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1. Introduction 

Compute Express Link (CXL) represents a 

revolutionary advancement in interconnect 

technology, establishing itself as an industry standard 

for high-performance computing infrastructure. CXL 

achieves unprecedented performance, with the latest 

CXL 3.0 doubling the data rate to 64 GT/s (Giga 

transfers per second) per lane (from 32 GT/s in CXL 

2.0) while adding virtually no latency [1]. This 

translates to an aggregate bandwidth of up to 256 

GB/s on an x16 link, enabling extremely high 

throughput for data-intensive operations. The 

technology implements a sophisticated protocol stack 

encompassing three distinct sub-protocols: CXL.io (for 

PCIe I/O compatibility), CXL.cache (for cache-

coherent accelerator interactions), and CXL.mem (for 

memory expansion and pooling semantics). Notably, 

the CXL 3.0 architecture introduces advanced fabric 

capabilities, supporting up to 4,096 connected devices 

(or nodes) in a CXL fabric via new port-based routing 

mechanisms [1]. Each attached device can manage 

multiple memory regions potentially ranging in size 

from kilobytes to terabytes, allowing memory 

resources from approximately 4KB up to 4TB to be 

defined for CXL memory pooling in large-scale 

systems [1]. This exceptional scalability and flexibility 

make CXL a cornerstone for modern data center 

architectures. 

CXL demonstrates tremendous versatility by 

classifying into Type 1, Type 2, and Type 3 devices, 

each targeting different use cases in heterogeneous 

computing systems. In summary: 

● Type 1 devices: Typically accelerators with small 

local caches. These devices rely on the host for 

main memory and achieve high-speed cache-

coherent communication. For instance, a Type 1 

accelerator over an x16 CXL 3.0 link can utilize 

up to ~256 GB/s of coherent memory bandwidth, 

enabling rapid data exchange with the host 

processor’s memory. 

● Type 2 devices: Accelerators or devices with their 

own local memory (larger memory buffers). They 

support coherent memory and caching protocols, 

allowing them to share memory with the host 

while using large local memories. Type 2 devices 

enable sophisticated memory hierarchies with 

customizable cache sizes (ranging from tens of 

kilobytes to several megabytes) to optimize 

performance for workloads like AI/ML, where 

both local and shared memory are crucial. 

● Type 3 devices: These are primarily memory 

expansion or pooling devices. They might not 

have significant computing capabilities, but 

provide additional memory capacity to the host. 

A Type 3 memory expander can offer the system 

multi-terabyte memory capacities (often dozens 

of TB), all accessible with full cache coherency 

across the CXL link. Such devices allow memory 

disaggregation, where memory can be added to a 

system or shared between hosts without being 

physically attached to the CPU memory bus. 

By supporting these device types under a unified 

standard, CXL enables a range of usage models—from 

accelerators tightly coupled with the CPU’s memory 

system to pure memory expansion modules—while 

maintaining cache coherence and low latency. This 

versatility is evident in modern heterogeneous 

computing environments, where CXL’s coherent 

interconnect is leveraged for accelerators (GPUs, 

FPGAs, smart NICs) and memory pooling across 

servers. 

1.1 Verification Challenges and Methodologies 

The CXL verification landscape introduces 

unprecedented complexities that demand innovative 

approaches to system validation. Verifying a CXL-

based system involves dealing with multiple protocol 

layers and ensuring they work seamlessly together. 

For example, a verification environment must 

simultaneously handle PCIe transactions (through 

CXL.io) and cache-coherent memory transactions 

(through CXL.cache and CXL.mem), which increases 

the state space and potential interactions to test. 

According to the CXL Consortium’s technical 

guidance, verification teams must pay particular 
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attention to cache coherency across distributed 

architectures and shared memory environments [2]. 

CXL 2.0 supports up to 8-way coherency (multiple 

agents sharing cached data), meaning the verification 

process has to validate that caching protocols 

maintain consistency when up to 8 devices or 

processors actively cache the same data. Each 

coherent transaction requires precise timing 

validation to ensure response latencies remain under 

tight bounds (on the order of tens of nanoseconds for 

on-cache interactions). Maintaining such low latency 

while coordinating between many agents is a 

significant challenge for verification. 

Another critical area is memory pooling verification. 

CXL enables memory disaggregation where many 

devices (or hosts) share memory pools. Systems may 

support thousands of concurrent endpoints sharing 

memory in a pool. Verification must ensure data 

integrity and performance isolation across these 

complex memory hierarchies. The CXL Consortium 

emphasizes comprehensive testing for memory 

pooling configurations that approach the upper limits 

of device count and memory capacity [2]. This 

includes verifying that memory access performance 

remains consistent even under heavy load and that 

the theoretical maximum bandwidth (e.g., ~256 GB/s 

per x16 link in CXL 3.0) is achievable without 

violating protocol specifications. Indeed, memory 

pooling introduced by CXL 2.0 allows an aggregated 

memory capacity on the order of petabytes, and CXL 

3.0’s multi-level switching pushes this even further 

[2]. Verifying correct function at such scale (e.g., 

ensuring that an exabyte-scale memory pool 

maintains coherence and error-free operation) 

requires extremely thorough and scalable test 

methodologies. 

Protocol compliance testing is a fundamental aspect of 

CXL verification that also becomes more complex 

with CXL’s layered protocols. Compliance testing 

ensures that an implementation adheres strictly to the 

CXL specification (as well as underlying PCIe 

specifications) in all scenarios. Modern verification 

environments for CXL must include protocol checkers 

or monitors that can observe transactions at speeds up 

to 64 GT/s and flag any deviations from the spec [2]. 

This includes checking complex timing relationships 

(e.g., ordering rules between CXL.io and CXL.cache 

transactions), power management state transitions, 

and error-handling mechanisms across multiple layers. 

Introducing advanced features in newer CXL 

revisions (like integrity and data encryption, multi-

level switching, and memory sharing between hosts) 

means compliance matrices have grown large. 

Verification teams must develop extensive test suites 

and assertions to cover the expanded specification. 

Finally, debugging capabilities need to evolve 

alongside these complexities. When a test fails in a 

CXL environment, pinpointing the root cause is non-

trivial. A single logical operation (like an accelerator 

reading a memory location) might involve multiple 

protocol packets (PCIe TLPs, CXL coherency 

messages) and traverse through switches or fabric 

elements. Analyzing thousands of concurrent 

transactions across a multi-tier memory hierarchy 

requires robust logging and debug infrastructure. Best 

practices from CXL technical documentation call for 

verification platforms to support detailed transaction 

logging and replay, allowing engineers to inspect the 

sequence of events leading to an issue across both 

PCIe and CXL layers [2]. In summary, the scope of 

CXL verification spans low-level link and protocol 

checks to high-level system coherence and 

performance validation, demanding a combination of 

traditional verification techniques and new intelligent 

approaches to meet these challenges. 

