (acuity’) which has four possible levels (where 1 indicates the highest severity and
4 indicates the lowest severity).

Accuracy ]
[ Algorithm Train set | Test set ]
| Support Vector Machine 98.50% | 98.36% |
( K-Nearest Neighbors 98.15% | 97.16% |
Figure 8. Accuracy on tabular data.
Ablation study
99.60 F=————mmmmm—r e e e e e e A e m e e e e e e e e ]
99.53 >
99.42 L
99.18 A *
99.02 *
g
(-
H
p
"{_,' ® Test accuracy ablated model
—== Test accuracy initial model
98.18 L 2
97.69 L 2
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Figure 9. Ablation study results.
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Parameter Description

Temperature patient’s body temperature.

HeartRate patient’s heart rate

Resprate respiratory rate.

O2sat oxygen saturation.

sbp systolic blood pressure.

dbp diastolic blood pressure.

Pain patient reported pain level.

Gender patient’s sex.

Race patient’s racial background.

Arrival transport | mechanism of patient admission.
Disposition patient discharge location.

Name text description of the medicine.
Etcdescription the textual description of the ontology group.
Times minutes the difference between the in-time and out-time*.

Table 9. MIMIC dataset selected features of the patients. the difference between the time at which the patient
was discharged and the time at which the patient was admitted to the ED.

Preprocessing steps aimed at dropping possible duplicates, imputation of missing values, encoding categorical
features, normalisation, and a combined technique of oversampling and undersampling.

We initially build the Patient Networks by using Cosine Similarity as measure using five different thresholds
(0.90, 0.92, 0.94, 0.95, 0.98). Then we used GraphSage to embed the network and build a classifier. Model’s per-
formances are visible in Fig. 10 showing GraphSage ability in testing. We compared the obtained results with a
baseline built as in the previous section. As shown, GraphSage demonstrates good performance, superior to that
of the pipeline tested considering higher thresholds for creating networks.

Discussion

The use of AI-based triage system in EDs could have significant implications for emergency medical care. Auto-
mating the triage process could reduce wait times and ensure that patients receive care proportional to the
urgency of their condition. This could improve patient outcomes and operational efficiency within hospitals.
This study demonstrates the potential of graph neural networks (GNNs) to improve patient triage in emergency
departments (EDs) through the application of artificial intelligence (AI) in healthcare. The AI-based module
uses historical data and real-time patient information to streamline the triage process and enhance the accu-
racy of emergency code assignments. In this section, we will provide a detailed analysis of the study’s implica-
tions, its inherent strengths and limitations, and propose directions for future research. As discussed in the
previous sections, modelling patients in similarity networks and using Graph Neural Networks for embedding

Cosine Similarity

98.41 1 @ Test Accuracy  d

96.83 L 2

-------------------------------------- SVM

Test Accuracy
[{elle]
o
NS
A0
L
®

93,94 Jrmfm e e e el KNN
93.65 - °

92.06 @

T T
0.90 0.92 0.94 0.95 0.98
Thresholds

Figure 10. GraphSage’s test accuracy on the MIMIC dataset varies based on the thresholds used for edge
creation using Cosine similarity as measure. In addition, it is compared with a standard pipeline’s accuracy
applied for the same task.
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and classification showed a high accuracy in predicting triage code. Moreover, using GNNs allows for a more
nuanced understanding of patient data, taking into account the complex interrelations between various medical
parameters. Our approach leverages vast amounts of data collected in EDs to inform triage decisions, a clear
strength of the study. Analysing complex datasets allows for the assessment of each patient’s condition, potentially
uncovering correlations that would be missed by human operators.

While it’s true that manual triage times may not be so long, our proposed method addresses critical issues of
undertriage and overtriage. This not only supports medical staff in their work esnuring necessary care for patients
but saving time and resources. In fact, this data-driven method of triage reduces subjectivity and variability,
leading to more consistent and reliable patient care, potentially saving lives through earlier intervention. Despite
multiple advantages widely discussed, this approach introduces some limitations regarding mostly the quality
and the consistency of the input data. Data incompleteness, inaccuracies, or biases can significantly impact the
algorithm’s performance. Additionally, the static nature of historical data may not always capture the dynamic
changes in a patient’s condition, underscoring the need for real-time data integration into the Al-based triage
system. Even though modelling patients in similarity networks allows to take into account hidden relationships,
another limitation is the algorithm’s interpretability. The “black box” nature of AI and machine learning models
can make it challenging for medical staff to understand the rationale behind specific triage decisions. This lack of
transparency could hinder the acceptance and trust in Al-based triage systems among healthcare professionals.

Although AI systems like the one we propose prove to be accurate and efficient in many areas of medicine
and in particular in the specific case of triage, there are certain aspects of the triage process (or other complex
medical situations) that may require human judgment. However, automated triage, like the proposed method,
could be integrated into clinical practice with appropriate caution, aiding in patient prioritization. About that
the integration could optimize decision-making thanks to a data-driven approach that allows to consider similar
conditions in patients. In addition, quality of care could be improved due to better resource allocation reducing
the waste of resources due to overtriage.

Therefore, while it is an algorithm that leads to the assignment of the triage code, a joint prioritization of
human experience and training knowledge of the model could speed up the procedures necessary for the patient’s
well-being.

We claimed that the proposed method showed high performance in predicting triage code. The comparison
between manual and automatic triage may require the availability of data related to wrong triage, which are not
easily available. Future research should explore the integration of real-time monitoring data into the AI-based
triage system. Incorporating data from wearable devices, sensors, and other IoT devices could provide a more
dynamic and accurate picture of a patient’s condition, allowing for timely adjustments in their triage status.

Moreover, enhancing the interpretability and transparency of AI models is crucial for their adoption in clini-
cal settings. Developing explainable AI (XAI) methods that provide insights into the decision-making process
of GNNs could build trust among medical professionals and facilitate the integration of Al systems into existing
medical workflows.

Additionally, the standardization and interoperability of medical data formats are vital for the widespread
adoption of Al based triage systems. Ensuring that these systems can seamlessly integrate with various hospital
information systems and electronic health records (EHRs) will be crucial for their effectiveness and scalability.

Conclusion

In this study, we introduced an innovative approach for managing patient triage in emergency departments
by applying artificial intelligence (AI) and network science. Utilizing machine learning algorithms and graph
neural networks, our team crafted an AI module to precisely categorise patients into triage levels. In our tests,
this system exhibited superior performance over conventional triage methods.

The findings from our research underscore the advantages of Al integration in healthcare, especially in the
context of patient triage. This technological integration streamlines resource allocation and minimizes errors in
triage assessments. Our Al-driven method, which analyzes a patient’s detailed medical history alongside their
current vital statistics, enables a more detailed and accurate evaluation of their immediate medical needs. This
approach significantly enhances the prioritization process of patients within emergency departments.

Moreover, our innovative strategy of representing patient data as graph nodes and employing graph neural
networks for classification marks a notable advancement in medical informatics. This technique boosts the pre-
cision of patient triage and paves the way for novel methods of analyzing patient data in emergency healthcare
scenarios.

Our study illuminates the transformative potential of merging Al with conventional healthcare methodolo-
gies to enhance patient care and emergency departments’ operational efficiency. Adopting Al-based systems
in healthcare promises redefining triage processes, ensuring more effective and optimized patient treatment.
Looking ahead, the focus could be on refining these AI models and examining their applicability in diverse
healthcare environments, which could further substantiate and expand upon the observed benefits of this study.

Data availability
All the data used in this article and the code for reproducing the experiments are available at https://github.
com/hguzzi/iatriage.git.
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