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Abstract This paper provides a thorough exploration of the absolute value
equations Ax − |x| = b, a seemingly straightforward concept that has gained
heightened attention in recent years. It is an NP-hard and nondifferentiable
problem and equivalent with the standard linear complementarity problem.
Offering a comprehensive review of existing literature, the study delves into
theorems concerning the existence and nonexistence of solutions to the abso-
lute value equations, along with numerical methods for effectively addressing
this complex equation. Going beyond conventional approaches, the paper in-
vestigates strategies for obtaining solutions with minimal norms, techniques for
correcting infeasible systems, and other pertinent topics. By pinpointing chal-
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lenging issues and emphasizing open problems, this paper serves as a valuable
guide for shaping the future research trajectory in this dynamic and multi-
faceted field.

Keywords Absolute value equation · Optimization problem · Nonconvex
optimization · Nonsmooth problem · Minimum norm solution · Correction of
infeasible system.

Nomenclature. We use e = (1, . . . , 1)⊤ for the vector of ones and ek for the
kth canonical unit vector (with convenient dimensions). By AT we denote the
Hermitian transpose, In the identity matrix of size n, and diag(s) stands for
the diagonal matrix with entries s1, . . . , sn. Further, ρ(·) denotes the spectral
radius, and σmin(·) and σmax(·) the minimum and maximum singular values,
respectively. By default, we use the Euclidean norm for vectors, and for ma-
trices, we use the spectral norm, i.e., ‖A‖ = σmax(A). The other matrix norms
that we use are the induced matrix p-norm defined as

‖A‖p := max
x:‖x‖p=1

‖Ax‖p.

In particular, ‖A‖∞ = maxi
∑

j |aij |. The ith row and jth column of a matrix
A are denoted Ai∗ and A∗j , respectively. The sign of a real r is defined sgn(r) =
1 if r > 0 and sgn(r) = −1 otherwise. The absolute value and the sign function
are applied entry-wise on vectors and matrices. Also matrix comparisons, like
A ≤ B or A < B, are interpreted component-wise. For a vector x ∈ Rn, we
use the shortcut D(x) := diag(sgn(x)); this enables us to write |x| = D(x)x.
An interval matrix [M,M ] = [M c − M∆,M c + M∆] is a set of matrices
{M : M ≤ M ≤ M} = {M : |M −M c| ≤ M∆}. The convex hull of a set S is
denoted convS.

1 Introduction

In recent decades, in the field of optimization and numerical analysis, the
absolute value equations have been considered by many researchers. The AVE
plays an essential role due to its theoretical aspect and applications. Systems
of this type were addressed in the 1980s (see [95–97]) and termed absolute
value equation (AVE) by Mangasarian and Meyer in [67].1

A system of absolute value equations is represented as

Ax− |x| = b, (1)

where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is the unknown. As a slight
generalization of the AVE, a system of generalized absolute value equation
(GAVE) has the form

1 Some authors call them piecewise linear systems [3].
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Ax −B|x| = b; (2)

we discuss it in Section 3.
It is worth noting that some scholars consider an alternative expression

Ax + |x| = b, as the canonical form of the AVE and Ax + B|x| = b for the
GAVE. For the sake of presenting the results uniformly throughout this paper,
we reformulate the AVE and GAVE as given in (1) and (2), respectively.

Due to the presence of absolute values in these systems, various computa-
tional challenges arise for both AVE and GAVE. Specifically, the fundamental
problem of verifying the solvability of the AVE is NP-hard [61].

This comprehensive overview strives to present fundamental and notewor-
thy findings pertaining to theories, applications and solution methods. Addi-
tionally, we tackle challenges related to discovering solutions with minimum
norms and addressing infeasible systems, along with other pertinent issues.
The paper delves into the intricacies of these aspects, offering a deeper un-
derstanding of the subject matter. Additionally, it highlights the challenges
encountered in the process, shedding light on potential areas for further re-
search and development. Within this context, the paper presents a historical
review and prominent issues concerning the AVE and its solution methods.
Importantly, it refrains from passing judgment on the methods’ efficiency or
correctness. The paper’s objectives are to prevent parallel work, provide a
roadmap for generating new algorithms and methods to solve the AVE prob-
lems and evaluate the current situation of existing algorithms and methods
from both analytical and numerical perspectives.

Motivations of Absolute Value Equation. Systems with absolute values arise
naturally in many areas. Below, we list a few particular problems yielding ab-
solute value equations. Notice that absolute value systems were also introduced
as an abstract domain in computer programming [8].

(1) One of the most important motivations was the linear complementarity
problem (LCP) [10]. Both problems are equivalent (see Section 2.2), and
this equivalence brings new perspectives for both sides.

(2) A source of the AVE is the theory of interval computations, where AVE
appears in the characterization of certain solutions of interval systems of
linear equations [97] or in the characterization of the regularity of interval
matrices [101].

(3) Continuous piecewise linear function can be represented by various means.
The representation by the GAVE [26] is an alternative to the max-min
representation [86,115] and to the so-called canonical representation by an
explicit formula involving arithmetic operations and absolute values [9,56].

(4) Many other (NP-hard) problems can easily be formulated as the AVE or
GAVE. This includes, for example, the Set-Partitioning problem or the
0-1 knapsack feasibility problem; see Theorem 1.
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(5) The AVE naturally appear when solving certain differential equations, in
particular, free-surface hydrodynamics [3], such as flows in porous media
[4,7]. Another problems involve the absolute value explicitly; consider the
following boundary value problem [83, 132]:

d2u

dt2
− |u| = f(t), f(t) ∈ C[a, b].

u(a) = α, u(b) = β.

By using the finite difference method, this problem leads to the AVE [132].

Roadmap. The theorems for the existence and nonexistence of solutions to the
AVE are presented in Section 2. Some extensions for the GAVE are considered
in Section 3. Algorithmic aspects are addressed in Section 4, where different
approaches to solving theAVE and GAVE are presented. Finding the mini-
mum norm solution or a sparse solution of the AVE, optimal correction of an
infeasible AVE, and a relation to interval analysis is discussed in Section 5.
Challenges and open problems for future works are proposed in Section 6.

2 Theoretical Results for the AVE

In this section, we review the theoretical results for the AVE. We also bring
some new insights.

2.1 The Solution Set

The solution set of the AVE is denoted by

Σ = {x ∈ R
n : Ax− |x| = b}.

If it is nonempty, it can have finitely or infinitely many solutions. In the first
case, it has at most 2n solutions lying in mutually distinct orthants. For exam-
ple, if A = 0 and b = e, then the AVE reads |x| = e; it possesses 2n solutions
and Σ = {±1}n. In fact, for every natural n there is an AVE system having
exactly n solutions.2

Despite the fact that Σ is not convex in general, it can be created by a
union of at most 2n convex polyhedra. An orthant decomposition demonstrates
this clearly: Let s ∈ {±1}n and consider the orthant determined by the sign
vector s, characterized by diag(s)x ≥ 0. Therefore, the solution set lying in
this orthant is a convex polyhedron described

Σ∩{x ∈ R
n : diag(s)x ≥ 0} = {x ∈ R

nmmid(A−diag(s))x = b, diag(s)x ≥ 0}.
Figure 1 provides an illustration of two AVE systems. In the first case, the

solution set consists of three points, and in the second case, it is formed by
the union of a singleton and a ray.

2 Personal communication with Jǐŕı Sgall.
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Fig. 1: Two examples of AVEs.

2.2 Relationships Between the AVE and the LCP

The linear complementarity problem (LCP) [10] is a well-established problem
in mathematical programming. There is a strong connection between the AVE
and theLCP [61,67]. These problems are not only equivalent but also serve as
a source for deriving basic properties of the AVE.

Recall that the LCP [10] is formulated as a feasibility problem with vari-
ables w, z ∈ Rn

w = Qz + q, w⊤z = 0, w, z ≥ 0. (3)

The LCP appears in many optimization problems, including quadratic pro-
gramming, bimatrix games, and economic problems. Below, we present the
equivalence between the AVE and the LCP [61,67].

