

Copyright © 2025 The Author(s) : This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

International Journal of Scientific Research in Computer Science, Engineering

and Information Technology

ISSN : 2456-3307

Available Online at : www.ijsrcseit.com

doi : https://doi.org/10.32628/CSEIT25112728

2540

AI-Driven Verification for Compute Express Link (CXL): Challenges,

Innovations, and Future
Deepak Kumar Lnu

Principal Engineer, USA

A R T I C L E I N F O

A B S T R A C T

Article History:

Accepted : 15 March 2025

Published: 26 March 2025

 This comprehensive article explores the evolution and challenges of Compute

Express Link (CXL) verification methodologies in modern computing

environments. The article examines the critical aspects of cache coherency

testing, compliance validation, and debugging strategies while highlighting the

transformative role of artificial intelligence in enhancing verification processes.

The article demonstrates how advanced methodologies address the complexities

of heterogeneous computing systems by analyzing various verification

approaches, including AI-driven compliance automation, predictive debugging,

and adaptive testbenches. The article encompasses memory device verification

performance, system-level integration, and future directions in CXL verification,

providing insights into emerging technologies and methodologies for ensuring

robust system validation.

Keywords: CXL Verification, Cache Coherency, AI-Driven Testing, Memory

Disaggregation, Protocol Compliance, Heterogeneous Computing

Publication Issue

Volume 11, Issue 2

March-April-2025

Page Number

2540-2557

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2540

1. Introduction

Compute Express Link (CXL) represents a

revolutionary advancement in interconnect

technology, establishing itself as an industry standard

for high-performance computing infrastructure. CXL

achieves unprecedented performance, with the latest

CXL 3.0 doubling the data rate to 64 GT/s (Giga

transfers per second) per lane (from 32 GT/s in CXL

2.0) while adding virtually no latency [1]. This

translates to an aggregate bandwidth of up to 256

GB/s on an x16 link, enabling extremely high

throughput for data-intensive operations. The

technology implements a sophisticated protocol stack

encompassing three distinct sub-protocols: CXL.io (for

PCIe I/O compatibility), CXL.cache (for cache-

coherent accelerator interactions), and CXL.mem (for

memory expansion and pooling semantics). Notably,

the CXL 3.0 architecture introduces advanced fabric

capabilities, supporting up to 4,096 connected devices

(or nodes) in a CXL fabric via new port-based routing

mechanisms [1]. Each attached device can manage

multiple memory regions potentially ranging in size

from kilobytes to terabytes, allowing memory

resources from approximately 4KB up to 4TB to be

defined for CXL memory pooling in large-scale

systems [1]. This exceptional scalability and flexibility

make CXL a cornerstone for modern data center

architectures.

CXL demonstrates tremendous versatility by

classifying into Type 1, Type 2, and Type 3 devices,

each targeting different use cases in heterogeneous

computing systems. In summary:

● Type 1 devices: Typically accelerators with small

local caches. These devices rely on the host for

main memory and achieve high-speed cache-

coherent communication. For instance, a Type 1

accelerator over an x16 CXL 3.0 link can utilize

up to ~256 GB/s of coherent memory bandwidth,

enabling rapid data exchange with the host

processor’s memory.

● Type 2 devices: Accelerators or devices with their

own local memory (larger memory buffers). They

support coherent memory and caching protocols,

allowing them to share memory with the host

while using large local memories. Type 2 devices

enable sophisticated memory hierarchies with

customizable cache sizes (ranging from tens of

kilobytes to several megabytes) to optimize

performance for workloads like AI/ML, where

both local and shared memory are crucial.

● Type 3 devices: These are primarily memory

expansion or pooling devices. They might not

have significant computing capabilities, but

provide additional memory capacity to the host.

A Type 3 memory expander can offer the system

multi-terabyte memory capacities (often dozens

of TB), all accessible with full cache coherency

across the CXL link. Such devices allow memory

disaggregation, where memory can be added to a

system or shared between hosts without being

physically attached to the CPU memory bus.

By supporting these device types under a unified

standard, CXL enables a range of usage models—from

accelerators tightly coupled with the CPU’s memory

system to pure memory expansion modules—while

maintaining cache coherence and low latency. This

versatility is evident in modern heterogeneous

computing environments, where CXL’s coherent

interconnect is leveraged for accelerators (GPUs,

FPGAs, smart NICs) and memory pooling across

servers.

1.1 Verification Challenges and Methodologies

The CXL verification landscape introduces

unprecedented complexities that demand innovative

approaches to system validation. Verifying a CXL-

based system involves dealing with multiple protocol

layers and ensuring they work seamlessly together.

For example, a verification environment must

simultaneously handle PCIe transactions (through

CXL.io) and cache-coherent memory transactions

(through CXL.cache and CXL.mem), which increases

the state space and potential interactions to test.

According to the CXL Consortium’s technical

guidance, verification teams must pay particular

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2541

attention to cache coherency across distributed

architectures and shared memory environments [2].

CXL 2.0 supports up to 8-way coherency (multiple

agents sharing cached data), meaning the verification

process has to validate that caching protocols

maintain consistency when up to 8 devices or

processors actively cache the same data. Each

coherent transaction requires precise timing

validation to ensure response latencies remain under

tight bounds (on the order of tens of nanoseconds for

on-cache interactions). Maintaining such low latency

while coordinating between many agents is a

significant challenge for verification.

Another critical area is memory pooling verification.

CXL enables memory disaggregation where many

devices (or hosts) share memory pools. Systems may

support thousands of concurrent endpoints sharing

memory in a pool. Verification must ensure data

integrity and performance isolation across these

complex memory hierarchies. The CXL Consortium

emphasizes comprehensive testing for memory

pooling configurations that approach the upper limits

of device count and memory capacity [2]. This

includes verifying that memory access performance

remains consistent even under heavy load and that

the theoretical maximum bandwidth (e.g., ~256 GB/s

per x16 link in CXL 3.0) is achievable without

violating protocol specifications. Indeed, memory

pooling introduced by CXL 2.0 allows an aggregated

memory capacity on the order of petabytes, and CXL

3.0’s multi-level switching pushes this even further

[2]. Verifying correct function at such scale (e.g.,

ensuring that an exabyte-scale memory pool

maintains coherence and error-free operation)

requires extremely thorough and scalable test

methodologies.

Protocol compliance testing is a fundamental aspect of

CXL verification that also becomes more complex

with CXL’s layered protocols. Compliance testing

ensures that an implementation adheres strictly to the

CXL specification (as well as underlying PCIe

specifications) in all scenarios. Modern verification

environments for CXL must include protocol checkers

or monitors that can observe transactions at speeds up

to 64 GT/s and flag any deviations from the spec [2].

This includes checking complex timing relationships

(e.g., ordering rules between CXL.io and CXL.cache

transactions), power management state transitions,

and error-handling mechanisms across multiple layers.