 

2. Challenges in CXL Verification 

2.1 Complexity of Cache Coherency Testing 

Cache coherency verification in CXL systems 

represents a significant challenge in modern 

heterogeneous computing environments. The 

introduction of CXL’s coherency (the CXL.cache 

protocol) means that devices like accelerators can 

cache shared memory lines, and the system must keep 
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those caches consistent with the host and other 

devices. With CXL 3.1 adding enhancements for peer-

to-peer coherency between devices, the complexity 

has increased even further. As documented by Jain 

and Wen in their analysis of CXL 3.1 verification 

methodologies, verification environments must now 

support testing scenarios where Type 1, Type 2, and 

Type 3 devices operate simultaneously within the 

same system, each with unique coherency 

requirements [3]. In practice, this means the 

testbench must create situations where, for example, 

an accelerator (Type 2), a memory expander (Type 3), 

and the CPU are all sharing certain memory regions, 

issuing reads and writes and cache invalidations, and 

then verify that the data seen by all components 

remains consistent. The verification infrastructure 

must validate cache coherency across multiple 

protocol layers (ensuring that CXL.cache transactions 

properly interact with underlying PCIe ordering rules) 

while keeping CXL.cache operations within specified 

latency boundaries. Small timing differences can 

violate coherency (e.g. if an invalidation arrives late). 

Hence, timing closure in coherency sequences is a key 

focus – each coherent transaction’s propagation 

through the CXL path must meet strict timing (often 

sub-50 ns for local cache responses, as noted earlier). 

Moreover, the coherency checks extend beyond 

traditional two-party (CPU-device) scenarios in 

heterogeneous systems like those used for multi-GPU 

AI training. Modern CXL verification must consider 

cases where multiple accelerators (GPUs, FPGAs, etc.) 

share coherent memory regions via CXL.cache while 

performing direct memory access (DMA) through 

CXL.io. According to industry case studies, an 

accelerator might perform a DMA write to a memory 

location that another device has cached; the 

verification must ensure the coherency protocol 

(snoop mechanism) properly invalidates or updates 

caches in such scenarios [3]. These concurrent access 

patterns—typical in AI and high-performance 

computing workloads—push the verification 

environment to handle interleaved operations across 

coherency domains. Corner cases ensure that if 

multiple devices simultaneously attempt to cache and 

modify the same data, the coherency protocol 

serializes these accesses correctly, and any device uses 

no stale data. 

Another aspect is coherency verification in CPU + 

FPGA systems or other combinations where each 

behaves differently (CPUs might use out-of-order 

execution and speculative access, whereas an FPGA 

might have a streaming access pattern). For example, 

the Synopsys CXL verification IP framework 

illustrates the need to validate complex interaction 

scenarios between conventional PCIe traffic (e.g., an 

FPGA DMA engine transferring data) and CXL cache 

coherency messages occurring in parallel. Real-time 

processing requirements in such systems demand that 

latency and ordering guarantees of CXL are upheld 

even under heavy load. Verification must cover these 

mixed scenarios to ensure the system behaves 

predictably and meets performance targets [3]. 

2.2 Compliance and Interoperability Testing 

Protocol compliance testing for CXL has evolved with 

each generation, especially as new features like 

security and advanced switching are introduced. One 

notable addition in CXL 2.0 was the Integrity and 

Data Encryption (IDE) feature, which provides 

optional link-layer encryption for CXL.mem and 

CXL.cache traffic to secure data in flight. According 

to Narasimha Babu GVL’s analysis of CXL IDE trends, 

modern verification environments must validate 

compliance across multiple protocol layers while 

ensuring proper handling of encrypted traffic [4]. This 

involves verifying that when encryption is enabled, 

all rules are still followed (e.g., sequence numbers, 

flow control, and error detection via CRC must work 

correctly with encrypted payloads). The correct 

implementation of IDE is critical in systems where 

sensitive data protection is paramount, such as 

memory pooling across potentially untrusted tenants 

in a cloud scenario. Verification must ensure, for 

instance, that enabling encryption doesn’t introduce 

deadlock or excessive latency and that keys are 



Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com 

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557 

 

 

 

 
2543 

managed and rotated according to spec. The CXL 

specification is designed such that secure features add 

minimal latency overhead, and testing must confirm 

that an implementation meets these targets (e.g., 

encryption engines don’t slow down transaction 

throughput beyond allowed limits). 

Interoperability in a CXL fabric also means devices 

with and without encryption must communicate 

seamlessly. Fabric switching in CXL 3.0 allows 

complex topologies (multi-level switches and 

potential routing of packets). Verification must cover 

scenarios of encrypted and unencrypted traffic flows 

through switches, ensuring that routing logic 

correctly handles each and that security boundaries 

are respected. For example, consider a CXL switch 

connecting multiple Type 3 memory devices to 

multiple hosts; some links may have IDE enabled and 

others not. The verification environment should test 

that an encrypted packet from one host is correctly 

decrypted (only by the intended receiver) and does 

not interfere with traffic on another link. GVL’s study 

on CXL verification methodologies emphasizes 

comprehensive testing strategies for such fabric 

scenarios, particularly where multiple security 

domains coexist [4]. This includes verifying that the 

switch doesn’t unintentionally leak information 

between an encrypted and unencrypted domain and 

that priority mechanisms and flow control work 

uniformly regardless of encryption status. Ensuring 

data integrity is key: even with encryption, the 

system should detect and handle any data corruption 

(via integrity checks) exactly as specified. Compliance 

tests must deliberately inject errors (like malformed 

packets or incorrect encryption tags) to confirm that 

the CXL link responds according to spec – for instance, 

dropping packets that fail authentication and 

triggering error messages/interruptions for the host to 

log. 

In summary, compliance and interoperability testing 

for CXL covers a wide range, from basic protocol 

handshakes and state machines (ensuring any CXL 

1.1/2.0 device works with a CXL 3.0 host, for example) 

to complex features like memory sharing and security. 

The goal is to ensure any CXL device can plug into 

any CXL host/switch and operate correctly. Given 

CXL’s rapid adoption, test consortia and plugfests are 

also being used as part of verification to catch 

interoperability issues early. Verification engineers 

augment these with in-house directed tests and 

random test scenarios that push the limits of the spec 

(such as maximal memory configurations or rapidly 

reconfiguring a fabric topology at runtime) to 

guarantee robust compliance. 