Reduction AVE → LCP. Suppose that A − In is nonsingular (a reduction
avoiding this assumption was proposed in [89]). The positive and negative
parts of x are denoted by x+ and x−, respectively. They can be expressed as
follows:

x = x+ − x−, |x| = x+ + x−, (x+)⊤x− = 0, x+, x− ≥ 0.

Thus, the AVE takes the form

A(x+ − x−)− x+ − x− = b, (x+)⊤x− = 0, x+, x− ≥ 0, (4)

from which we obtain the LCP problem

x− = (A+ In)
−1(A− In)x

+ − (A+ In)
−1b, (x+)⊤x− = 0, x+, x− ≥ 0.
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Reduction LCP → AVE. We present the reduction from [61]. Suppose that
Q− In is nonsingular; this assumption does not affect generality since we can
scale matrix Q by any positive scalar. Now, the reduction is based on the
substitution w ≡ |x| − x, z ≡ |x|+ x. Hence, we can write the LCP as

|x| − x = Q|x|+Qx+ q,

which is equivalent to the AVE

(In −Q)−1(In +Q)x− |x| = (Q− In)
−1q.

Computational Complexity. As we already mentioned, the AVE problem is
intractable [61]. We present the result with its illustrative proof.

Theorem 1 It is NP-hard to check if the AVE is solvable.

Proof. We use a reduction from the Set-Partitioning problem:

Given a ∈ Zn, exists x ∈ {±1}n : a⊤x = 0?

We write it as

|x| = e, a⊤x = 0.

Equivalently, in the canonical form (1) of size n+ 2, it reads

|x| = e, −a⊤x− |xn+1| = 0, a⊤x− |xn+2| = 0.

Prokopyev [89] showed that it is NP-hard to check whether the AVE has
at least two solutions (the AVE addressed there is easily transformed to the
canonical form (1)). As a consequence, we have that, given one solution of
the AVE, it is still hard to decide if there exists another solution. Another
intractable problem, dealing with unique solvability for each right-hand side
vector, is stated in Corollary 3.

2.3 Optimization Reformulations

The solutions of AVEs can be determined as optimal solutions of certain non-
linear optimization reformulations [60, 61, 65, 67, 136]. In this subsection, we
introduce some of them.

The first step is to rewrite the AVE system Ax− |x| = b as inequalities

Ax− |x| ≥ b, Ax− |x| ≤ b.

The first inequality can be expressed as a simple linear inequality of double-size

(A+ In)x ≥ b, (A− In)x ≥ b,
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the second part is the problematic one, and the role of the optimization refor-
mulations is to achieve equality in Ax − |x| ≤ b. The objective functions and
the resulting optimization problems to this end are, e.g,

min e⊤(Ax− |x| − b) s.t. (A+ In)x ≥ b, (A− In)x ≥ b, (5)

min (Ax− |x| − b)⊤(Ax − |x| − b) s.t. (A+ In)x ≥ b, (A− In)x ≥ b, (6)

min ((A+ In)x− b)⊤((A− In)x− b) s.t. (A+ In)x ≥ b, (A− In)x ≥ b,
(7)

see [34,60,61,65,67,136]. The first objective function is concave and piecewise
linear, the second is a piecewise convex quadratic, and the third is quadratic.
The AVE is solvable if and only if the optimization problem (any of the above)
has an optimal value of 0.

The objective function of (7) is strictly convex if and only if A⊤A− In is
positive definite, which is equivalent to the unique solvability sufficient condi-
tion that we state later in (13).

An alternative reformulation utilizes the transformation (4) and rewrites
the AVE as

(A− In)x − (A+ In)y = b, x, y ≥ 0, x⊤y = 0.

Now, keeping the linear constraints and minimizing the complementarity, we
arrive at

min x⊤y s.t. (A− In)x− (A+ In)y = b, x, y ≥ 0. (8)

Linear Mixed 0–1 Reformulation. Prokopyev [89] proposed an equivalent lin-
ear mixed 0–1 reformulation of the GAVE (and the AVE in particular). As-
suming that b 6= 0, the AVE can be reformulated as a linear mixed 0–1 problem

max
α,x,y,z

α

s.t. Ax− y = αb, 0 ≤ y + x ≤ e− z, 0 ≤ y − x ≤ z, α ≥ 0, z ∈ {0, 1}n.
Let (α̃, x̃, ỹ, z̃) be any feasible solution of this problem. If α̃ > 0, then x := x̃/α̃
is a solution of AVE. Further, let (α∗, x∗, y∗, z∗) be an optimal solution of the
0-1 problem. If α∗ = 0, then the AVE is infeasible. If α∗ > 0, then x := x∗/α∗

is a minimum norm solution of the AVE (using the maximum norm).
The above formulation employs 2n+ 1 continuous variables and n binary

variables. We can reduce the number of continuous variables if we have some
initial bounds x ∈ [x, x] for the solutions (certain bounds will be discussed in
Section 2.4.1). Then, we can rewrite the AVE equivalently as

Ax− y = b, −y ≤ x ≤ y, y ≤ x− 2 diag(x)z, y ≤ −x+ 2diag(x)(e− z),

where x, y ∈ R
n and z ∈ {0, 1}n. Eliminating y, we obtain a mixed-integer

linear system with n continuous variables and n binary variables,

(A− In)x ≥ b, (A− In)x ≤ b− 2 diag(x)z,

(A+ In)x ≥ b, (A+ In)x ≤ b+ 2diag(x)(e − z).



8 Milan Hlad́ık et al.

2.4 Existence of Solutions of the AVE

Conditions for the solvability of the AVE can be obtained by transforming
it into an LCP (as presented above) and utilizing conditions for the LCP.
However, owing to the special structure of the AVE, alternative conditions
were derived directly for the AVE.

2.4.1 Solvability

Solvability can be checked by adapting the optimization reformulations from
Section 2.3. Consider the LP problem

min
x,y

0⊤x+ 0⊤y (9a)

s.t. Ax− y = b, x+ y ≥ 0, −x+ y ≥ 0, (9b)

which results from the relaxation of the absolute value. Its dual reads

max
u,v,w

b⊤u+ 0⊤v + 0⊤w (10a)

s.t. A⊤u+ v − w = 0, −u+ v + w = 0, v, w ≥ 0. (10b)

Based on the optimality conditions in LP and complementary slackness, Man-
gasarian [66] obtained the following sufficient condition for solvability.

Proposition 1 Let (x, y) be an optimal solution of (9) and (u, v, w) an opti-
mal solution of (10). If u > 0, then x solves the AVE. Moreover, we have

xi ≥ 0 if wi > 0, and xi ≤ 0 if vi > 0, i = 1, . . . , n.

Based on the Picard iterations (Subsection 4.3), Mangasarian andMeyer [67]
obtained a condition for a nonnegative solution.

Proposition 2 If A ≥ 0, ‖A‖ < 1 and b ≤ 0, then a nonnegative solution to
the AVE exists.

The condition does not imply uniqueness; consider the AVE system |x| = e,
for example. However, the condition does imply the uniqueness of a nonnega-
tive solution (If there are more nonnegative solutions, then A+ In is singular,
which contradicts the condition ‖A‖ < 1).

Notice that Radons and Tonelli-Cueto [94] analysed (not necessarily unique)
solvability of an AVE-type system by the aligned spectrum of the constraint
matrix.
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Bounds on the Solutions. From various aspects, it is important to have tight
bounds on the solution set. Not only do they restrict the area where to seek for
solutions, but also reduce the number of orthants to be processed. Later, we
will see that these bounds also provide a test for unsolvability (Proposition 11).
Hlad́ık [33] proposed bounds in the form of a box that is symmetric around
the origin.

Theorem 2 If ρ(|A|) < 1, then each solution x of the AVE satisfies

|x| ≤ −(I − |A|)−1b. (11)

Naturally, each solution x must satisfy |x| ≤ Ax − b. Together with the
above bound, we obtain a polyhedral outer approximation of Σ in the form of
a system of linear inequalities.

Corollary 1 If ρ(|A|) < 1, then each solution x of the AVE satisfies the
system

(A+ In)x ≥ b, (A− In)x ≥ b, (I − |A|)−1b ≤ x ≤ −(I − |A|)−1b.