Introducing advanced features in newer CXL

revisions (like integrity and data encryption, multi-

level switching, and memory sharing between hosts)

means compliance matrices have grown large.

Verification teams must develop extensive test suites

and assertions to cover the expanded specification.

Finally, debugging capabilities need to evolve

alongside these complexities. When a test fails in a

CXL environment, pinpointing the root cause is non-

trivial. A single logical operation (like an accelerator

reading a memory location) might involve multiple

protocol packets (PCIe TLPs, CXL coherency

messages) and traverse through switches or fabric

elements. Analyzing thousands of concurrent

transactions across a multi-tier memory hierarchy

requires robust logging and debug infrastructure. Best

practices from CXL technical documentation call for

verification platforms to support detailed transaction

logging and replay, allowing engineers to inspect the

sequence of events leading to an issue across both

PCIe and CXL layers [2]. In summary, the scope of

CXL verification spans low-level link and protocol

checks to high-level system coherence and

performance validation, demanding a combination of

traditional verification techniques and new intelligent

approaches to meet these challenges.

2. Challenges in CXL Verification

2.1 Complexity of Cache Coherency Testing

Cache coherency verification in CXL systems

represents a significant challenge in modern

heterogeneous computing environments. The

introduction of CXL’s coherency (the CXL.cache

protocol) means that devices like accelerators can

cache shared memory lines, and the system must keep

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2542

those caches consistent with the host and other

devices. With CXL 3.1 adding enhancements for peer-

to-peer coherency between devices, the complexity

has increased even further. As documented by Jain

and Wen in their analysis of CXL 3.1 verification

methodologies, verification environments must now

support testing scenarios where Type 1, Type 2, and

Type 3 devices operate simultaneously within the

same system, each with unique coherency

requirements [3]. In practice, this means the

testbench must create situations where, for example,

an accelerator (Type 2), a memory expander (Type 3),

and the CPU are all sharing certain memory regions,

issuing reads and writes and cache invalidations, and

then verify that the data seen by all components

remains consistent. The verification infrastructure

must validate cache coherency across multiple

protocol layers (ensuring that CXL.cache transactions

properly interact with underlying PCIe ordering rules)

while keeping CXL.cache operations within specified

latency boundaries. Small timing differences can

violate coherency (e.g. if an invalidation arrives late).

Hence, timing closure in coherency sequences is a key

focus – each coherent transaction’s propagation

through the CXL path must meet strict timing (often

sub-50 ns for local cache responses, as noted earlier).

Moreover, the coherency checks extend beyond

traditional two-party (CPU-device) scenarios in

heterogeneous systems like those used for multi-GPU

AI training. Modern CXL verification must consider

cases where multiple accelerators (GPUs, FPGAs, etc.)

share coherent memory regions via CXL.cache while

performing direct memory access (DMA) through

CXL.io. According to industry case studies, an

accelerator might perform a DMA write to a memory

location that another device has cached; the

verification must ensure the coherency protocol

(snoop mechanism) properly invalidates or updates

caches in such scenarios [3]. These concurrent access

patterns—typical in AI and high-performance

computing workloads—push the verification

environment to handle interleaved operations across

coherency domains. Corner cases ensure that if

multiple devices simultaneously attempt to cache and

modify the same data, the coherency protocol

serializes these accesses correctly, and any device uses

no stale data.

Another aspect is coherency verification in CPU +

FPGA systems or other combinations where each

behaves differently (CPUs might use out-of-order

execution and speculative access, whereas an FPGA

might have a streaming access pattern). For example,

the Synopsys CXL verification IP framework

illustrates the need to validate complex interaction

scenarios between conventional PCIe traffic (e.g., an

FPGA DMA engine transferring data) and CXL cache

coherency messages occurring in parallel. Real-time

processing requirements in such systems demand that

latency and ordering guarantees of CXL are upheld

even under heavy load. Verification must cover these

mixed scenarios to ensure the system behaves

predictably and meets performance targets [3].

2.2 Compliance and Interoperability Testing

Protocol compliance testing for CXL has evolved with

each generation, especially as new features like

security and advanced switching are introduced. One

notable addition in CXL 2.0 was the Integrity and

Data Encryption (IDE) feature, which provides

optional link-layer encryption for CXL.mem and

CXL.cache traffic to secure data in flight. According

to Narasimha Babu GVL’s analysis of CXL IDE trends,

modern verification environments must validate

compliance across multiple protocol layers while

ensuring proper handling of encrypted traffic [4]. This

involves verifying that when encryption is enabled,

all rules are still followed (e.g., sequence numbers,

flow control, and error detection via CRC must work

correctly with encrypted payloads). The correct

implementation of IDE is critical in systems where

sensitive data protection is paramount, such as

memory pooling across potentially untrusted tenants

in a cloud scenario. Verification must ensure, for

instance, that enabling encryption doesn’t introduce

deadlock or excessive latency and that keys are

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2543

managed and rotated according to spec. The CXL

specification is designed such that secure features add

minimal latency overhead, and testing must confirm

that an implementation meets these targets (e.g.,

encryption engines don’t slow down transaction

throughput beyond allowed limits).

Interoperability in a CXL fabric also means devices

with and without encryption must communicate

seamlessly. Fabric switching in CXL 3.0 allows

complex topologies (multi-level switches and

potential routing of packets). Verification must cover

scenarios of encrypted and unencrypted traffic flows

through switches, ensuring that routing logic

correctly handles each and that security boundaries

are respected. For example, consider a CXL switch

connecting multiple Type 3 memory devices to

multiple hosts; some links may have IDE enabled and

others not. The verification environment should test

that an encrypted packet from one host is correctly

decrypted (only by the intended receiver) and does

not interfere with traffic on another link. GVL’s study

on CXL verification methodologies emphasizes

comprehensive testing strategies for such fabric

scenarios, particularly where multiple security

domains coexist [4]. This includes verifying that the

switch doesn’t unintentionally leak information

between an encrypted and unencrypted domain and

that priority mechanisms and flow control work

uniformly regardless of encryption status. Ensuring

data integrity is key: even with encryption, the

system should detect and handle any data corruption

(via integrity checks) exactly as specified. Compliance

tests must deliberately inject errors (like malformed

packets or incorrect encryption tags) to confirm that

the CXL link responds according to spec – for instance,

dropping packets that fail authentication and

triggering error messages/interruptions for the host to

log.

In summary, compliance and interoperability testing

for CXL covers a wide range, from basic protocol

handshakes and state machines (ensuring any CXL

1.1/2.0 device works with a CXL 3.0 host, for example)

to complex features like memory sharing and security.

The goal is to ensure any CXL device can plug into

any CXL host/switch and operate correctly. Given

CXL’s rapid adoption, test consortia and plugfests are

also being used as part of verification to catch

interoperability issues early. Verification engineers

augment these with in-house directed tests and

random test scenarios that push the limits of the spec

(such as maximal memory configurations or rapidly

reconfiguring a fabric topology at runtime) to

guarantee robust compliance.