2.3 Debugging and Root Cause Analysis 

The complexity of debugging CXL systems has 

increased substantially with the introduction of 

advanced security features and sophisticated memory 

pooling capabilities. When a failure or anomaly 

occurs in a CXL-based system, the debugging tools 

must be capable of tracing events across multiple 

layers (PCIe, CXL.io, CXL.cache, CXL.mem) and 

potentially across distributed components. GVL’s 

analysis of CXL IDE verification challenges highlights 

the importance of sophisticated debugging tools to 

track protocol-level interactions and security-related 

events in tandem [4]. For example, if a data mismatch 

is detected, the debugger should help determine 

whether it was caused by a coherency issue (e.g., a 

stale cache line that wasn’t invalidated) or by an 

encryption issue (e.g., a dropped packet due to a 

decryption error). This requires visibility into the 

system’s internal states — such as snoop queues, cache 

directories, and encryption engine status — which 

traditional PCIe debuggers may not cover. As a result, 

CXL verification environments often incorporate 

advanced logging at the transaction layer for 

CXL.cache/CXL.mem, correlating those logs with 

PCIe link-layer traces. 

Modern verification components are being built with 

these needs in mind. Debug infrastructure must 

support detailed analysis of encrypted traffic flows 

while still allowing the identification of protocol-level 

issues [4]. In practice, this means that verification IP 

and simulators provide options to log decrypted data 
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or to use special keys so that verification can inspect 

encrypted packets. For instance, an encrypted 

memory read coming from a device should be logged 

to show the plaintext address and data (for 

verification purposes) while still ensuring the 

encryption module itself is verified. This dual-view 

logging is essential to debug scenarios that involve 

security: it allows engineers to verify that encryption 

didn’t alter the data contents incorrectly and that the 

handshakes for key exchange happened properly. 

Memory pooling also introduces new challenges for 

root cause analysis. An error observed in one host’s 

memory view could originate from another host’s 

action in a pooled memory environment. Therefore, 

debugging tools must span across host boundaries. 

Memory pooling error analysis in CXL systems 

requires debugging capabilities spanning protocol and 

security domains, maintaining visibility even in 

encrypted systems. Modern verification solutions 

include features like tracker files or transaction 

trackers that record the history of a cache line or a 

memory address as it moves through the system. For 

example, a tracker might log that address 0xXYZ was 

allocated to Host A at time T0, written by Device B at 

T1 (via an encrypted CXL.mem transaction), then 

read by Host C at T2, etc. Having this end-to-end 

trace greatly aids in pinpointing where an 

inconsistency arose. Narasimha Babu GVL notes the 

need for debug logs to contain as much information as 

possible (even from within encryption engines) to 

facilitate effective debugging [4]. This includes 

configuration info (e.g., which keys were in use, the 

security mode), pre-and post-encryption data values, 

and any events like key refreshes or error flags. 

Verification environments now often provide 

callbacks or hooks to inject errors (like integrity 

check failures) in a controlled manner and test that 

the system’s error reporting and containment 

mechanisms work properly. 

In summary, debugging CXL requires a holistic 

approach. Verification teams employ protocol 

analyzers that understand CXL semantics (often 

extensions of PCIe analyzers) and transaction-level 

monitors in simulations that can flag anomalies. AI 

techniques (discussed next) are also being explored to 

recognize patterns in the vast log data to 

automatically hint at likely causes (for example, 

machine learning models that learn the normal 

patterns of cache invalidations and can flag when 

something diverges). The overarching goal is to 

enable efficient root cause analysis despite the 

system’s complexity, thereby shortening the debug 

cycle for any bug. 

 

3. AI-Driven Innovations in CXL Verification 

3.1 AI-Based Compliance Automation 

The integration of artificial intelligence (AI) in CXL 

verification is transforming traditional compliance 

testing methodologies. CXL-based systems are highly 

complex, and manually crafting tests for every corner 

case or monitoring every subtle protocol violation is 

impractical. AI-driven verification frameworks 

address this by automating and intelligently guiding 

parts of the verification process. According to a case 

study by Kumar et al. on AI/ML-optimized CXL 

platforms, modern verification environments must 

adapt to handle the increasing complexity of 

heterogeneous computing systems, and AI is a key 

enabler in this adaptation [5]. Their research 

demonstrates that an AI-enhanced verification 

framework can effectively manage the verification of 

CXL Type-1 through Type-3 devices within a single 

unified environment, automatically adjusting to each 

device’s behavior. For example, an AI agent could 

learn the typical traffic patterns of a Type 3 memory 

expander versus a Type 1 cache device and ensure 

that test scenarios include relevant stress cases for 

each (like memory expander hot-plug events or cache 

line thrashing scenarios for accelerators). 

One significant innovation is using AI to improve the 

coverage of corner cases. Machine learning algorithms 

can analyze the complex state space of CXL 

transactions and identify combinations of events that 

might be rare but important to test. By processing 
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extensive simulation or emulation data, an AI system 

might find that a certain sequence of operations (e.g., 

a specific order of memory writes and cache 

invalidations across devices) has never been tested 

and could cause an issue. The framework can then 

generate a directed test to cover that scenario. AI 

techniques have proven adept at handling these kinds 

of tasks: machine learning can be used to improve the 

ability of constrained-random simulation to target 

specific coverage bins or even find design bugs [6]. By 

analyzing coverage data, an AI can guide the random 

test generation to focus on untested areas, something 

a human might not easily recognize in a large 

coverage space. 

Natural Language Processing (NLP) techniques have 

also emerged as powerful tools for verification 

automation. Specifications for CXL (and PCIe) are 

lengthy and detailed documents. NLP can extract and 

interpret protocol requirements directly from these 

text specifications and even auto-generate some 

verification artifacts. Researchers have applied NLP to 

read through the CXL specification and generate 

formal assertions (SystemVerilog Assertions) or 

pseudo-code for testbenches. This significantly speeds 

up the creation of a verification environment that 

aligns with the spec. For instance, one AI-driven 

approach reads the natural language description of a 

protocol feature (like the ordering rules for CXL.cache 

operations). It translates it into a set of checkers in the 

testbench. Early successes have been using machine 

learning to interpret natural language specs and 

produce verification code, effectively reducing 

manual effort and errors. 

 

Another AI technique, reinforcement learning (RL), 

optimizes test sequence generation. Kumar’s team 

implemented RL algorithms to adjust and optimize 

sequences of transactions during simulation 

dynamically [5]. In essence, the verification 

environment can be treated like a game where the 

goal is to find a failing scenario or to maximize 

coverage. The RL agent takes actions (generates next 

inputs or operations for devices) and receives rewards 

for new coverage or for breaking an assumption. Over 

time, it learns strategies that probe the system in very 

adversarial and comprehensive ways, far beyond 

simple random testing. In the context of CXL, an RL-

based test generator might learn, for example, that 

alternating heavy PCIe I/O traffic with bursts of 

CXL.cache coherency traffic is a good way to expose 

timing issues, and thus it will increasingly focus on 

such patterns. 