2.4.2 Unique Solvability

As in other mathematical problems, the uniqueness of a solution is an impor-
tant issue. It is even more important in view of how many problems can be
formulated as AVE, particularly the equivalence between the AVE and the
LCP.

Characterization of Unique Solvability. We present the characterization of Wu
and Li [129] on unique solvability for an arbitrary right-hand side. Notice
that the result can also be inferred from [104, 111], and the sufficiency of the
condition was already presented in [98, 138]. Recall that an interval matrix is
regular if it contains only nonsingular matrices.

Theorem 3 The AVE has a unique solution for each b ∈ Rn if and only if
[A− In, A+ In] is regular.

A survey on regularity of interval matrices can be found in Rohn [101]. The
conditions presented there enable us to characterize the unique solvability of
the AVE by other means. We mention some of the most distinctive ones.

Corollary 2 The following conditions are equivalent:

(i) The AVE has a unique solution for each b ∈ Rn;
(ii) [A− In, A+ In] is regular;
(iii) the system |Ax| ≤ |x| has only the trivial solution x = 0;
(iv) for each s ∈ {±1}n, the linear system

(A− diag(s))x1 − (A+ diag(s))x2 = s, x1, x2 ≥ 0

is solvable;
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(v) det(A+ diag(s)) is constantly positive or negative for each s ∈ {±1}n;
(vi) each matrix in the form

A+ diag(z(i)), i = 1, . . . , n,

is nonsingular, where z
(i)
i ∈ [−1, 1] and |z(i)j | = 1 for j 6= i;

(vii) for each s ∈ {±1}n and each real eigenvalue λ of diag(s)A we have
|λ| > 1.

Other characterizing conditions of unique solvability were presented in [51].
Recall that the AVE is equivalent to the LCP. In the LCP, the matrix class

providing unique solvability for each right-hand side is called P-matrices ; these
matrices are defined as having all positive principal minors. A direct link be-
tween P-matrices and interval matrices was established in, for example, [104].
According to Coxson [11], verifying the P-matrix property is a co-NP-hard
problem. Thus, we immediately have:

Corollary 3 It is co-NP-hard to check if the AVE has a unique solution for
each b ∈ Rn.

Even though checking the regularity of [A − In, A + In] is intractable in
general, there are some easily recognizable classes. For instance, inverse non-
negative matrices are addressed in Section 2.4.3 or symmetric matrices [34].

Proposition 3 Let A ∈ Rn×n be symmetric. Then [A− In, A+ In] is regular
if and only if both matrices A− In and A+ In have the same signature.

Sufficient Conditions. Due to the intractability of testing unique solvability,
it is worth considering sufficient conditions.

Theorem 4 Either of the following two conditions is sufficient for the unique
solvability of the AVE for any b ∈ Rn:

ρ(|A−1|) < 1, (12)

σmin(A) > 1. (13)

Condition (12) was stated in Rohn et al. [109], and the unique solution
of the AVE can be computed in polynomial time then [136]. Condition (13),
which is often equivalently stated as ‖A−1‖ < 1, was proposed by Mangasar-
ian and Meyer [67], and also in this case the unique solution of the AVE is
polynomially computable. Nevertheless, it is an open problem if the AVE is
efficiently solvable in the general case with [A− In, A+ In] regular; cf. [25].

Conditions (12) and (13) are independent of each other; that is, no one
implies the second one [109]. Both conditions are consequences of the following
more general sufficient condition [126].

Theorem 5 The AVE has a unique solution for each b ∈ Rn if ρ(A−1D) < 1
for every D ∈ [−In, In].
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Notice that we cannot weaken condition (12) to the form ρ(A−1) < 1. For
instance, matrix

A =

(

−1 2
−2 1

)

satisfies condition ρ(A−1) < 1, but the interval matrix [A− In, A+ In] is not
regular—it contains the singular matrix

(

−2 2
−2 2

)

.

Wu and Guo [128] proposed another sufficient condition. To state it, recall
that matrix M ∈ R

n×n is an M-matrix if Mij ≤ 0 for i 6= j and M−1 ≥ 0.
A matrix M ∈ Rn×n is H-matrix if the comparison matrix 〈M〉 is an M-
matrix, where the comparison matrix is defined as 〈M〉ij = |M |ij if i = j and
〈M〉ij = −|M |ij if i 6= j. H-matrices thus extend the class of M-matrices.

Proposition 4 The AVE has a unique solution for each b ∈ Rn if A − In is
an H-matrix with a positive diagonal.

The above sufficient conditions can still be expensive for large and sparse
matrices. That is why Wu and Guo [128] proposed a condition based on a
certain strictly diagonally dominant matrix property.

Proposition 5 The AVE has a unique solution for each b ∈ Rn if

|aii| > 1 +
∑

i6=j

|aij | ∀i = 1, 2, . . . , n.

2.4.3 Nonnegative Solutions

Hlad́ık [34] studied the existence of nonnegative solutions and their uniqueness.
We have an efficient way to check it.

Theorem 6 The following conditions are equivalent:

(i) The AVE has a unique nonnegative solution for each b ≥ 0;
(ii) the AVE has a nonnegative solution for each b ≥ 0;
(iii) (A− In)

−1 ≥ 0.

To achieve the situation that the nonnegative solution is the unique solu-
tion, the concept of inverse nonnegative matrices turns out to be useful. An
interval matrix [A,A] is inverse nonnegative if A−1 ≥ 0 for each A ∈ [A,A].
Kuttler [52] proved that inverse nonnegativity of [A,A] can be easily charac-
terized as inverse nonnegativity of the lower and upper bound matrices. In our
context, [A − In, A+ In] is inverse nonnegative if and only if (A − In)

−1 ≥ 0
and (A+ In)

−1 ≥ 0.

Proposition 6 If [A−In, A+In] is inverse nonnegative, then for each b ≥ 0,
the AVE has a unique solution, and this solution is nonnegative.
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Moreover, the Newton method can effectively compute the unique solution
(Section 4.2), which yields the solution in at most n iterations in this case.

The converse implication in Proposition 6 can be proved under an assump-
tion on the regularity of [A−In, A+In]; it is an open question if the assumption
can be relaxed.

Proposition 7 Let [A − In, A + In] be regular. If for each b ≥ 0 the AVE
has a unique solution and this solution is nonnegative, then [A − In, A + In]
is inverse nonnegative.

2.4.4 Exponentially Many (2n) Solutions

As we already observed, the AVE (1) can possess 2n solutions. In this case,
they have to lie in the interiors of mutually different orthants. We present two
results from Hlad́ık [33].

Proposition 8 Let ρ(|A|) < 1 and b < 0. Then there are 2n solutions provided
at least one of the conditions holds

(i) 2|b| > G(In − |A|)−1|b|,
(ii) |b| > 2|A| |b|,
where G is the diagonal matrix with entries 1/(In−|A|)−1

11 , . . . , 1/(In−|A|)−1
nn .

It can be shown that the first condition is weaker so that (i) ⇒ (ii).
On the other hand, the second condition is more easy to check. Notice that
another sufficient condition was presented by Mangasarian and Meyer [67],
but the above is provably stronger.

2.5 Nonexistence of Solutions for the AVE

In Section 2.2, we presented a reduction AVE → LCP. Based on it, we can see
that when the AVE is solvable, then

(A− In)x
+ − (A+ In)x

− = b, x+, x− ≥ 0

is solvable. By the Farkas theorem of the alternative, the dual system is un-
solvable. This brings us to the result from [67].

Proposition 9 If

−y ≤ A⊤y ≤ y, b⊤y > 0 (14)

is solvable, then the AVE is unsolvable.

Mangasarian and Meyer [67] also stated the following condition.

Proposition 10 Let 0 6= b ≥ 0 and ‖A‖ < 1. Then, the AVE has no solution.
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Other two conditions for AVE’s unsolvability were presented in [33]. The
first condition is based on the bounds in (11). Obviously, if the bounds yield
an empty set, then there is no solution to the AVE.

Proposition 11 The AVE is unsolvable if

ρ(|A|) < 1 and − (In − |A|)−1b is not nonnegative. (15)

Proposition 12 If ρ(|A|) < 1 and

2bi >
1

(I − |A|)−1
ii

(In − |A|)−1
i∗ |b|, (16)

for some i, then the AVE has no solution.