2.3 Debugging and Root Cause Analysis

The complexity of debugging CXL systems has

increased substantially with the introduction of

advanced security features and sophisticated memory

pooling capabilities. When a failure or anomaly

occurs in a CXL-based system, the debugging tools

must be capable of tracing events across multiple

layers (PCIe, CXL.io, CXL.cache, CXL.mem) and

potentially across distributed components. GVL’s

analysis of CXL IDE verification challenges highlights

the importance of sophisticated debugging tools to

track protocol-level interactions and security-related

events in tandem [4]. For example, if a data mismatch

is detected, the debugger should help determine

whether it was caused by a coherency issue (e.g., a

stale cache line that wasn’t invalidated) or by an

encryption issue (e.g., a dropped packet due to a

decryption error). This requires visibility into the

system’s internal states — such as snoop queues, cache

directories, and encryption engine status — which

traditional PCIe debuggers may not cover. As a result,

CXL verification environments often incorporate

advanced logging at the transaction layer for

CXL.cache/CXL.mem, correlating those logs with

PCIe link-layer traces.

Modern verification components are being built with

these needs in mind. Debug infrastructure must

support detailed analysis of encrypted traffic flows

while still allowing the identification of protocol-level

issues [4]. In practice, this means that verification IP

and simulators provide options to log decrypted data

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2544

or to use special keys so that verification can inspect

encrypted packets. For instance, an encrypted

memory read coming from a device should be logged

to show the plaintext address and data (for

verification purposes) while still ensuring the

encryption module itself is verified. This dual-view

logging is essential to debug scenarios that involve

security: it allows engineers to verify that encryption

didn’t alter the data contents incorrectly and that the

handshakes for key exchange happened properly.

Memory pooling also introduces new challenges for

root cause analysis. An error observed in one host’s

memory view could originate from another host’s

action in a pooled memory environment. Therefore,

debugging tools must span across host boundaries.

Memory pooling error analysis in CXL systems

requires debugging capabilities spanning protocol and

security domains, maintaining visibility even in

encrypted systems. Modern verification solutions

include features like tracker files or transaction

trackers that record the history of a cache line or a

memory address as it moves through the system. For

example, a tracker might log that address 0xXYZ was

allocated to Host A at time T0, written by Device B at

T1 (via an encrypted CXL.mem transaction), then

read by Host C at T2, etc. Having this end-to-end

trace greatly aids in pinpointing where an

inconsistency arose. Narasimha Babu GVL notes the

need for debug logs to contain as much information as

possible (even from within encryption engines) to

facilitate effective debugging [4]. This includes

configuration info (e.g., which keys were in use, the

security mode), pre-and post-encryption data values,

and any events like key refreshes or error flags.

Verification environments now often provide

callbacks or hooks to inject errors (like integrity

check failures) in a controlled manner and test that

the system’s error reporting and containment

mechanisms work properly.

In summary, debugging CXL requires a holistic

approach. Verification teams employ protocol

analyzers that understand CXL semantics (often

extensions of PCIe analyzers) and transaction-level

monitors in simulations that can flag anomalies. AI

techniques (discussed next) are also being explored to

recognize patterns in the vast log data to

automatically hint at likely causes (for example,

machine learning models that learn the normal

patterns of cache invalidations and can flag when

something diverges). The overarching goal is to

enable efficient root cause analysis despite the

system’s complexity, thereby shortening the debug

cycle for any bug.

3. AI-Driven Innovations in CXL Verification

3.1 AI-Based Compliance Automation

The integration of artificial intelligence (AI) in CXL

verification is transforming traditional compliance

testing methodologies. CXL-based systems are highly

complex, and manually crafting tests for every corner

case or monitoring every subtle protocol violation is

impractical. AI-driven verification frameworks

address this by automating and intelligently guiding

parts of the verification process. According to a case

study by Kumar et al. on AI/ML-optimized CXL

platforms, modern verification environments must

adapt to handle the increasing complexity of

heterogeneous computing systems, and AI is a key

enabler in this adaptation [5]. Their research

demonstrates that an AI-enhanced verification

framework can effectively manage the verification of

CXL Type-1 through Type-3 devices within a single

unified environment, automatically adjusting to each

device’s behavior. For example, an AI agent could

learn the typical traffic patterns of a Type 3 memory

expander versus a Type 1 cache device and ensure

that test scenarios include relevant stress cases for

each (like memory expander hot-plug events or cache

line thrashing scenarios for accelerators).

One significant innovation is using AI to improve the

coverage of corner cases. Machine learning algorithms

can analyze the complex state space of CXL

transactions and identify combinations of events that

might be rare but important to test. By processing

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2545

extensive simulation or emulation data, an AI system

might find that a certain sequence of operations (e.g.,

a specific order of memory writes and cache

invalidations across devices) has never been tested

and could cause an issue. The framework can then

generate a directed test to cover that scenario. AI

techniques have proven adept at handling these kinds

of tasks: machine learning can be used to improve the

ability of constrained-random simulation to target

specific coverage bins or even find design bugs [6]. By

analyzing coverage data, an AI can guide the random

test generation to focus on untested areas, something

a human might not easily recognize in a large

coverage space.

Natural Language Processing (NLP) techniques have

also emerged as powerful tools for verification

automation. Specifications for CXL (and PCIe) are

lengthy and detailed documents. NLP can extract and

interpret protocol requirements directly from these

text specifications and even auto-generate some

verification artifacts. Researchers have applied NLP to

read through the CXL specification and generate

formal assertions (SystemVerilog Assertions) or

pseudo-code for testbenches. This significantly speeds

up the creation of a verification environment that

aligns with the spec. For instance, one AI-driven

approach reads the natural language description of a

protocol feature (like the ordering rules for CXL.cache

operations). It translates it into a set of checkers in the

testbench. Early successes have been using machine

learning to interpret natural language specs and

produce verification code, effectively reducing

manual effort and errors.

Another AI technique, reinforcement learning (RL),

optimizes test sequence generation. Kumar’s team

implemented RL algorithms to adjust and optimize

sequences of transactions during simulation

dynamically [5]. In essence, the verification

environment can be treated like a game where the

goal is to find a failing scenario or to maximize

coverage. The RL agent takes actions (generates next

inputs or operations for devices) and receives rewards

for new coverage or for breaking an assumption. Over

time, it learns strategies that probe the system in very

adversarial and comprehensive ways, far beyond

simple random testing. In the context of CXL, an RL-

based test generator might learn, for example, that

alternating heavy PCIe I/O traffic with bursts of

CXL.cache coherency traffic is a good way to expose

timing issues, and thus it will increasingly focus on

such patterns.