Their research emphasizes the importance of 

maintaining comprehensive coverage across PCIe and 

CXL protocol spaces while ensuring proper handling 

of memory-semantic commands and cache coherency 

operations [5]. AI helps achieve this by juggling the 

multitude of possible test scenarios and prioritizing 

those that are both most likely to uncover issues and 

most critical to compliance. The end result is a more 

rigorous compliance validation — AI can 

continuously generate and run tests, including edge 

cases humans might overlook, and do so efficiently. 

This AI-assisted process is particularly valuable for 

CXL, where the combinatorial explosion of possible 

device interactions and configurations (especially 

envision large CXL fabrics) would be daunting to 

verify with manual methods alone. 
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Fig. 1: Detailed CXL/PCIe AI-assisted verification environment 

 

Figure 1 above illustrates a component of such an AI-

assisted verification environment, highlighting how 

traditional verification components integrate with 

AI/ML modules for automated test generation and 

analysis. The diagram shows key CXL/PCIe 

verification components augmented by AI: a 

compliance test suite overseen by a machine learning 

scheduler and monitors that feed data into an 

analytics engine for anomaly detection. Together, 

these components form an adaptive verification loop 

where results inform the next tests to run, 

continuously improving coverage and depth of testing 

[5]. 

3.2 Predictive Debugging with AI 

AI-driven approaches have significantly influenced 

the evolution of debugging methodologies in CXL 

verification. Traditional debugging relies on engineers 

observing log files and waveforms to deduce the cause 

of a failure. With the massive volume of data and the 

subtle interactions in a CXL system, AI techniques—

particularly in pattern recognition and anomaly 

detection—are becoming invaluable. Brian Bailey’s 

analysis of AI-powered verification techniques 

highlights that machine learning models can 

transform the debugging process for complex protocol 

interactions, identifying issues that might elude 

human detection [6]. For instance, an AI model can 

be trained on “normal” verification traces and  

 

automatically flag deviations that correlate with 

known bug patterns. If a particular timing sequence of 

events has led to bugs in the past, the AI can watch 

for similar sequences in new simulations. 

One application of AI in debugging is using clustering 

algorithms on log data. Advanced clustering 

algorithms have been used to group similar failure 

scenarios together, which is extremely helpful when a 

single change in the design might produce hundreds 

of failing tests. In the context of CXL, a clustering 

algorithm could analyze transaction traces from many 

simulations and discover that, say, 50 different tests 

failed due to a similar cache coherency sequence. This 

guides engineers to focus on that sequence as the 

likely root cause [5]. Bailey documents the 

implementation of pattern recognition algorithms to 

identify subtle protocol violations and timing issues 

across PCIe and CXL domains [6]. Such subtle issues 

include a slight reordering of packets or a delay that is 

within timing spec on PCIe but violates the tighter 

coherency requirement of CXL.cache. A human might 

not immediately spot that in thousands of lines of logs, 

but a trained model can. 

Another AI-based technique in debugging is 

predictive analytics: historical verification data is used 

to predict where bugs are most likely to occur and to 

check those areas proactively. For example, if 

previous bugs often occur when a device enters or 
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exits a low-power state while under load, an AI 

system can predict this and suggest targeted tests or 

additional logging around power state transitions. 

Modern verification environments thus adapt to 

handle increasing complexity by maintaining effective 

debug capabilities with the help of AI [6]. This means 

not only catching bugs faster but also localizing them 

faster. Some AI tools can even explain anomalies they 

find, such as pointing out: “Device X did not receive 

an expected cache invalidation after Event Y,” giving 

the engineer a strong hint on where to look. 

Companies have started integrating AI-based debug 

assistants into their verification flows. These assistants 

ingest simulation traces (sometimes gigabytes of data 

per test), and output likely causes group failures due 

to similarity. The result is a dramatic reduction in the 

time engineers spend on triage. They can focus 

directly on the most suspicious scenarios as flagged by 

AI. Additionally, pattern recognition can uncover 

issues that aren’t outright failures but anomalies that 

could indicate lurking bugs. For example, maybe no 

test failed, but an AI noticed that in one test out of 

1000, a particular performance metric (like read 

latency) was significantly worse. Such outliers can 

prompt a closer look and potentially catch an 

efficiency bug or a corner-case hazard before it 

becomes a failure. 

 

 

3.3 Adaptive Testbenches & Intelligent Coverage 

Optimization 

Implementing adaptive testbench architectures 

represents a significant advancement in CXL 

verification methodology. The stimuli and checks are 

largely predefined and static in a traditional testbench. 

An adaptive testbench, however, can change its 

behavior based on what has occurred so far in testing. 

AI plays a major role in enabling this adaptivity. For 

example, suppose during a simulation run, the 

testbench (through an AI agent or algorithm) detects 

that certain message sequences have not yet been 

observed; it can then steer subsequent transactions to 

exercise those sequences, thereby closing coverage 

gaps within the same run. Kumar’s research 

demonstrates how AI-driven coverage optimization 

can effectively target critical aspects of CXL 

functionality by monitoring coverage in real-time and 

adjusting tests accordingly [5]. Critical aspects might 

include, say, rarely-used ordering rules or exception 

conditions (like buffer overflow behaviors or timing 

races when many devices request a memory line 

simultaneously). By focusing on these, the adaptive 

testbench ensures that verification time is spent 

efficiently on scenarios that matter most. 

One approach to intelligent coverage is the use of 

coverage prediction models. These models attempt to 

predict which tests will cover which parts of the 

design without running them, using machine learning 

trained on prior results. Bailey’s analysis underscores 

the importance of such intelligent coverage 

optimization in modern environments, detailing how 

machine learning algorithms can predict coverage 

holes and generate targeted tests to fill them [6]. For 

instance, the AI might learn that a certain 

combination of operations (like a power state 

transition in the middle of heavy memory traffic) has 

not been covered, and it can generate a test to hit that 

scenario specifically. It’s akin to having a smart test 

writer sitting inside the simulation, writing new tests 

on the fly. 

This adaptivity also extends to testbench 

configuration. The testbench might have multiple 

modes or levels of checking, and an AI system could 

decide to turn on more detailed checks when it senses 

suspicious behavior in a run (to gather more data) and 

turn them off when not needed (to save time). It can 

also allocate more simulation resources to certain 

parts of the design or certain difficult tests. All of this 

contributes to optimizing the verification effort. 