When A ≥ 0, then the above two conditions (14) and (15) are almost
equivalent; see [33] for details.

2.6 More on the Structure of the Solution Set

Recall from Section 2.1 that the solution set Σ need not be convex or con-
nected in general; however, it forms a convex polyhedron in each orthant. Thus,
its structure can be complicated, and diverse situations may occur. However,
some situations are forbidden. For example, it cannot happen that there are in-
finitely many solutions in each orthant [34]. On the other hand, it may happen
that 2n − 1 orthants possess infinitely many solutions.

The case of finitely many solutions was analysed by Hlad́ık [34].

Proposition 13 Let A ∈ Rn×n. The solution set of Ax− |x| = b is finite for
each b ∈ Rn if and only if A+ diag(s) is nonsingular for each s ∈ {±1}n.

The exponential number of matrices can hardly be substantially decreased;
it was proved that the property is co-NP-hard to check, even when matrix A
has rank one. On the other hand, several sufficient conditions proposed by
Hlad́ık [34].

Even when the solution set is infinite, it still might be bounded. Bounded-
ness is easy to characterize; however, the condition is NP-hard to check [34].
Notice that, by convention, the empty set is considered as bounded.

Proposition 14 Let A ∈ Rn×n. The solution set of Ax − |x| = b is bounded
for each b ∈ Rn if and only if Ax+ |x| = 0 has only the trivial solution x = 0.

Even though the solution set Σ is not generally convex, there are special
situations when convexity occurs (by convention, the empty set is convex). For
instance, if [A − In, A+ In] is regular, then there is a unique solution, which
is a convex set. More generally, if Σ is located in one orthant, it is convex.
Surprisingly, the converse implication is also true [34].
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Proposition 15 The solution set Σ is convex if and only if it is located in
one orthant only, i.e., there is s ∈ {±1}n such that diag(s)x ≥ 0 for each
x ∈ Σ.

The problem of checking convexity if Σ is also intractable; it is NP-hard
on the class with b = 0 and A having rank one.

Connectedness of the solution set is harder to characterize; no charac-
terisation is known, only some sufficient conditions. Also, the computational
complexity is not classified.

2.7 Cayley-Like Transform

The Cayley transform [20] of a matrix A ∈ Rn×n, where In+A is nonsingular,
is defined to be

C(A) = (In +A)−1(In −A).

The transformations between the AVE and the LCP from Section 2.2 resemble
the Cayley transform. Indeed, there is a strong connection. Denote

AL(A) = (A+ In)
−1(A− In)

the transformation of the matrix from reduction AVE→LCP and similarly
denote

LA(Q) = (In −Q)−1(In +Q)

the transformation of the matrix from reduction LCP→AVE. The connection
to the Cayley transform is given in the following observation.

Proposition 16 We have AL(A) = −C(A) and LA(Q) = C(−Q).

Fallat and Tsatsomeros [20] investigated the Cayley transform of positivity
classes in the context of LCP. Properties of the transform LA and AL have
not been studied so far, but they have the potential to derive new results on
the solvability of the AVE and to show relations of the AVE and certain matrix
classes of the LCP.

To illustrate it, we present several results on the uniqueness of the AVE
solutions. Proposition 17 is a corollary of Proposition 4, but we prove it in
another way by utilizing the above transforms. Proposition 18 weakens the
assumption and also the statement. Proposition 19 is new.

Proposition 17 If A− In is an M-matrix, then AL(A) is an M-matrix, and
therefore the AVE is uniquely solvable for each b ∈ Rn.
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Proof. We have to show that AL(A) has a nonnegative inverse and is a Z-
matrix, i.e., the off-diagonal entries are nonpositive. The former follows from
the fact that (A− In)

−1 ≥ 0 and thus

AL(A)−1 = (A− In)
−1(A+ In) = In + 2(A− In)

−1 ≥ 0.

To show the latter, write

AL(A) = (A+ In)
−1(A− In) = In − 2(A+ In)

−1.

It is a Z-matrix since A + In is an M-matrix and hence has a nonnegative
inverse.

Recall that a nonsingular matrix is an inverse M-matrix if its inverse is an
M-matrix [43]. Inverse M-matrices form a subset of P-matrices.

Proposition 18 If A − In in a P-matrix, then AL(A) is a P-matrix, and
therefore the AVE is uniquely solvable for each b ∈ R

n.

Proof. P-matrices are closed under inversion, so it is sufficient to show that
AL(A)−1 is a P-matrix. This follows from the expression

AL(A)−1 = (A− In)
−1(A+ In) = In + 2(A− In)

−1,

since P-matrices are also closed under positive multiples and the addition of
a nonnegative diagonal matrix.

Proposition 19 If A− In is an inverse M-matrix, then AL(A) is an inverse
M-matrix, and therefore the AVE is uniquely solvable for each b ∈ Rn.

Proof. Since (A− In)
−1 is an M-matrix, the matrix

AL(A)−1 = (A− In)
−1(A+ In) = In + 2(A− In)

−1

is an M-matrix, too. This means thatAL(A) is an inverse M-matrix. Therefore,
it is also a P-matrix, and the corresponding LCP has a unique solution for any
right-hand side vector.

From the above results, it might seem that unique solvability for each
b ∈ Rn (i.e., regularity of [A − In, A + In]) can be achieved if A − In is
positive stable, that is, the real part of all eigenvalues of A is greater than 1.
Nevertheless, this is not true in general. As a counterexample, consider the
matrix

A =

(

−1 1.5
−4 3.5

)

.

The eigenvalues of A are 1.25±0.9682 i, but the interval matrix [A−In, A+In]
is not regular since it contains the singular matrix

A =

(

−1.5 1.5
−4 4

)

.
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3 Generalized Absolute Value Equation

The AVE can be extended by various means. First, we are concerned with the
so-called generalized absolute value equation (GAVE), which have the form

Ax −B|x| = b, (17)

where A,B ∈ Rm×n and b ∈ Rm. If B is nonsingular, then we easily transform
it to the AVE

B−1Ax− |x| = B−1b.

However, to avoid matrix inversion and handle the singular case, we analyse
the form of the GAVE directly.

Notice that there is another reduction of the GAVE to the AVE that pro-
ceeds as follows. Write GAVE (17) as

Ax−By = b, y = |x|, y = |y|.

By inserting a dummy variable z, we arrive at an equivalent system

Ax+By − |z| = b, y = |x|, y = |y|+ z,

which is easily converted to the canonical form of AVE (1)




0 In 0
0 In −In
A B 0









x
y
z



−

∣

∣

∣

∣

∣

∣

x
y
z

∣

∣

∣

∣

∣

∣

=





0
0
b



 .

This kind of reduction increases the size of the system by the factor 3, but we
avoid matrix inversion, and it works with no assumptions on B. Consequently,
the reduction shows that the GAVE is equivalent to the LCP; this was already
proved by Prokopyev [89] by other means.

Unique Solvability. Conditions for solvability and unsolvability for the GAVE
are more-or-less extensions of those for the AVE. For instance, linear pro-
gramming based unsolvability condition (14) was extended to the GAVE by
Prokopyev [89]. The following generalizations of Theorems 3 and 5 to the
GAVE are credited to Wu and Shen [126]; some additional conditions were
proposed in [70]. An overview of necessary and sufficient conditions is pro-
vided in [51].

Theorem 7 The GAVE (17) has a unique solution for any b ∈ Rn if and
only if matrix A+BD is nonsingular for every D ∈ [−In, In].

We cannot write the set of matrices A + BD, D ∈ [−In, In], directly
A+B[−In, In] since this interval matrix evaluated by interval arithmetic yields
A + B[−In, In] = [A − |B|, A + |B|], which overestimates the true set. How-
ever, this matrix is also useful; we will meet it again around Theorem 10 and
Algorithm 11.
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We can still formulate unique solvability by means of a standard interval
matrix. By [51], it is equivalent to regularity of the interval matrix

(

A B
[−In, In] In

)

. (18)

Standard characterization of regularity [101] yields condition (ii) of Theorem 8.
Condition (iii) was derived directly in [51].