Their research emphasizes the importance of

maintaining comprehensive coverage across PCIe and

CXL protocol spaces while ensuring proper handling

of memory-semantic commands and cache coherency

operations [5]. AI helps achieve this by juggling the

multitude of possible test scenarios and prioritizing

those that are both most likely to uncover issues and

most critical to compliance. The end result is a more

rigorous compliance validation — AI can

continuously generate and run tests, including edge

cases humans might overlook, and do so efficiently.

This AI-assisted process is particularly valuable for

CXL, where the combinatorial explosion of possible

device interactions and configurations (especially

envision large CXL fabrics) would be daunting to

verify with manual methods alone.

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2546

Fig. 1: Detailed CXL/PCIe AI-assisted verification environment

Figure 1 above illustrates a component of such an AI-

assisted verification environment, highlighting how

traditional verification components integrate with

AI/ML modules for automated test generation and

analysis. The diagram shows key CXL/PCIe

verification components augmented by AI: a

compliance test suite overseen by a machine learning

scheduler and monitors that feed data into an

analytics engine for anomaly detection. Together,

these components form an adaptive verification loop

where results inform the next tests to run,

continuously improving coverage and depth of testing

[5].

3.2 Predictive Debugging with AI

AI-driven approaches have significantly influenced

the evolution of debugging methodologies in CXL

verification. Traditional debugging relies on engineers

observing log files and waveforms to deduce the cause

of a failure. With the massive volume of data and the

subtle interactions in a CXL system, AI techniques—

particularly in pattern recognition and anomaly

detection—are becoming invaluable. Brian Bailey’s

analysis of AI-powered verification techniques

highlights that machine learning models can

transform the debugging process for complex protocol

interactions, identifying issues that might elude

human detection [6]. For instance, an AI model can

be trained on “normal” verification traces and

automatically flag deviations that correlate with

known bug patterns. If a particular timing sequence of

events has led to bugs in the past, the AI can watch

for similar sequences in new simulations.

One application of AI in debugging is using clustering

algorithms on log data. Advanced clustering

algorithms have been used to group similar failure

scenarios together, which is extremely helpful when a

single change in the design might produce hundreds

of failing tests. In the context of CXL, a clustering

algorithm could analyze transaction traces from many

simulations and discover that, say, 50 different tests

failed due to a similar cache coherency sequence. This

guides engineers to focus on that sequence as the

likely root cause [5]. Bailey documents the

implementation of pattern recognition algorithms to

identify subtle protocol violations and timing issues

across PCIe and CXL domains [6]. Such subtle issues

include a slight reordering of packets or a delay that is

within timing spec on PCIe but violates the tighter

coherency requirement of CXL.cache. A human might

not immediately spot that in thousands of lines of logs,

but a trained model can.

Another AI-based technique in debugging is

predictive analytics: historical verification data is used

to predict where bugs are most likely to occur and to

check those areas proactively. For example, if

previous bugs often occur when a device enters or

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2547

exits a low-power state while under load, an AI

system can predict this and suggest targeted tests or

additional logging around power state transitions.

Modern verification environments thus adapt to

handle increasing complexity by maintaining effective

debug capabilities with the help of AI [6]. This means

not only catching bugs faster but also localizing them

faster. Some AI tools can even explain anomalies they

find, such as pointing out: “Device X did not receive

an expected cache invalidation after Event Y,” giving

the engineer a strong hint on where to look.

Companies have started integrating AI-based debug

assistants into their verification flows. These assistants

ingest simulation traces (sometimes gigabytes of data

per test), and output likely causes group failures due

to similarity. The result is a dramatic reduction in the

time engineers spend on triage. They can focus

directly on the most suspicious scenarios as flagged by

AI. Additionally, pattern recognition can uncover

issues that aren’t outright failures but anomalies that

could indicate lurking bugs. For example, maybe no

test failed, but an AI noticed that in one test out of

1000, a particular performance metric (like read

latency) was significantly worse. Such outliers can

prompt a closer look and potentially catch an

efficiency bug or a corner-case hazard before it

becomes a failure.

3.3 Adaptive Testbenches & Intelligent Coverage

Optimization

Implementing adaptive testbench architectures

represents a significant advancement in CXL

verification methodology. The stimuli and checks are

largely predefined and static in a traditional testbench.

An adaptive testbench, however, can change its

behavior based on what has occurred so far in testing.

AI plays a major role in enabling this adaptivity. For

example, suppose during a simulation run, the

testbench (through an AI agent or algorithm) detects

that certain message sequences have not yet been

observed; it can then steer subsequent transactions to

exercise those sequences, thereby closing coverage

gaps within the same run. Kumar’s research

demonstrates how AI-driven coverage optimization

can effectively target critical aspects of CXL

functionality by monitoring coverage in real-time and

adjusting tests accordingly [5]. Critical aspects might

include, say, rarely-used ordering rules or exception

conditions (like buffer overflow behaviors or timing

races when many devices request a memory line

simultaneously). By focusing on these, the adaptive

testbench ensures that verification time is spent

efficiently on scenarios that matter most.

One approach to intelligent coverage is the use of

coverage prediction models. These models attempt to

predict which tests will cover which parts of the

design without running them, using machine learning

trained on prior results. Bailey’s analysis underscores

the importance of such intelligent coverage

optimization in modern environments, detailing how

machine learning algorithms can predict coverage

holes and generate targeted tests to fill them [6]. For

instance, the AI might learn that a certain

combination of operations (like a power state

transition in the middle of heavy memory traffic) has

not been covered, and it can generate a test to hit that

scenario specifically. It’s akin to having a smart test

writer sitting inside the simulation, writing new tests

on the fly.

This adaptivity also extends to testbench

configuration. The testbench might have multiple

modes or levels of checking, and an AI system could

decide to turn on more detailed checks when it senses

suspicious behavior in a run (to gather more data) and

turn them off when not needed (to save time). It can

also allocate more simulation resources to certain

parts of the design or certain difficult tests. All of this

contributes to optimizing the verification effort.

Kumar’s and Bailey’s studies collectively emphasize

that verification cannot remain static as CXL systems

grow in complexity (with deeper memory hierarchies

and more integrated accelerators). Intelligent test

benches that learn and adapt are crucial [5, 6]. This is

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2548

particularly true for coverage across both PCIe and

CXL protocol layers, an adaptive approach can ensure

that whenever a new feature or scenario is introduced

(like a new form of multi-host memory sharing), the

verification environment automatically adjusts to test

it thoroughly.

Fig. 2: AI-Based Compliance Automation Architecture

Figure 2 below shows an architecture for AI-based

compliance automation and adaptive testing. It

highlights how the testbench control is augmented by

an AI engine that decides the next actions based on

coverage feedback and detected anomalies. This could

involve switching between directed tests and random

generation, modifying packet injection rates, or

introducing specific sequences to probe suspected

weak spots in the implementation, all without human

intervention during the regression run. Such a

framework ensures that verification keeps pace with

design complexity, and it can significantly reduce the

number of cycles (and time) needed to reach coverage

goals compared to a static approach.