Kumar’s and Bailey’s studies collectively emphasize 

that verification cannot remain static as CXL systems 

grow in complexity (with deeper memory hierarchies 

and more integrated accelerators). Intelligent test 

benches that learn and adapt are crucial [5, 6]. This is 
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particularly true for coverage across both PCIe and 

CXL protocol layers, an adaptive approach can ensure 

that whenever a new feature or scenario is introduced 

(like a new form of multi-host memory sharing), the 

verification environment automatically adjusts to test 

it thoroughly. 

 

 
Fig. 2: AI-Based Compliance Automation Architecture 

 

Figure 2 below shows an architecture for AI-based 

compliance automation and adaptive testing. It 

highlights how the testbench control is augmented by 

an AI engine that decides the next actions based on 

coverage feedback and detected anomalies. This could 

involve switching between directed tests and random 

generation, modifying packet injection rates, or 

introducing specific sequences to probe suspected 

weak spots in the implementation, all without human 

intervention during the regression run. Such a 

framework ensures that verification keeps pace with 

design complexity, and it can significantly reduce the 

number of cycles (and time) needed to reach coverage 

goals compared to a static approach. 

Figure 3: An AI-based compliance automation 

architecture for CXL verification. The diagram 

illustrates a feedback loop where coverage metrics and 

results from monitors feed into a machine-learning 

decision engine. This engine then guides the test 

generator to adapt – for example, focusing on untested 

protocol paths or increasing the intensity of certain 

traffic patterns. The architecture combines traditional 

verification IP (for CXL and PCIe compliance) with 

AI modules that optimize and automate test planning, 

leading to more efficient coverage closure. 

 

4. Performance Evaluation 

4.1 Memory Device Verification Performance 

Evaluating CXL memory device verification 

methodologies provides important insights into 

system performance and validation approaches. One 

key aspect is ensuring that verification testbenches 

functionally validate memory devices and measure 

performance metrics to ensure devices meet expected 

throughput and latency. According to Teledyne 

LeCroy’s CXL memory device testing analysis, a 

comprehensive verification process must address 

operations across multiple protocol layers while 

checking performance under various operating 

conditions [7]. For example, a CXL Type 3 memory 

expander might be verified by simulating continuous 

memory read/write traffic at maximum bandwidth to 

see if it sustains the theoretical throughput (e.g., 
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nearly 256 GB/s on CXL 3.0 x16). The verification 

must monitor that no transactions are dropped or 

unduly delayed and that the device's flow control 

credits and buffers behave optimally. 

The methodology often involves directed tests (for 

specific performance scenarios) and random traffic 

generation. Directed performance tests include 

patterns like streaming reads, random accesses, or 

mixed read/write workloads to observe how the 

device handles them. The verification environment 

collects metrics such as bandwidth achieved, average 

and tail latency for memory operations, and possibly 

power consumed per operation (if power models are 

integrated). These metrics are then compared against 

design expectations or specification requirements. For 

instance, if the spec says the device should handle at 

least 1 million random read IOPS (I/O operations per 

second) with latency under 1 microsecond, the 

verification must include tests to measure this. 

A challenge here is that the verification testbench 

must not become a bottleneck. Therefore, high-

performance bus functional models (BFMs) or even 

FPGA-based acceleration might be used to generate 

traffic at realistic speeds. Some verification setups use 

emulation or hardware prototypes to perform 

performance validation because pure software 

simulation might be too slow for full bandwidth 

testing. In any case, the results of performance-centric 

tests need to be fed back into the design. If a memory 

device underperforms in verification, designers may 

need to optimize firmware or internal buffer handling. 

Teledyne LeCroy’s white paper points out the critical 

role of proper protocol analysis in ensuring reliable 

system operation at high loads [7]. For example, 

during a max-bandwidth test, the verification should 

confirm that all credit pools (for flow control) never 

stall the link unintentionally and that the device 

properly enters throttle states if it can’t keep up 

without violating any CXL timing rules. The 

performance verification also checks that when 

multiple virtual machines or hosts access the pooled 

memory (in a disaggregated scenario), each gets a fair 

share of bandwidth or the share as configured, and 

isolation is maintained (one host’s heavy usage doesn’t 

starve another beyond specified limits). 

In summary, memory device verification performance 

testing ensures that CXL devices function correctly in 

terms of logic and meet the throughput, latency, and 

scalability requirements. It bridges the gap between 

pure functional testing and real-world operation, 

helping validate that the device will perform as 

expected in deployment. Often, results from these 

tests influence architectural decisions. For instance, if 

verification shows a memory device’s latency spikes 

under certain conditions, architects might introduce a 

larger buffer or tweak the arbitration scheme. Thus, 

performance evaluation is an integral part of the 

verification feedback loop for CXL memory systems. 
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Table 1: PCIe/CXL Verification Performance Metrics 

 

(Table 1 in the original text summarizes typical 

performance metrics observed during PCIe/CXL 

verification, such as maximum sustained bandwidth, 

average latency under load, and cache coherency 

traffic latency. These metrics provide a quantitative 

baseline to compare verification approaches and 

hardware configurations. The context of this article 

underlines how AI-optimized verification can 

maintain high performance while testing, ensuring 

that adding intelligent checks and traffic generation 

does not impede the ability to push the system to its 

limits.) 

4.2 AI-Enhanced Verification Efficiency 

Incorporating AI into verification not only improves 

coverage and bug-finding, as described earlier but also 

can significantly enhance the efficiency of the 

verification process itself. Efficiency here refers to the 

time and resources required to achieve a certain 

confidence level in the design’s correctness and 

performance. Traditional verification is often a time-

consuming process that can span many weeks or 

months for a complex system like CXL, with 

regression suites that include millions of test runs. AI 

and machine learning techniques are helping to 

reduce this effort by optimizing test generation and 

by intelligently pruning the space of tests to run. 

Li et al.’s research on intelligent verification systems 

(in the domain of distribution automation, which 

shares similarities in needing to test a vast 

combination of scenarios) demonstrates how AI 

algorithms can enhance the efficiency of automated 

testing procedures [8]. One way this is done is 

through predictive test selection – using models to 

predict which tests are likely redundant and which 

are likely to uncover new behaviors. In a CXL 

verification environment, thousands of random tests 

could end up exercising the same few protocol paths; 

an AI system can detect this and curtail the repetition, 

focusing instead on generating tests that hit unvisited 

states. This means fewer simulation cycles are wasted 

on repetitive scenarios, and more are devoted to 

useful ones, thus speeding up coverage closure. 

Another aspect is reducing the time to debug failures. 