Theorem 8 The following conditions are equivalent:

(i) Interval matrix (18) is regular;
(ii) the system Ax+By = 0, |y| ≤ |x| has only the trivial solution x = y = 0;
(iii) the system |A⊤x| ≤ |B⊤x| has only the trivial solution x = 0.

Due to the linearity of the determinant in each column, we obtain from
Theorem 7 a finite characterization of the unique solvability of the GAVE.

Corollary 4 The GAVE has a unique solution for any b ∈ Rn if and only
if the determinant of A + B diag(s) is either positive or negative for each
s ∈ {±1}n.

The characterization of unique solvability implies a general approach for
deriving sufficient conditions.

Proposition 20 If A in (17) is nonsingular and satisfies

ρ(A−1BD) < 1 (19)

for every D ∈ [−In, In], then the GAVE has a unique solution for any b ∈ Rn.

From the above statement, we immediately have the sufficient condition
for unique solvability for an arbitrary right-had side [109]

ρ(|A−1B|) < 1, (20)

which is a generalization of (12). Further, since for each D ∈ [−In, In]

ρ(A−1BD) ≤ ‖A−1BD‖ ≤ ‖A−1B‖ · ‖D‖ ≤ ‖A−1B‖,
we obtain another sufficient condition [126]

‖A−1B‖ < 1, (21)

extending the condition (13) of the AVE. An alternative condition avoiding
any matrix inversion is [75, 130]

σmax(B) < σmin(A). (22)

Its drawback is that it is provably weaker since it implies

1 > σmax(B)σmin(A)
−1 = σmax(B)σmax(A

−1) ≥ σmax(A
−1B) = ‖A−1B‖.

Even when the unique solvability condition is satisfied, there is still some
effort to compute the solution. Explicit formulae for the solutions exist in very
special cases only [106].
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Theorem 9 Let B ≥ 0, ρ(B) < 1, and denote M = (In−B)−1. Suppose that
there is k such that bi ≥ 0 for each i 6= k. Then, the absolute value equation

x−B|x| = b

has a unique solution

x = max

{

Mb, Mb− 2(Mb)k
2Mkk − 1

(M − In)ek

}

.

Due to the intractability of the GAVE, it is worth reducing the dimension
of the problem. Rohn [107] showed that GAVE (17) could be reduced to a
smaller-sized GAVE under certain assumptions.

Theorem of the Alternatives. Recall that theorems of the alternatives play an
important role in expressing the solvability and unsolvability of linear systems,
and they are used to derive duality in linear programming and optimality
conditions in nonlinear programming. Rohn [98] proposed a certain kind of
theorem of the alternatives for the GAVE.

Theorem 10 Let A,D ∈ Rn×n, where D ≥ 0. Then exactly one of the fol-
lowing alternatives holds:

(i) for each B ∈ R
n×n with |B| ≤ D and for each b ∈ R

n the equation

Ax−B|x| = b

has a unique solution;
(ii) the inequality

|Ax| ≤ D|x|,

has a nontrivial solution.

Notice that the first condition is equivalent to regularity of interval matrix
[A−D,A+D]. The second condition can be equivalently stated (it is not so
obvious): There exist λ ∈ [0, 1] and y ∈ {±1}n such that the absolute value
equation

Ax− λdiag(y)D|x| = 0

has a nontrivial solution.

Rohn [105] also presented a type of theorem of the alternatives for the
absolute value equation in the form |Ax| − |B||x| = b. Instead of the unique
solvability, the theorem expresses the existence of 2n solutions for each positive
right-hand side vector b. Consequently, he obtained several sufficient conditions
for the existence of 2n solutions.
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Overdetermined GAVE. Overdetermined systems (i.e., when m > n) usually
have no solution. Rohn [108] observed that if rank(A) = n and ρ(|A†B|) < 1,
where A† stands for the Moore–Penrose pseudoinverse of A, then the GAVE
has at most one solution. Moreover, he also proposed iterations

x0 = A†b,

xi+1 = −A†B|xi|+A†b, i = 0, 1, . . .

that converge to a unique point x∗. If the GAVE is solvable, then x∗ is its
solution.

Other Extensions. Other variants of generalized AVE were also discussed; see,
e.g., [50, 127, 141]. In particular, Wu [127] considered generalized AVE in the
form

Ax + |Bx| = b, (23)

where A,B ∈ Rn×n, and b ∈ Rn. It is straightforward to reduce (23) to
GAVE (17)

Ax+ |y| = b, Bx− y = 0,

however, some conditions take a simpler form. For instance, unique solvability
for any right-hand side vector is achieved if and only if A + DB is nonsin-
gular for every D ∈ [−In, In]. From this characterization also, the analogous
sufficient conditions

ρ(|BA−1|) < 1 and ‖BA−1‖ < 1

directly follow.

3.1 Sylvester-Like Absolute Value Matrix Equations

Hashemi [28] introduced Sylvester-like absolute value matrix equations

AXB + C|X |D = E, (24)

where A,C ∈ Rm×n, B,D ∈ Rp×q, and E ∈ Rm×q are given and matrix
X ∈ Rn×p is unknown.

Matrix equations can be transformed to standard equations by utilizing
Kronecker product ⊗ and vectorization vec(X) of matrix X (a transformation
stacking the columns ofX into a single column vector). Thus, (24) equivalently
reads as

(B⊤ ⊗A+D⊤ ⊗ C) vec(X) = vec(E).

Using this transformation, we can adapt the GAVE solvability conditions.
Thus, Theorem 8 gets the following form.

Proposition 21 The following conditions are equivalent:
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(i) The system (24) has a unique solution for each F ∈ Rm×q;
(ii) the system AXB + CY E = 0, |Y | ≤ |X | has only the trivial solution

X = Y = 0;
(iii) the system |A⊤XB⊤| ≤ |C⊤XE⊤| has only the trivial solution X = 0.

However, not all conditions for the GAVE are easily extendable to the
matrix equations. There are known some special cases only [51]. For instance,
Theorem 7 is extended as follows.

Proposition 22 The system AX +B|X | = F has a unique solution for each
F ∈ Rn×n if and only if matrix A+BD is nonsingular for every D ∈ [−In, In].

Several sufficient conditions for unique solvability of (24) w.r.t. any E ∈
R

m×q were proposed in [28, 124]. They resemble those conditions for GAVE:

1. ρ(|A−1C|)ρ(|DB−1|) < 1, which extends (20);
2. ‖A−1C‖ ‖DB−1‖ < 1, which is an analogy of (21);
3. σmax(C)σmax(D) < σmin(A)σmin(B), which is an analogy of (22).

Analogously, we adapt conditions for unsolvability. Thus, Proposition 10
is extended to the matrix equations as follows [28].

Proposition 23

(i) Let C be a square nonsingular matrix, 0 6= C−1E ≥ 0, and

σmax(A)σmax(B) < σmin(C).

Then the Sylvester-like equation AXB − C|X | = E has no solution.
(ii) Let D be a square nonsingular matrix, 0 6= ED−1 ≥ 0, and

σmax(A)σmax(B) < σmin(D).

Then Sylvester-like equation AXB − |X |D = E has no solution.

Another form of absolute value matrix equations was considered byWu [127],

AXB + |CXD| = E. (25)

Unique solvability for an arbitrary right-hand side matrix E was shown under
similar sufficient conditions:

1. ρ(|CA−1|)ρ(|B−1D|) < 1;
2. ‖CA−1‖ · ‖B−1D‖ < 1;
3. σmax(C)σmax(D) < σmin(A)σmin(B).



An Overview on Absolute Value Equations 21

3.2 Other Generalizations

The absolute value is associated with the nonnegative orthant. Extensions of
the GAVE that consider another convex cone exist, too. In particular, Hu et
al. [38] introduced the absolute value equations associated with the second-
order cone. Therein, the absolute value function is not defined as the tradi-
tional sum of the positive and negative parts but as the sum of the projections
onto the positive and negative second-order cones instead. Follow-up research
in this direction involves [39, 72–74, 81]. The relation to general equilibrium
problems was studied by Gajardo and Seeger [23]. Extensions to circular cones
were explored by Miao and Yang [72].