Figure 3: An AI-based compliance automation

architecture for CXL verification. The diagram

illustrates a feedback loop where coverage metrics and

results from monitors feed into a machine-learning

decision engine. This engine then guides the test

generator to adapt – for example, focusing on untested

protocol paths or increasing the intensity of certain

traffic patterns. The architecture combines traditional

verification IP (for CXL and PCIe compliance) with

AI modules that optimize and automate test planning,

leading to more efficient coverage closure.

4. Performance Evaluation

4.1 Memory Device Verification Performance

Evaluating CXL memory device verification

methodologies provides important insights into

system performance and validation approaches. One

key aspect is ensuring that verification testbenches

functionally validate memory devices and measure

performance metrics to ensure devices meet expected

throughput and latency. According to Teledyne

LeCroy’s CXL memory device testing analysis, a

comprehensive verification process must address

operations across multiple protocol layers while

checking performance under various operating

conditions [7]. For example, a CXL Type 3 memory

expander might be verified by simulating continuous

memory read/write traffic at maximum bandwidth to

see if it sustains the theoretical throughput (e.g.,

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2549

nearly 256 GB/s on CXL 3.0 x16). The verification

must monitor that no transactions are dropped or

unduly delayed and that the device's flow control

credits and buffers behave optimally.

The methodology often involves directed tests (for

specific performance scenarios) and random traffic

generation. Directed performance tests include

patterns like streaming reads, random accesses, or

mixed read/write workloads to observe how the

device handles them. The verification environment

collects metrics such as bandwidth achieved, average

and tail latency for memory operations, and possibly

power consumed per operation (if power models are

integrated). These metrics are then compared against

design expectations or specification requirements. For

instance, if the spec says the device should handle at

least 1 million random read IOPS (I/O operations per

second) with latency under 1 microsecond, the

verification must include tests to measure this.

A challenge here is that the verification testbench

must not become a bottleneck. Therefore, high-

performance bus functional models (BFMs) or even

FPGA-based acceleration might be used to generate

traffic at realistic speeds. Some verification setups use

emulation or hardware prototypes to perform

performance validation because pure software

simulation might be too slow for full bandwidth

testing. In any case, the results of performance-centric

tests need to be fed back into the design. If a memory

device underperforms in verification, designers may

need to optimize firmware or internal buffer handling.

Teledyne LeCroy’s white paper points out the critical

role of proper protocol analysis in ensuring reliable

system operation at high loads [7]. For example,

during a max-bandwidth test, the verification should

confirm that all credit pools (for flow control) never

stall the link unintentionally and that the device

properly enters throttle states if it can’t keep up

without violating any CXL timing rules. The

performance verification also checks that when

multiple virtual machines or hosts access the pooled

memory (in a disaggregated scenario), each gets a fair

share of bandwidth or the share as configured, and

isolation is maintained (one host’s heavy usage doesn’t

starve another beyond specified limits).

In summary, memory device verification performance

testing ensures that CXL devices function correctly in

terms of logic and meet the throughput, latency, and

scalability requirements. It bridges the gap between

pure functional testing and real-world operation,

helping validate that the device will perform as

expected in deployment. Often, results from these

tests influence architectural decisions. For instance, if

verification shows a memory device’s latency spikes

under certain conditions, architects might introduce a

larger buffer or tweak the arbitration scheme. Thus,

performance evaluation is an integral part of the

verification feedback loop for CXL memory systems.

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2550

Table 1: PCIe/CXL Verification Performance Metrics

(Table 1 in the original text summarizes typical

performance metrics observed during PCIe/CXL

verification, such as maximum sustained bandwidth,

average latency under load, and cache coherency

traffic latency. These metrics provide a quantitative

baseline to compare verification approaches and

hardware configurations. The context of this article

underlines how AI-optimized verification can

maintain high performance while testing, ensuring

that adding intelligent checks and traffic generation

does not impede the ability to push the system to its

limits.)

4.2 AI-Enhanced Verification Efficiency

Incorporating AI into verification not only improves

coverage and bug-finding, as described earlier but also

can significantly enhance the efficiency of the

verification process itself. Efficiency here refers to the

time and resources required to achieve a certain

confidence level in the design’s correctness and

performance. Traditional verification is often a time-

consuming process that can span many weeks or

months for a complex system like CXL, with

regression suites that include millions of test runs. AI

and machine learning techniques are helping to

reduce this effort by optimizing test generation and

by intelligently pruning the space of tests to run.

Li et al.’s research on intelligent verification systems

(in the domain of distribution automation, which

shares similarities in needing to test a vast

combination of scenarios) demonstrates how AI

algorithms can enhance the efficiency of automated

testing procedures [8]. One way this is done is

through predictive test selection – using models to

predict which tests are likely redundant and which

are likely to uncover new behaviors. In a CXL

verification environment, thousands of random tests

could end up exercising the same few protocol paths;

an AI system can detect this and curtail the repetition,

focusing instead on generating tests that hit unvisited

states. This means fewer simulation cycles are wasted

on repetitive scenarios, and more are devoted to

useful ones, thus speeding up coverage closure.

Another aspect is reducing the time to debug failures.

As discussed in Section 3.2, AI can help cluster and

triage failures. Doing so automatically reduces the

manual labor engineers spend, effectively speeding up

the verification loop (since engineers can fix bugs

faster and move on to the next verification target). If a

verification cycle typically involves running tests,

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2551

finding bugs, fixing them, and repeating, AI shortens

the “finding” and sometimes even the “fixing” part by

pointing right to the issue. In cases where AI can also

suggest likely fixes (an area of active research), the

efficiency gain would be even higher.

Machine learning can also be used to tune verification

parameters. For example, test benches often have

numerous knobs (seeds for random generators, the

weighting of certain transactions, etc.). Traditionally,

engineers might experiment manually or use

heuristics to set these. With AI, one can treat it as an

optimization problem: maximize coverage or bug

count by tuning these knobs. Techniques like genetic

algorithms or Bayesian optimization can search the

parameter space more effectively than brute force. Li

et al. showed that such AI-enhanced systems could

identify patterns in system behavior that conventional

methods might miss, which implies the AI might also

discover that certain testbench settings produce more

efficient verification (e.g., maybe short bursts of

traffic alternating with idle periods provoke more

corner-case behavior than constant traffic, leading to

more bugs found per hour of simulation).

It’s also worth noting that AI can help with regression

optimization. In large projects, nightly regressions

might run tens of thousands of tests. AI can learn

from past regression results to prioritize tests. For

example, if over the last 100 regressions, a certain test

has never failed and always hits the same coverage,

the AI might deprioritize it to run less frequently or

run it with lower fidelity (maybe in a silicon

prototype rather than simulation). Conversely, tests

that often fail or cover critical features might be run

more often or with more randomness. This adaptive

regression strategy ensures computing resources (CPU

hours, FPGA time, etc.) are utilized most effectively.