As discussed in Section 3.2, AI can help cluster and 

triage failures. Doing so automatically reduces the 

manual labor engineers spend, effectively speeding up 

the verification loop (since engineers can fix bugs 

faster and move on to the next verification target). If a 

verification cycle typically involves running tests, 



Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com 

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557 

 

 

 

 
2551 

finding bugs, fixing them, and repeating, AI shortens 

the “finding” and sometimes even the “fixing” part by 

pointing right to the issue. In cases where AI can also 

suggest likely fixes (an area of active research), the 

efficiency gain would be even higher. 

Machine learning can also be used to tune verification 

parameters. For example, test benches often have 

numerous knobs (seeds for random generators, the 

weighting of certain transactions, etc.). Traditionally, 

engineers might experiment manually or use 

heuristics to set these. With AI, one can treat it as an 

optimization problem: maximize coverage or bug 

count by tuning these knobs. Techniques like genetic 

algorithms or Bayesian optimization can search the 

parameter space more effectively than brute force. Li 

et al. showed that such AI-enhanced systems could 

identify patterns in system behavior that conventional 

methods might miss, which implies the AI might also 

discover that certain testbench settings produce more 

efficient verification (e.g., maybe short bursts of 

traffic alternating with idle periods provoke more 

corner-case behavior than constant traffic, leading to 

more bugs found per hour of simulation). 

It’s also worth noting that AI can help with regression 

optimization. In large projects, nightly regressions 

might run tens of thousands of tests. AI can learn 

from past regression results to prioritize tests. For 

example, if over the last 100 regressions, a certain test 

has never failed and always hits the same coverage, 

the AI might deprioritize it to run less frequently or 

run it with lower fidelity (maybe in a silicon 

prototype rather than simulation). Conversely, tests 

that often fail or cover critical features might be run 

more often or with more randomness. This adaptive 

regression strategy ensures computing resources (CPU 

hours, FPGA time, etc.) are utilized most effectively. 

 

 
Fig. 3: PCIe/CXL Verification Time Comparison 

 

Figure 3: Verification time comparison between 

traditional and AI-augmented verification for a 

complex CXL/PCIe system. The AI-augmented 

approach (green line) shows a steeper curve, reaching 

coverage and bug discovery goals faster by leveraging 

intelligent test selection and debug automation. In 

contrast, the traditional approach (blue line) takes 

more simulation cycles to achieve the same goals. This 

exemplifies the efficiency gains – shorter verification 

cycles and fewer resources – when AI-driven 

techniques are integrated into the verification process. 
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4.3 System Performance Analysis 

System-level performance analysis in CXL verification 

ensures that the entire platform (hosts, switches, 

memory devices, accelerators) performs as expected 

when working together. It’s not just individual 

devices that must meet performance metrics but the 

combination of components under realistic workloads. 

For example, one might verify that a server with two 

CPUs and three CXL memory expanders can sustain a 

certain memory bandwidth while servicing coherency 

traffic from two GPUs, all without performance 

degradation or violation of QoS (Quality of Service) 

policies. 

Teledyne LeCroy’s research on validating CXL 

memory device functionality offers detailed insights 

that can be extrapolated to system-level performance 

[7]. They emphasize comprehensive testing across 

different system configurations and operating 

conditions. In practice, this means varying things like 

the number of CXL devices connected, the topology 

of connections (maybe a cascade of switches vs. direct 

attach), and the mix of traffic (some memory devices 

may be handling memory pooling for virtualization, 

while others are dedicated to specific accelerators). 

The verification environment should simulate full 

system workloads. For instance, consider an AI 

training scenario: the CPUs might be loading data 

from storage via CXL.io, multiple GPUs (Type 2 

devices) exchange data via CXL.cache, and Type 3 

memory devices provide a large shared memory pool. 

Under this complex workload, the performance 

analysis would check metrics like total system 

throughput, per-component utilization, latency from 

CPU to GPU memory, etc. 

One important aspect is contention and QoS. In a 

system, multiple agents share resources (PCIe lanes, 

CXL switch buffers, memory bandwidth). Verification 

needs to ensure that the system can handle contention 

gracefully. This could involve scenarios where one 

device suddenly starts consuming a lot of bandwidth 

and observing how it impacts others. Does the system 

fairly arbitrate bandwidth? Does any critical traffic 

(like coherency messages necessary to maintain 

correctness) get starved or delayed beyond acceptable 

limits? These questions are answered by 

instrumenting the verification platform to measure 

delays and throughput for each traffic class and 

comparing them against expected QoS policies. 

Another aspect is power and thermal performance 

under these scenarios, which, albeit outside pure 

functional verification, can be important for system 

validation. A heavy CXL workload might cause higher 

power draw or heat in certain components. At the 

same time, this is usually tested on real hardware; 

some aspects can be modeled and checked in pre-

silicon verification (e.g., whether throttle mechanisms 

engage when they should prevent overheating). 

Li et al.’s study on intelligent verification systems 

(though in a different domain) underscores the 

importance of adaptive verification strategies when 

assessing system performance [8]. Applied here, it 

means the verification should not use a one-size-fits-

all approach. If a particular system config passes all 

tests easily, the framework might automatically 

increase the stress (for example, shorten timers to 

push the system closer to edge conditions or add more 

simultaneous initiators to maximize contention) until 

it finds the breaking point. Conversely, if the system 

struggles to meet performance in verification, the 

environment might pinpoint which component is the 

bottleneck by systematically varying parameters. 

Ultimately, system performance analysis in CXL 

verification ensures that the system meets the design 

goals for throughput, latency, and reliability when all 

pieces are integrated. It often requires close 

collaboration between verification and architecture 

teams: if verification finds, say, that adding a third 

accelerator causes a precipitous drop in performance 

due to coherency storms on CXL.cache, architects 

might revisit the design (maybe by adding an extra 

CXL port or re-balancing how memory is distributed). 

Thus, this verification directly impacts the final 

system architecture and configuration 

recommendations. 
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4.4 Verification System Optimization 

The complexity of CXL verification itself means that 

the verification environment must be optimized. This 

section subtly differs from using AI to optimize 

verifying the design; here, we consider improving the 

performance and capabilities of the verification 

system (tools and infrastructure) to handle CXL. 

Techniques such as emulation, FPGA prototyping, 

and virtualization of components are often employed 

to speed up verification or make it more realistic. 

Implementing intelligent verification systems (as 

described by Li et al. and others) has shown promising 

results in improving testing efficiency [8]. For 

instance, deploying a cluster of FPGA prototypes 

running CXL transactions can allow many tests to 

execute parallel at near-real-time speeds. These issues 

would take too long to uncover in a simulation. AI 

can also be layered on these – for example, using 

machine learning on emulator traces to detect 

anomalies, similar to simulation. 