Casulli and Zanolli [7] considered nonlinear systems, in which the absolute
value is replaced with an integral of a specified function.

Tensor absolute value equations [2,13,14,17,42] are a rather new area with
few results and many unsolved questions; see also the paragraph in Section 6
devoted to challenges and open problems.

4 Numerical Methods for Solving Absolute Value Equation

A variety of iterative approaches have been proposed for solving the AVE
(1) and GAVE (2). This section provides an overview of the fundamental
methods commonly employed by algorithms to solve the AVE. For GAVE, the
methods work in a similar fashion; we present the GAVE form only when it is
meaningful.

In essence, finding a solution for the AVE (1), i.e., solving the system
Ax− |x| − b = 0, is equivalent to finding the root of the nonsmooth function

f(x) = Ax− |x| − b. (26)

Thus, our objective is to solve the equation:

f(x) = 0. (27)

4.1 Optimization Approaches

As we observed in Section 2.3, the AVE can be expressed by means of optimiza-
tion modelling. In this section, we will look at several concave optimization-
based strategies. Recall from (5) that x⋆ is a solution of the AVE if and only
if it is an optimal solution of the following concave minimization problem and
the optimal value is zero:

min e⊤(Ax− b − |x|) s.t. x ∈ S, (28)

where

S := {x : |x| ≤ Ax− b} = {x : (A+ In)x ≥ b, (A− In)x ≥ b} (29)
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is the feasible set. Mangasarian [60] suggested a successive linearization algo-
rithm based on this concept; the pseudocode is given in Algorithm 1. Further-
more, he demonstrated that the method converges to a stationary point of
problem (28). Let g = e⊤(Ax− b− |x|) denote the concave objective function
of problem (28), which is bounded below by zero on S. Now, we establish a
significant result through the following theorem.

Algorithm 1 Successive linearization algorithm

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: compute xk+1 a vertex optimal solution of the linear program

min (e⊤A− sgn(xk)⊤)x s.t. x ∈ S

4: if (e⊤A− sgn(xk)⊤)(xk+1 − xk) = 0 then

5: return solution xk+1

6: end if

7: end for

Theorem 11 Algorithm 1 generates a finite sequence of feasible vertices {x1, x2, . . . , xℓ}
with strictly decreasing objective function values: g(x1) > g(x2) > · · · > g(xℓ),
such that xℓ satisfies the minimum principle necessary optimality condition:

(e⊤A− sgn(xℓ)⊤)(x − xℓ) ≥ 0, ∀x ∈ S.

Mangasarian [65] also proposed a hybrid method for solving the AVE.
Rewrite the AVE as y = |x| , y = Ax− b and consider its relaxation

Z = {(x, y) ∈ R
2n : y ≥ x ≥ −y, y ≥ Ax− b}. (30)

Then the AVE is feasible if and only if the following concave minimization
problem has the optimal value zero:

min
x,y

e⊤(y − |x|) + e⊤(y −Ax + b) s.t. (x, y) ∈ Z. (31)

The suggested hybrid strategy (Algorithm 2) consists of alternating between
solving a linear programming linearization of the concave problem (31) to
generate a solution (x, y) and using the signs of the solution x to linearize the
AVE to a standard system of linear equations.

Proposition 24 If (sgn(zk)− sgn(xk))⊤xk+1 = 0, Algorithm 2 terminates in
a finite number of iterations at a stationary point of (31).

The computational results illustrated the usefulness of Algorithm 2 by
solving 100% of a sequence of 100 randomly generated instances AVEs in R

50

to R1000 to an accuracy of 10−8. In contrast, Algorithm 1 solved 95% of the
problems to an accuracy of 10−6.

Zamani and Hlad́ık [136] also developed a method based on the formulation
(28). First, by using below Example 1, they demonstrated that Algorithm 1 is
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Algorithm 2 Hybrid method

1: pick x0 ∈ Rn arbitrarily, choose itmax (typically itmax = 10)
2: for k = 0, 1, . . . , itmax do

3: compute zk a solution of (A−D(xk))z = b

4: linearize the concave minimization problem (31) around zk as follows:

min
x,y

−(e⊤A+ sgn(zk)⊤)x+ 2e⊤y s.t. (x, y) ∈ Z

5: compute (xk+1, yk+1) the solution of this linear program
6: if xk+1 solves AVE to a given accuracy then

7: return solution xk+1

8: end if

9: end for

not convergent to a solution of the AVE in general. Then, they introduced a
new method, described in Algorithm 3. Therein, V denotes the set of vertices
of the set S from (29), and AdjS(x) ⊆ V denotes the adjacent vertices to the
vertex x ∈ V . Under mild conditions, Algorithm 3 converges to a solution
of the AVE; the original formulation of the convergence is even more general
than that presented below in Theorem 12.

Example 1 Let

A =

(

3 1
6 5

)

, b =

(

3
10

)

, x̄ =

(

5
3
0

)

, x⋆ =

(

1
1

)

.

The unique solution x⋆ of AVE (1) is contrasted with the unique optimal
solution x̄ of the following linear program:

min (e⊤A− sgn(x̄)⊤)x s.t. (A+ In)x ≥ b, (A− In)x ≥ b.

It means that Algorithm 1 is not necessarily convergent to a solution of the
AVE.

Theorem 12 If [A− In, A+ In] is regular, then Algorithm 3 terminates in a
finite number of steps at a solution of the AVE.

Other Optimization Approaches. Mangasarian [63] proposed a bilinear opti-
mization formulation of the AVE. It is based on a linear programming relax-
ation (30), its dual problem and achieves a sort of strict complementarity for
some variables.

A similar idea is used in [64]; however, the linear programming relaxation
is constructed in a different way. The variables are replaced with a difference
between the positive and negative parts, which is relaxed.

From another perspective, it is evident that the AVE can be addressed by
solving the optimization problem

min
x∈Rn

‖Ax− |x| − b‖2. (32)
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Algorithm 3 Concave minimization approach

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: compute xk+1 a vertex solution of the linear program

min
x

e⊤(A−D(xk))x s.t. x ∈ S

4: if e⊤(A−D(xk))(xk+1 − xk) = 0 then

5: if f(xk) = 0 then

6: return solution xk

7: else

8: compute AdjS(x̄) and take xk+1 ∈ argminx∈AdjS(x̄) f(x)

9: if f(xk+1) ≥ f(xk) then

10: return approximate solution xk

11: end if

12: end if

13: end if

14: end for

However, the objective function is nonconvex and nonsmooth. Shahsavari and
Ketabchi [116] proposed two methods, the proximal difference-of-convex algo-
rithm and the proximal subgradient method; by the numerical tests, the latter
performed better. To solve (32), Moosaei et al. [78] utilized another approach;
a generalized Newton method with a line-search based on the Armijo rule.

Noor et al. [82] approached solving the AVE by minimization of the piece-
wise quadratic function

x⊤Ax− |x|⊤x− 2b⊤x.

Later, Iqbal et al. [40] adapted the Levenberg–Marquardt method, which can
be seen as a sort of combination of steepest descent and the Gauss–Newton
method. Pham Dinh et al. [88] approached the problem by means of DC (Dif-
ference of Convex functions) programming.

4.2 Newton Methods

Recall from (26) that solving the AVE means finding a foot of a nonlinear
function f(x) = Ax−|x|−b. To this end, we can employ Newton-like iterations.
Since f(x) is nonsmooth, we have to consider generalized Newton methods.

As a pioneering scholar, Mangasarian [62] developed a generalized New-
ton approach for solving the AVE.3 This approach is similar to the conven-
tional Newton method, except it utilises a generalized Jacobian because of
the nonsmoothness term of the AVE. A generalized Jacobian of the func-
tion (26) is given by ∂f(x) := A − D(x), where D(x) := diag(sgn(x)). Since

3 Independently, Brugnano and Casulli [3] derived a Newton-type method for solving the
AVE that results from solving a hydrodynamic model.
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Algorithm 4 Generalized Newton method

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: xk+1 := (A−D(xk))−1b

4: if xk+1 = xk then

5: return solution xk

6: end if

7: end for

Ax− |x| = (A−D(x))x, the Newton iteration is formulated as follows,

xk+1 = xk −
(

A−D(xk)
)−1

(Axk − |xk| − b)

= (A−D(xk))−1b, k = 0, 1, 2, . . . , (33)

where x0 ∈ Rn is an arbitrary starting point. The method is displayed in
Algorithm 4. From another point of view, (33) is obtained by a linearization
of the AVE around xk, yielding a linear system (A−D(xk))x = b.