Fig. 3: PCIe/CXL Verification Time Comparison

Figure 3: Verification time comparison between

traditional and AI-augmented verification for a

complex CXL/PCIe system. The AI-augmented

approach (green line) shows a steeper curve, reaching

coverage and bug discovery goals faster by leveraging

intelligent test selection and debug automation. In

contrast, the traditional approach (blue line) takes

more simulation cycles to achieve the same goals. This

exemplifies the efficiency gains – shorter verification

cycles and fewer resources – when AI-driven

techniques are integrated into the verification process.

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2552

4.3 System Performance Analysis

System-level performance analysis in CXL verification

ensures that the entire platform (hosts, switches,

memory devices, accelerators) performs as expected

when working together. It’s not just individual

devices that must meet performance metrics but the

combination of components under realistic workloads.

For example, one might verify that a server with two

CPUs and three CXL memory expanders can sustain a

certain memory bandwidth while servicing coherency

traffic from two GPUs, all without performance

degradation or violation of QoS (Quality of Service)

policies.

Teledyne LeCroy’s research on validating CXL

memory device functionality offers detailed insights

that can be extrapolated to system-level performance

[7]. They emphasize comprehensive testing across

different system configurations and operating

conditions. In practice, this means varying things like

the number of CXL devices connected, the topology

of connections (maybe a cascade of switches vs. direct

attach), and the mix of traffic (some memory devices

may be handling memory pooling for virtualization,

while others are dedicated to specific accelerators).

The verification environment should simulate full

system workloads. For instance, consider an AI

training scenario: the CPUs might be loading data

from storage via CXL.io, multiple GPUs (Type 2

devices) exchange data via CXL.cache, and Type 3

memory devices provide a large shared memory pool.

Under this complex workload, the performance

analysis would check metrics like total system

throughput, per-component utilization, latency from

CPU to GPU memory, etc.

One important aspect is contention and QoS. In a

system, multiple agents share resources (PCIe lanes,

CXL switch buffers, memory bandwidth). Verification

needs to ensure that the system can handle contention

gracefully. This could involve scenarios where one

device suddenly starts consuming a lot of bandwidth

and observing how it impacts others. Does the system

fairly arbitrate bandwidth? Does any critical traffic

(like coherency messages necessary to maintain

correctness) get starved or delayed beyond acceptable

limits? These questions are answered by

instrumenting the verification platform to measure

delays and throughput for each traffic class and

comparing them against expected QoS policies.

Another aspect is power and thermal performance

under these scenarios, which, albeit outside pure

functional verification, can be important for system

validation. A heavy CXL workload might cause higher

power draw or heat in certain components. At the

same time, this is usually tested on real hardware;

some aspects can be modeled and checked in pre-

silicon verification (e.g., whether throttle mechanisms

engage when they should prevent overheating).

Li et al.’s study on intelligent verification systems

(though in a different domain) underscores the

importance of adaptive verification strategies when

assessing system performance [8]. Applied here, it

means the verification should not use a one-size-fits-

all approach. If a particular system config passes all

tests easily, the framework might automatically

increase the stress (for example, shorten timers to

push the system closer to edge conditions or add more

simultaneous initiators to maximize contention) until

it finds the breaking point. Conversely, if the system

struggles to meet performance in verification, the

environment might pinpoint which component is the

bottleneck by systematically varying parameters.

Ultimately, system performance analysis in CXL

verification ensures that the system meets the design

goals for throughput, latency, and reliability when all

pieces are integrated. It often requires close

collaboration between verification and architecture

teams: if verification finds, say, that adding a third

accelerator causes a precipitous drop in performance

due to coherency storms on CXL.cache, architects

might revisit the design (maybe by adding an extra

CXL port or re-balancing how memory is distributed).

Thus, this verification directly impacts the final

system architecture and configuration

recommendations.

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2553

4.4 Verification System Optimization

The complexity of CXL verification itself means that

the verification environment must be optimized. This

section subtly differs from using AI to optimize

verifying the design; here, we consider improving the

performance and capabilities of the verification

system (tools and infrastructure) to handle CXL.

Techniques such as emulation, FPGA prototyping,

and virtualization of components are often employed

to speed up verification or make it more realistic.

Implementing intelligent verification systems (as

described by Li et al. and others) has shown promising

results in improving testing efficiency [8]. For

instance, deploying a cluster of FPGA prototypes

running CXL transactions can allow many tests to

execute parallel at near-real-time speeds. These issues

would take too long to uncover in a simulation. AI

can also be layered on these – for example, using

machine learning on emulator traces to detect

anomalies, similar to simulation.

One concrete optimization is the co-emulation of

CPU and device models. Rather than simulate an x86

CPU core (which is slow), verification might run a

software model of the CPU issuing real PCIe/CXL

commands to an emulated device. This hybrid

approach can test software-driven scenarios (like a

driver allocating memory via CXL) in a fraction of the

time of pure simulation. Ensuring the correctness of

such co-emulation is part of verification optimization:

the environment must be validated to represent the

hardware behavior truly. A subset of tests is often run

in pure simulation and emulation to confirm that the

faster setup checks the design equivalently.

Another area of optimization is in coverage analysis

and results processing. Automating the analysis of

results is crucial when dealing with millions of tests.

Verification teams develop scripts and AI tools that

parse logs, extract coverage, and even file bug reports

automatically for certain classes of failures. By

optimizing these steps, the verification cycle becomes

more efficient—engineers spend time addressing

issues rather than doing bookkeeping. Li et al. noted

that AI-enhanced verification can reduce testing time

by identifying issues faster [8]. This can be viewed as

optimizing human resources: making the verification

system smart enough to do tasks autonomously that

would otherwise occupy a human (like root cause

analysis for a common type of failure).

In the context of CXL, verification system

optimization also includes ensuring that the testbench

can scale with the design. The simulation or

emulation platform should handle that, as CXL

supports more devices and larger fabrics. This might

mean optimizing data structures in the simulator to

deal with thousands of memory regions or optimizing

interconnect models so that adding more devices

doesn’t linearly slow the simulation. It’s a meta-

verification challenge: verifying that our verification

tools remain effective at scale. Some teams use

sharding of tests cleverly — splitting the verification

tasks across multiple machines — again coordinated

by intelligent scheduling algorithms to maximize

throughput.

In essence, Section 4.4 closes the loop by focusing on

how to verify better. If earlier sections discuss

verifying faster (with AI making it quicker to hit goals)

and deeper (covering more scenarios), this part

addresses verifying smarter in terms of resource

utilization. The outcome is a verification process that

keeps up with the pace of CXL technology

development. As CXL iterations come rapidly (with

3.0, 3.1, and likely 4.0 in the future), an optimized

verification system enables engineers to validate each

new iteration within reasonable timeframes and

confidently deploy CXL in production systems.