One concrete optimization is the co-emulation of 

CPU and device models. Rather than simulate an x86 

CPU core (which is slow), verification might run a 

software model of the CPU issuing real PCIe/CXL 

commands to an emulated device. This hybrid 

approach can test software-driven scenarios (like a 

driver allocating memory via CXL) in a fraction of the 

time of pure simulation. Ensuring the correctness of 

such co-emulation is part of verification optimization: 

the environment must be validated to represent the 

hardware behavior truly. A subset of tests is often run 

in pure simulation and emulation to confirm that the 

faster setup checks the design equivalently. 

Another area of optimization is in coverage analysis 

and results processing. Automating the analysis of 

results is crucial when dealing with millions of tests. 

Verification teams develop scripts and AI tools that 

parse logs, extract coverage, and even file bug reports 

automatically for certain classes of failures. By 

optimizing these steps, the verification cycle becomes 

more efficient—engineers spend time addressing 

issues rather than doing bookkeeping. Li et al. noted 

that AI-enhanced verification can reduce testing time 

by identifying issues faster [8]. This can be viewed as 

optimizing human resources: making the verification 

system smart enough to do tasks autonomously that 

would otherwise occupy a human (like root cause 

analysis for a common type of failure). 

In the context of CXL, verification system 

optimization also includes ensuring that the testbench 

can scale with the design. The simulation or 

emulation platform should handle that, as CXL 

supports more devices and larger fabrics. This might 

mean optimizing data structures in the simulator to 

deal with thousands of memory regions or optimizing 

interconnect models so that adding more devices 

doesn’t linearly slow the simulation. It’s a meta-

verification challenge: verifying that our verification 

tools remain effective at scale. Some teams use 

sharding of tests cleverly — splitting the verification 

tasks across multiple machines — again coordinated 

by intelligent scheduling algorithms to maximize 

throughput. 

In essence, Section 4.4 closes the loop by focusing on 

how to verify better. If earlier sections discuss 

verifying faster (with AI making it quicker to hit goals) 

and deeper (covering more scenarios), this part 

addresses verifying smarter in terms of resource 

utilization. The outcome is a verification process that 

keeps up with the pace of CXL technology 

development. As CXL iterations come rapidly (with 

3.0, 3.1, and likely 4.0 in the future), an optimized 

verification system enables engineers to validate each 

new iteration within reasonable timeframes and 

confidently deploy CXL in production systems. 

 

5. Future Directions 

5.1 Advanced Memory Disaggregation Analysis 

The future of CXL verification is closely tied to the 

trajectory of memory disaggregation technologies. 

CXL is a key enabler for memory disaggregation, 

separating memory from computing and allowing the 

dynamic composition of memory resources. As this 

concept becomes more advanced, verification will 
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need to cover even more complex and large-scale 

scenarios. Wang et al.’s comprehensive simulation 

framework for CXL disaggregated memory suggests 

that next-generation verification systems must model 

memory usage across distributed systems with high 

fidelity. This means simulating entire racks or data 

centers worth of CXL-connected nodes, where 

memory can be pooled and shared on the fly among 

many hosts. 

One aspect is verifying consistency and coherency 

across multiple memory domains. Future CXL might 

allow one shared memory pool and multiple, possibly 

hierarchical pools with various latency tiers. 

Verification must ensure that when an application’s 

memory is moved from one pool to another (for 

example, during runtime optimization), the CXL 

protocols handle it without issues – no data is lost, 

mappings are updated coherently, and performance 

adapts. Features like memory migration or replication 

at the CXL level will introduce new verification 

requirements, such as checking that copies of data 

remain identical and synchronized across domains. 

Another likely development is more sophisticated 

Quality of Service and isolation mechanisms in 

memory disaggregation. Today, CXL provides the 

plumbing to share memory, but in the future, there 

may be finer controls so that, for instance, one 

tenant’s workload cannot interfere with another’s 

memory performance in a cloud environment. 

Verification will then have to validate such isolation: 

for example, a rogue device cannot monopolize the 

memory bandwidth or snoop data from another 

device’s memory segment. This will involve security 

verification merging with performance verification. 

Additionally, as memory disaggregation grows, the 

management software/firmware verification becomes 

important. CXL relies on system software (like BIOS, 

OS, and hypervisors) to configure memory regions 

and access permissions. Future verification should 

include co-simulation of software or use of formal 

verification for algorithms that allocate and migrate 

memory. Ensuring that the software algorithms for 

disaggregation do not lead to corner-case failures (like 

double-allocating the same memory to two hosts or 

failing to revoke access in time) will be crucial for 

system reliability. 

In summary, verifying advanced memory 

disaggregation will push verification tools to simulate 

larger systems, incorporate more software/hardware 

co-verification, and cover new features around 

memory management. This is a natural extension as 

CXL moves from board-level connectivity to rack-

scale composable architectures. 

5.2 System-Level Integration Verification 

As CXL technology matures, real-world deployments 

will involve a mix of many component types: CPUs, 

GPUs, FPGAs, memory devices, switches, perhaps 

optical extenders, etc., all linked by CXL. System-

level integration verification will become a top 

priority – ensuring that a heterogeneous set of 

components can all work together under the CXL 

standard. Xi Wang’s research on CXL system adoption 

highlights the importance of comprehensive 

methodologies that validate interactions across 

diverse computing environments [10]. 

One emerging need is verifying interoperability 

beyond the spec. While compliance testing (as in 

Section 2.2) checks that each device meets the spec, 

system-level testing will check that devices from 

different vendors interoperate smoothly. For instance, 

one vendor’s CPU with CXL 3.0 might be connected 

to another vendor’s CXL switch and a third vendor’s 

memory device and accelerator. The verification 

question is: does the entire system initialize correctly 

and maintain operation under load without protocol 

deadlocks or performance pathology? This might 

involve large-scale plug-and-play testing, effectively 

building a library of device models (or real devices), 

and trying various combinations in simulation or 

emulation. 

Another future challenge is hot plug and dynamic 

reconfiguration at scale. CXL 3.0 introduces the 

notion that devices can be added or removed (akin to 

PCIe hot plug but possibly more frequently used, 
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especially for memory pooling scenarios where 

resources might be provisioned on demand). 

Verification must ensure that adding or removing 

devices or changing the fabric topology does not cause 

issues like data loss or system hangs. This can be 

complex: imagine a memory device is removed while 

two hosts are actively using it – the system should 

have protocols to handle this (perhaps migrating data 

off or quiescing access) and all that needs verification. 

Xi Wang et al. also imply the need to model real-

world usage in verification [10]. This could mean 

running full software stacks in a virtualized 

environment on a simulated/emulated CXL platform. 

The verification might involve booting an OS, 

running workload traces (like database operations 

machine learning training loops) on a model of a 

future CXL-based server, and observing both 

correctness and performance. Essentially, the line 

between “verification” and “validation” (in the sense 

of system validation or user scenario testing) will blur. 