Mangasarian [62] proved that the Newton iterations converge linearly to
the unique solution of the AVE from any starting point x0 under the assump-
tion that ‖A−1‖ < 1

4 . The sufficient unique solvability condition (13) reads as
‖A−1‖ < 1, so it is a natural question whether the assumption can be weak-
ened to this form. Indeed, Theorem 13 below uses the more general condition.
Further, Griewank et al. [26] showed that if ‖A−1‖p < 1

3 for some p-norm,
then the method converges globally in finitely many iterations. Radons and
Rump [93] showed that the Newton method terminates in at most n+1 steps
provided at least one of the four conditions for the Signed Gaussian elimination
(page 35) holds true.

Smoothing Methods. Since the AVE is a nonsmooth problem, it is tempting to
approximate the nonsmooth absolute value function by a smooth approximate
[5, 12, 54, 113, 121, 138].

Zhang and Wei [138] proposed a generalized Newton method, combining
semismooth and smooth Newton steps. They used the smoothing function to
construct a Newton iterate that provides a descent in the function value. The
smoothing parameter is gradually reduced to zero using a strategic approach,
leading to a solution of the AVE. The authors establish the global and finite
convergence of the algorithm under the assumption that the interval matrix
[A − In, A + In] is regular, which ensures the uniqueness of the solution (see
Theorem 3).

Caccetta et al. [5] employed the smoothing Newton algorithm, as de-
scribed in [90], for solving the AVE. The algorithm utilizes a smoothing func-
tion Gǫ(x) = Ax −

√
x2 + ǫ2 − b, where ǫ is a smoothing parameter and√

x2 + ǫ2 := (
√

x2
1 + ǫ2, . . . ,

√

x2
n + ǫ2)⊤. At each iteration of the algorithm, a

linear equation involving a Jacobian matrix is solved to obtain a search direc-
tion. The algorithm also includes a line search technique to ensure the descent
property.
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This method successfully solved 297 out of 300 instances with an accuracy
of 10−6. Moreover, it exhibited an average iteration count of 5.67 per instance.
The theoretical convergence is proved under a quite weak assumption (in com-
parison with other methods).

Theorem 13 Suppose that ‖A−1‖ < 1. Then, an infinite bounded sequence
{xk} is generated by the smoothing Newton algorithm [90] and the whole se-
quence {xk} converges quadratically to the unique solution of the AVE.

Tang and Zhou [118] proposed a descent method for solving the GAVE.
They employed a smoothing function and the descent direction

d = ∂hp(w)
−1(−hp(w) + γ ·min{1, gp(w)}e1),

where γ ∈ (0,
√
2), p > 1, hp(w) = hp(ε, x) =

(

ε,
(

Ax+B p
√

|ε|p + |x|p−b
)⊤)⊤,

gp(w) =
1
2‖hp(w)‖2 , and ε is a smoothing parameter. They proved that the

method converges to the solution of the GAVE quadratically.
Since the generalized Newton method needs the exact solution of a linear

system of equations, it can be computationally expensive and may not be
justified. Therefore, Cruz et al. [12] proposed an inexact semi-smooth Newton
method, starting at x0 ∈ R

n and residual relative error tolerance θ ≥ 0, by

‖(A−D(xk))xk+1 − b‖ ≤ θ · f(xk), k = 0, 1, 2, . . . (34)

Note that, in absence of errors, i.e., when θ = 0, the above iteration retrieves
(A−D(xk))xk+1 = b, yielding formula (33). Global Q-linear convergence [41]
was proved in the following theorem.

Theorem 14 Suppose that ‖A−1‖ < 1
3 and

0 ≤ θ <
1− 3‖A−1‖

‖A−1‖(‖A‖+ 3)
.

Then the inexact semi-smooth Newton sequence {xk} converges globally and
Q-linearly to x∗ ∈ Rn, the unique solution of the AVE, as follows

‖xk+1 − x∗‖ ≤ ‖A−1‖
1− ‖A−1‖

(

θ(‖A‖ + 3) + 2
)

‖xk − x∗‖, k = 0, 1, 2, . . .

Eventually, notice that extensive numerical comparisons of smoothing func-
tions were performed by Saheya et al. [113].

Some Other Variants of the Newton Method. Motivated by Algorithm 4, a
new version of the generalized Newton method was presented by Li in [53]. It
is based on solving the equation

f(xk) + (∂f(xk) + In)(x
k+1 − xk) = 0. (35)
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Using f(xk) = (A − D(xk))xk − b and ∂f(xk) = A − D(xk), vector xk+1 is
expressed as

xk+1 = (A+ In −D(xk))−1(xk + b).

This modified generalized Newton method is globally and linearly convergent
to the unique solution of the AVE provided

‖(A+ In −D)−1‖ <
1

3

for any diagonal matrix D with diagonal elements of ±1 or 0.

To avoid the generalized Jacobian matrix from being singular and to further
accelerate the convergence of the generalized Newton method, Cao et al. [6]
proposed a new relaxed method based on iterations

xk+1 :=
(

A− θ ·D(xk)
)−1

(b + (1− θ)|xk|),

where θ is a parameter.

Feng and Liu [21] designed a generalized Newton method, which is based
on the classical ideas of Ostrowski [85] and Traub [119] for solving nonlinear
equations in the real space.

4.3 Picard Iterations

Another type of an AVE algorithm is based on the Picard iterative approach.
In this way, the AVE is written as follows:

Cx− F (x) = 0,

where C ∈ Rn×n is nonsingular and F : Rn → Rn is a nonlinear function. The
iterative approach is then stated as follows:

xk+1 = C−1F (xk), k = 0, 1, 2, . . . ,

where x0 ∈ Rn is an initial point.

If we define C := A and subsequently set F (x) = |x|+ b, then we obtain a
basic iterative process outlined in Algorithm 5. This methodology was origi-
nally proposed by Rohn et al. [109]. They illustrated that when ρ(|A−1|) < 1,
indicating the fulfillment of the sufficient unique solvability condition (12), the
approach exhibits linear convergence. Furthermore, they extended this strat-
egy for solving the GAVE and demonstrated that, under specific conditions,
the generated sequence linearly converges to the unique solution of the GAVE.

Theorem 15 Let A be nonsingular and ρ(|A−1|) < 1. Then Algorithm 5 ini-
tiated with x0 := A−1b converges to the unique solution x⋆ of the AVE.
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Algorithm 5 Picard iterations

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: xk+1 := A−1
(

|xk|+ b
)

4: if xk+1 = xk then

5: return solution xk

6: end if

7: end for

Moreover, for each k ≥ 0,

‖x⋆ − xk+1‖ ≤ σmax(|A−1|)‖x⋆ − xk‖.
Since ρ(|A−1|) < 1 does not imply σmax(|A−1|) < 1, this can provide a weak
convergence result. However, there is always a suitable vector norm such that

‖x⋆ − xk+1‖ ≤ ̺‖x⋆ − xk‖
for certain positive ̺ < 1. Basically, a similar idea showed that the solution of
the AVE can be computed in polynomial time provided ρ(|A−1|) < 1; see [136].

Ill-conditioned Systems. Khojasteh Salkuyeh [114] observed that the main
problem with the Picard iteration method is that if the matrix A is ill-
conditioned then in each iteration of the Picard method, an ill-conditioned
linear system should be solved. For this reason, he proposed Picard Hermitian
and skew-Hermitian splitting (Picard-HSS) method as follows:

B(α)x(k,ℓ+1) = C(α)x(k,ℓ) + |x(k)|+ b, ℓ = 0, 1, . . . , ℓk − 1, k = 0, 1, . . . ,

where

B(α) =
1

2α
(αIn +H)(αIn + S), C(α) =

1

2α
(αIn −H)(αIn − S)

and

H =
1

2
(A+AH), S =

1

2
(A−AH).