5. Future Directions

5.1 Advanced Memory Disaggregation Analysis

The future of CXL verification is closely tied to the

trajectory of memory disaggregation technologies.

CXL is a key enabler for memory disaggregation,

separating memory from computing and allowing the

dynamic composition of memory resources. As this

concept becomes more advanced, verification will

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2554

need to cover even more complex and large-scale

scenarios. Wang et al.’s comprehensive simulation

framework for CXL disaggregated memory suggests

that next-generation verification systems must model

memory usage across distributed systems with high

fidelity. This means simulating entire racks or data

centers worth of CXL-connected nodes, where

memory can be pooled and shared on the fly among

many hosts.

One aspect is verifying consistency and coherency

across multiple memory domains. Future CXL might

allow one shared memory pool and multiple, possibly

hierarchical pools with various latency tiers.

Verification must ensure that when an application’s

memory is moved from one pool to another (for

example, during runtime optimization), the CXL

protocols handle it without issues – no data is lost,

mappings are updated coherently, and performance

adapts. Features like memory migration or replication

at the CXL level will introduce new verification

requirements, such as checking that copies of data

remain identical and synchronized across domains.

Another likely development is more sophisticated

Quality of Service and isolation mechanisms in

memory disaggregation. Today, CXL provides the

plumbing to share memory, but in the future, there

may be finer controls so that, for instance, one

tenant’s workload cannot interfere with another’s

memory performance in a cloud environment.

Verification will then have to validate such isolation:

for example, a rogue device cannot monopolize the

memory bandwidth or snoop data from another

device’s memory segment. This will involve security

verification merging with performance verification.

Additionally, as memory disaggregation grows, the

management software/firmware verification becomes

important. CXL relies on system software (like BIOS,

OS, and hypervisors) to configure memory regions

and access permissions. Future verification should

include co-simulation of software or use of formal

verification for algorithms that allocate and migrate

memory. Ensuring that the software algorithms for

disaggregation do not lead to corner-case failures (like

double-allocating the same memory to two hosts or

failing to revoke access in time) will be crucial for

system reliability.

In summary, verifying advanced memory

disaggregation will push verification tools to simulate

larger systems, incorporate more software/hardware

co-verification, and cover new features around

memory management. This is a natural extension as

CXL moves from board-level connectivity to rack-

scale composable architectures.

5.2 System-Level Integration Verification

As CXL technology matures, real-world deployments

will involve a mix of many component types: CPUs,

GPUs, FPGAs, memory devices, switches, perhaps

optical extenders, etc., all linked by CXL. System-

level integration verification will become a top

priority – ensuring that a heterogeneous set of

components can all work together under the CXL

standard. Xi Wang’s research on CXL system adoption

highlights the importance of comprehensive

methodologies that validate interactions across

diverse computing environments [10].

One emerging need is verifying interoperability

beyond the spec. While compliance testing (as in

Section 2.2) checks that each device meets the spec,

system-level testing will check that devices from

different vendors interoperate smoothly. For instance,

one vendor’s CPU with CXL 3.0 might be connected

to another vendor’s CXL switch and a third vendor’s

memory device and accelerator. The verification

question is: does the entire system initialize correctly

and maintain operation under load without protocol

deadlocks or performance pathology? This might

involve large-scale plug-and-play testing, effectively

building a library of device models (or real devices),

and trying various combinations in simulation or

emulation.

Another future challenge is hot plug and dynamic

reconfiguration at scale. CXL 3.0 introduces the

notion that devices can be added or removed (akin to

PCIe hot plug but possibly more frequently used,

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2555

especially for memory pooling scenarios where

resources might be provisioned on demand).

Verification must ensure that adding or removing

devices or changing the fabric topology does not cause

issues like data loss or system hangs. This can be

complex: imagine a memory device is removed while

two hosts are actively using it – the system should

have protocols to handle this (perhaps migrating data

off or quiescing access) and all that needs verification.

Xi Wang et al. also imply the need to model real-

world usage in verification [10]. This could mean

running full software stacks in a virtualized

environment on a simulated/emulated CXL platform.

The verification might involve booting an OS,

running workload traces (like database operations

machine learning training loops) on a model of a

future CXL-based server, and observing both

correctness and performance. Essentially, the line

between “verification” and “validation” (in the sense

of system validation or user scenario testing) will blur.

Pre-silicon and post-silicon verification teams will

likely collaborate, using common scenarios – with

pre-silicon trying to catch issues before hardware is

built and post-silicon confirming and tuning with real

hardware.

System-level integration will also require more formal

approaches for certain aspects because testing all

combinations may be infeasible. For safety-critical

uses of CXL (like in defense or automotive high-

performance computing), one might need formal

proof that, for example, a certain failure in one

component (like a firmware crash in a Type 3 device)

will isolate and not cascade through the CXL network.

Formal verification of network-wide properties or

fail-safe states could become part of the methodology.

5.3 Protocol Analysis Advancements

Future developments in protocol analysis will be

driven by the increasing complexity of CXL features

and the need for even more robust verification tools.

As CXL evolves (CXL 4.0 and beyond), new protocol

messages, states, and error-handling procedures will

be added. Verification tools (like protocol checkers,

formal protocol verifiers, etc.) must advance to handle

these. Wang et al.’s simulation framework research

emphasizes the need for more sophisticated

methodologies to handle complex protocol

interactions across disaggregated memory systems [9].

This can be extrapolated to mean that protocol

analyzers might incorporate AI or formal methods to

explain the causality and temporal ordering in a

complex CXL fabric.

One advancement could be in formal protocol

verification, using model checking or theorem

proving to verify certain invariant properties of the

CXL protocol (for instance, that cache coherency will

always terminate or that credit loops cannot deadlock

the link). While formal methods are already used for

smaller protocols, applying them to something as

broad as CXL is challenging but potentially feasible in

parts (perhaps verifying the cache coherency protocol

state machines in isolation, for example).

Another area is improved visualization and analysis

tools. Future verification might leverage AR/VR or

advanced GUIs to visualize the CXL fabric’s

operations over time, making it easier for engineers to

grasp complex interactions intuitively. Imagine a 3D

visualization where each device is a node and memory

operations are arrows flying between them – patterns

that cause problems might show as congestion or

misrouted arrows, guiding further analysis. While this

concerns engineer productivity, it ties into protocol

analysis by presenting data in digestible formats.

Protocols for telemetry and debug hooks built into

CXL devices, which verification will use. For example,

a future CXL spec might allow a device to report

statistics or internal states (for performance tuning or

failure analysis). Verification would then ensure those

telemetry reports are accurate and useful. This is

somewhat meta: verifying the debug features of the

protocol. However, as systems scale, having self-

monitoring features becomes important; those

features also require validation.