Pre-silicon and post-silicon verification teams will 

likely collaborate, using common scenarios – with 

pre-silicon trying to catch issues before hardware is 

built and post-silicon confirming and tuning with real 

hardware. 

System-level integration will also require more formal 

approaches for certain aspects because testing all 

combinations may be infeasible. For safety-critical 

uses of CXL (like in defense or automotive high-

performance computing), one might need formal 

proof that, for example, a certain failure in one 

component (like a firmware crash in a Type 3 device) 

will isolate and not cascade through the CXL network. 

Formal verification of network-wide properties or 

fail-safe states could become part of the methodology. 

5.3 Protocol Analysis Advancements 

Future developments in protocol analysis will be 

driven by the increasing complexity of CXL features 

and the need for even more robust verification tools. 

As CXL evolves (CXL 4.0 and beyond), new protocol 

messages, states, and error-handling procedures will 

be added. Verification tools (like protocol checkers, 

formal protocol verifiers, etc.) must advance to handle 

these. Wang et al.’s simulation framework research 

emphasizes the need for more sophisticated 

methodologies to handle complex protocol 

interactions across disaggregated memory systems [9]. 

This can be extrapolated to mean that protocol 

analyzers might incorporate AI or formal methods to 

explain the causality and temporal ordering in a 

complex CXL fabric. 

One advancement could be in formal protocol 

verification, using model checking or theorem 

proving to verify certain invariant properties of the 

CXL protocol (for instance, that cache coherency will 

always terminate or that credit loops cannot deadlock 

the link). While formal methods are already used for 

smaller protocols, applying them to something as 

broad as CXL is challenging but potentially feasible in 

parts (perhaps verifying the cache coherency protocol 

state machines in isolation, for example). 

Another area is improved visualization and analysis 

tools. Future verification might leverage AR/VR or 

advanced GUIs to visualize the CXL fabric’s 

operations over time, making it easier for engineers to 

grasp complex interactions intuitively. Imagine a 3D 

visualization where each device is a node and memory 

operations are arrows flying between them – patterns 

that cause problems might show as congestion or 

misrouted arrows, guiding further analysis. While this 

concerns engineer productivity, it ties into protocol 

analysis by presenting data in digestible formats. 

Protocols for telemetry and debug hooks built into 

CXL devices, which verification will use. For example, 

a future CXL spec might allow a device to report 

statistics or internal states (for performance tuning or 

failure analysis). Verification would then ensure those 

telemetry reports are accurate and useful. This is 

somewhat meta: verifying the debug features of the 

protocol. However, as systems scale, having self-

monitoring features becomes important; those 

features also require validation. 

Furthermore, as memory semantics become richer 

(perhaps future CXL versions could support 
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consistency models beyond strict coherence or 

operations like memory-to-memory copies), protocol 

analysis techniques must cover memory ordering and 

consistency verification. This might involve 

borrowing approaches from verifying CPU memory 

models (an area of active research) and applying them 

to a distributed CXL context. 

In sum, protocol analysis advancements will provide 

the tooling and methodologies to keep verification 

rigorous even as CXL’s protocol expands. They will 

help maintain confidence that despite CXL enabling 

new degrees of freedom in system design, the 

fundamental guarantees (coherence, integrity, 

ordering, etc.) hold under all circumstances. 

5.4 System Integration and Validation 

Looking further ahead, integrating CXL into virtually 

all aspects of system design means verification will 

encompass not just the CXL links in isolation but their 

role in the entire platform operation. The boundary 

between verifying “the CXL part” and verifying “the 

whole system that uses CXL” will disappear. 

According to Xi Wang’s evaluations of real-world 

CXL implementations, verification systems must 

evolve to handle increasingly complex integration 

scenarios [10]. 

One trend is that CXL could be used with other 

interconnects (like Ethernet or InfiniBand in clusters 

or custom interconnects on chip). Verifying CXL in a 

multi-fabric environment is a future concern. For 

example, a system might use CXL within a server and 

Ethernet across servers to share memory globally. 

Consistency and correctness might depend on both 

protocols. Verification might need to create hybrid 

models (part CXL, part network) to ensure end-to-end 

data correctness and efficiency. 

Another likely future scenario is CXL in edge 

computing and IoT, where the scale is smaller, but 

there may be real-time constraints. Ensuring that 

CXL’s added latency doesn’t break real-time 

assumptions or verifying that devices can enter low-

power states appropriately when idle (important for 

battery-powered or energy-sensitive deployments) 

will be new angles for verification. This goes beyond 

current data center-oriented verification goals and 

may involve cross-discipline verification (combining 

aspects of timing analysis, power verification, and 

functional verification). 

System validation will increasingly incorporate field 

data and continuous verification. Once CXL systems 

are deployed, telemetry from the field (as mentioned 

in protocol analysis advancements) could be fed back 

into the verification loop. This blurs with the concept 

of monitoring in production and using that to 

improve pre-production verification. Future 

verification setups might routinely integrate new 

traces or usage patterns observed in real deployments 

to ensure the next generation or update of the system 

handles them. Essentially, verification might never 

truly “end” even after deployment – it becomes a 

continuous process, a concept sometimes referred to 

as shifting right (complementing the classic shift left, 

which means verifying early and verifying 

continuously after release). 

In terms of methodologies, expect more digital twins 

for CXL systems—high-fidelity models of deployed 

systems used to recreate issues observed and validate 

fixes. Verification teams will need to maintain these 

twins and run them parallel to real systems. 

All these future directions indicate that CXL 

verification will remain dynamic and challenging. It 

will require keeping pace with rapid technological 

advances in interconnects and leveraging the latest in 

verification science (formal methods, AI, large-scale 

simulation, etc.) to ensure that as CXL enables new 

computing paradigms, those paradigms are built on a 

foundation of correctness and reliability. 

 

Conclusion 

The article on CXL verification methodologies reveals 

the crucial importance of adaptive and intelligent 

approaches in addressing the growing complexities of 

modern computing systems. Through integrating 

artificial intelligence and machine learning 

techniques, verification processes have evolved to 
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effectively handle the challenges of cache coherency, 

protocol compliance, and system-level integration. 

The article demonstrates that comprehensive 

verification strategies, particularly those 

incorporating AI-driven automation and predictive 

analytics, are essential for ensuring reliable operation 

across diverse computing environments. As CXL 

technology advances, developing sophisticated 

verification methodologies will remain paramount in 

supporting the evolution of heterogeneous computing 

architectures and memory disaggregation 

technologies, ultimately enabling more efficient and 

reliable system validation processes. 
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