Furthermore, as memory semantics become richer

(perhaps future CXL versions could support

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2556

consistency models beyond strict coherence or

operations like memory-to-memory copies), protocol

analysis techniques must cover memory ordering and

consistency verification. This might involve

borrowing approaches from verifying CPU memory

models (an area of active research) and applying them

to a distributed CXL context.

In sum, protocol analysis advancements will provide

the tooling and methodologies to keep verification

rigorous even as CXL’s protocol expands. They will

help maintain confidence that despite CXL enabling

new degrees of freedom in system design, the

fundamental guarantees (coherence, integrity,

ordering, etc.) hold under all circumstances.

5.4 System Integration and Validation

Looking further ahead, integrating CXL into virtually

all aspects of system design means verification will

encompass not just the CXL links in isolation but their

role in the entire platform operation. The boundary

between verifying “the CXL part” and verifying “the

whole system that uses CXL” will disappear.

According to Xi Wang’s evaluations of real-world

CXL implementations, verification systems must

evolve to handle increasingly complex integration

scenarios [10].

One trend is that CXL could be used with other

interconnects (like Ethernet or InfiniBand in clusters

or custom interconnects on chip). Verifying CXL in a

multi-fabric environment is a future concern. For

example, a system might use CXL within a server and

Ethernet across servers to share memory globally.

Consistency and correctness might depend on both

protocols. Verification might need to create hybrid

models (part CXL, part network) to ensure end-to-end

data correctness and efficiency.

Another likely future scenario is CXL in edge

computing and IoT, where the scale is smaller, but

there may be real-time constraints. Ensuring that

CXL’s added latency doesn’t break real-time

assumptions or verifying that devices can enter low-

power states appropriately when idle (important for

battery-powered or energy-sensitive deployments)

will be new angles for verification. This goes beyond

current data center-oriented verification goals and

may involve cross-discipline verification (combining

aspects of timing analysis, power verification, and

functional verification).

System validation will increasingly incorporate field

data and continuous verification. Once CXL systems

are deployed, telemetry from the field (as mentioned

in protocol analysis advancements) could be fed back

into the verification loop. This blurs with the concept

of monitoring in production and using that to

improve pre-production verification. Future

verification setups might routinely integrate new

traces or usage patterns observed in real deployments

to ensure the next generation or update of the system

handles them. Essentially, verification might never

truly “end” even after deployment – it becomes a

continuous process, a concept sometimes referred to

as shifting right (complementing the classic shift left,

which means verifying early and verifying

continuously after release).

In terms of methodologies, expect more digital twins

for CXL systems—high-fidelity models of deployed

systems used to recreate issues observed and validate

fixes. Verification teams will need to maintain these

twins and run them parallel to real systems.

All these future directions indicate that CXL

verification will remain dynamic and challenging. It

will require keeping pace with rapid technological

advances in interconnects and leveraging the latest in

verification science (formal methods, AI, large-scale

simulation, etc.) to ensure that as CXL enables new

computing paradigms, those paradigms are built on a

foundation of correctness and reliability.

Conclusion

The article on CXL verification methodologies reveals

the crucial importance of adaptive and intelligent

approaches in addressing the growing complexities of

modern computing systems. Through integrating

artificial intelligence and machine learning

techniques, verification processes have evolved to

Volume 11, Issue 2, March-April-2025 | http://ijsrcseit.com

Deepak Kumar Lnu Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., March-April-2025, 11 (2) : 2540-2557

2557

effectively handle the challenges of cache coherency,

protocol compliance, and system-level integration.

The article demonstrates that comprehensive

verification strategies, particularly those

incorporating AI-driven automation and predictive

analytics, are essential for ensuring reliable operation

across diverse computing environments. As CXL

technology advances, developing sophisticated

verification methodologies will remain paramount in

supporting the evolution of heterogeneous computing

architectures and memory disaggregation

technologies, ultimately enabling more efficient and

reliable system validation processes.

References

[1]. Debendra Das Sharma et al., "An Introduction

to the Compute Express Link (CXL)

Interconnect," ResearchGate, June 2023.

[Online]. Available:

https://www.researchgate.net/publication/3717

29277_An_Introduction_to_the_Compute_Expr

ess_Link_CXL_Interconnect

[2]. CXL Consortium, "Opportunities and

Challenges for Compute Express Link (CXL)."

[Online]. Available:

https://computeexpresslink.org/wp-

content/uploads/2024/11/CR-CXL-

101_FINAL.pdf

[3]. Nikhil Jain, Zongyao Wen, "Verifying CXL 3.1

Designs with Synopsys Verification IP,"

Synopsys, 2024. [Online]. Available:

https://www.synopsys.com/blogs/chip-

design/verifying-cxl3-1-designs-with-synopsys-

verification-ip.html

[4]. Narasimha Babu GVL, "Integrity and Data

Encryption (IDE) Trends and Verification

Challenges in CXL® (Compute Express

Link®)," CXL Consortium Technical Blog, April

23, 2024. [Online]. Available:

https://computeexpresslink.org/blog/integrity-

and-data-encryption-ide-trends-and-

verification-challenges-in-cxl-compute-

express-link-2797/

[5]. Sathish Kumar M et al., "Case study of

Optimized CXL platforms for AI/ML Check

Points," Future Memory Storage Proceedings,

2024. [Online]. Available:

https://files.futurememorystorage.com/proceedi

ngs/2024/20240808_AIML-303-

1_Pillai_Kumar.pdf

[6]. Brian Bailey, "AI-Powered Verification,"

Semiconductor Engineering, June 1st, 2022.

[Online]. Available:

https://semiengineering.com/ai-powered-

verification/

[7]. Teledyne LeCroy, "Validating CXL Memory

Device Functionality and Performance with

Teledyne Lecroy," White Paper, 2024. [Online].

Available:

https://cdn.teledynelecroy.com/files/whitepaper

s/cxl-memory-device-wp.pdf

[8]. Hongwei Li et al., "A Review of Intelligent

Verification System for Distribution

Automation Terminal based on Artificial

Intelligence Algorithms," Journal of Cloud

Computing volume 12, Article number: 146

(2023), 16 October 2023. [Online]. Available:

https://journalofcloudcomputing.springeropen.c

om/articles/10.1186/s13677-023-00527-2

[9]. Yerra, S. (2025). Optimizing supply chain

efficiency using AI-driven predictive analytics

in logistics. doi :

https://doi.org/10.32628/CSEIT25112475

[10]. Yanjing Wang et al., "A Comprehensive

Simulation Framework for CXL Disaggregated

Memory," arXiv:2411.02282 [cs.ET], 9 Mar

2025. [Online]. Available:

https://arxiv.org/abs/2411.02282

[11]. Xi Wang et al., "Exploring and Evaluating Real-

world CXL: Use Cases and System Adoption,"

 arXiv:2405.14209 [cs.PF], 16 Feb 2025.

[Online]. Available:

https://arxiv.org/abs/2405.14209