Herein, α is a positive constant, {ℓk}∞k=0 a prescribed sequence of positive
integers, and x(k,0) = x(k) is the starting point of the inner HSS iteration at
kth outer Picard iteration. This leads to the inexact Picard iteration method,
summarized in Algorithm 6.

Theorem 16 Let A ∈ Cn×n be positive definite and η = ||A−1||2 < 1. Then
for any initial guess x(0) ∈ Cn and any sequence of positive integers ℓk, k =
0, 1, . . . , the iteration sequence {x(k)}∞k=0 produced by the Picard–HSS iteration
method converges to x∗ provided that ℓ := lim infk→∞ℓk ≥ N , where N is a
natural number satisfying

‖T (α)s‖2 <
1− η

1 + η
∀s ≥ N,

and T (α) := (αIn + S)−1(αIn −H)(αIn +H)−1(αIn − S).
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Algorithm 6 The Picard–HSS iteration method

Let H = 1
2
(A + AH) and S = 1

2
(A − AH) and a sequence {ℓk}

∞
k=0 of positive inte-

gers.

1: pick x(0) ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: put x(k,0) := x(k)

4: for ℓ = 0, 1, . . . , ℓk − 1 do

5: solve the following linear systems to obtain x(k,ℓ+1):

(αI +H)x(k,ℓ+ 1

2
) = (αI − S)x(k,ℓ) + |x(k)|+ b,

(αI + S)x(k,ℓ+1) = (αI −H)x(k,ℓ+ 1

2
) + |x(k)|+ b

6: end for

7: put x(k+1) := x(k,ℓk)

8: if x(k+1) solves AVE to a given accuracy then

9: return solution x(k+1)

10: end if

11: end for

The values ℓk in the inner Picard–HSS iteration steps are often problem-
dependent and difficult to determine in actual computations. Moreover, the
iteration vector cannot be updated in a timely manner. To this end, Zhu and
Qi [143] presented the nonlinear HSS-like iterative method to overcome the
defect of the above mentioned method. Zhang in [139] proposed a relaxed
nonlinear PHSS-like iterative method, which is more efficient than the Picard-
HSS iterative method and is a generalization of the nonlinear HSS-like iteration
method. His method avoids using an explicit inner iteration process, a disad-
vantage of the Picard–PHSS iterative method, while retaining its benefits. To
avoid solving two linear subsystems at each iteration of the Picard-HSS algo-
rithm, Miao et al. [71] proposed a single-step inexact Picard iteration method.
Another variant of HSS was presented by Li [54], who analysed the convergence
by means of a smoothing function.

Generalizations. As a generalization of the Picard method, Wang et al. [120]
introduced an iteration method for solving the GAVE by involving a positive
semi-definite matrix Ω. Formulating it for the AVE, we rewrite it as

(A+Ω)x = Ωx+ |x|+ b

and obtain the iterations

xk+1 = (A+Ω)−1(Ωxk + |xk|+ b), k = 0, 1, . . . (36)

They established sufficient conditions for the linear convergence of this method.

4.4 SOR-Like Methods

The Successive Over-Relaxation (SOR) method is a popular iterative tech-
nique used to accelerate convergence when solving large-scale linear systems
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of equations. By updating the solution at each iteration using a weighted com-
bination of the current and previous iterations, SOR aims to achieve faster
convergence than certain other methods, such as Jacobi and Gauss-Seidel.

The SOR method has several advantages in the classical theory of linear
equations, such as guaranteed convergence under certain conditions, especially
for diagonally dominant or symmetric positive definite matrices. It can also
be easily parallelized, making it suitable for large-scale problems.

For the linear equation Ax = b, the iterations of the SOR method can be
expressed in a component-wise form as

xk+1
i = (1 − ω)xk

i +
ω

aii



bi −
i−1
∑

j=1

aijx
k+1
j −

n
∑

j=i+1

aijx
k
j



 , i = 1, . . . , n,

where ω is the relaxation parameter.

Several SOR-like methods have been proposed to solve the AVE. These
methods extend the SOR concept by incorporating suitable modifications to
address the nonlinearity introduced by the absolute value function. They aim
to exploit the structure and properties of the AVE to enhance convergence.
By iteratively updating the solution and adjusting the relaxation parameter,
they provide efficient and robust numerical schemes for solving the AVE.

Algorithm 7 (The SOR-like iteration method)
Let ω be a positive constant.

1: pick x0, y0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: put xk+1 := (1 − ω)xk + ωA−1(yk + b)
4: put yk+1 := (1− ω)yk + ω|xk+1|
5: if xk+1 solves AVE to a given accuracy then

6: return solution xk+1

7: end if

8: end for

By reformulating the AVE as a two-by-two block nonlinear equation, Ke
and Ma in [45] proposed a SOR-like iteration method. In particular, rewrite
the AVE as

Ax− y = b,

−|x|+ y = 0,

that is,
(

A −In
−D(x) In

) (

x
y

)

=

(

b
0

)

. (37)

Based on this formulation, they suggested the SOR-like method for solving
the AVE, as described in Algorithm 7.
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Let (x∗, y∗) be the solution pair of the above equation and (xk, yk) be
generated by Algorithm 7. Define the iteration errors as

exk := x∗ − xk, eyk := y∗ − yk.

To state the convergence properties, define the vector norm

‖(exk, eyk)‖e :=
√

‖ex‖2 + ω−2‖ey‖2.

Theorem 17 Denote ν := ‖A−1‖ and τ := 2
3+

√
5
. If

ν < 1 and 1− τ < ω < min
{

1 + τ,
√

τ/ν
}

,

then
‖(exk+1, e

y
k+1)‖e < ‖(exk, eyk)‖e

holds for every k = 0, 1, . . .

Guo et al. [27] have further theoretically considered the SOR-like method.
They found some new convergence conditions and a choice of the optimal
relaxation parameter ω that we mention below.

Theorem 18 Let ‖A−1‖ < 1. Suppose that all eigenvalues of DA−1 are real
for any diagonal matrix D with diagonal elements of ±1 or 0. Then, the SOR-
like method is convergent for 0 < ω ≤ 1.

Other Approaches. Dong et al. [16] proposed a new SOR-like method based on
the transformation to an equivalent system double-sized system. Another block
reformulation was considered by Li and Wu in [55]. Ke [44] also reformulated
the AVE as a double-sized system and proposed a combination of the Picard
and SORmethods. Yu et al. [135] modified this method to improve convergence
properties. Zheng [140] considered a method combining the ideas of the Picard-
HSS iterations and the SOR method.

4.5 Matrix Splitting Methods

Matrix splitting methods are iterative techniques used to solve systems of lin-
ear equations. They involve decomposing a given matrix into a sum of matrices,
typically an easily invertible one and a matrix with desirable properties. By
iteratively applying this splitting and updating an initial guess, these methods
aim to converge to the solution of the linear system. In this subsection, we will
review some of them that are applied to solving the AVE and GAVE.

The general scheme proposed by Zhou et al. [142] expresses matrix A as
A = M −N and the AVE as

(M +Ω)x = (N +Ω)x + |x|+ b,

where Ω ∈ Rn×n is an arbitrary matrix. The iterations then take the form as
presented in Algorithm 8.
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Algorithm 8 Newton-based matrix splitting iterative method

Let Ω ∈ Rn×n be arbitrary, and A = M − N a splitting such that Ω + M is nonsingu-
lar.

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: put xk+1 := (M +Ω)−1((N +Ω)xk + |xk|+ b)
4: if xk+1 solves AVE to a given accuracy then

5: return solution xk+1

6: end if

7: end for

Notice that the case with M = A and Ω = N = 0 reduces to the standard
Picard method (Algorithm 5). The case with M = A and N = 0 is the
generalization of the Picard method discussed in (36).

The convergence of Algorithm 8 is stated in the following theorem. Partic-
ularly for the case of standard Picard metod (M = A and Ω = N = 0), we
obtain the condition ρ(|A−1|) < 1, which is the same as that in Theorem 15.

Theorem 19 Let A ∈ Rn×n and A = M − N be its splitting. Suppose that
the matrix M +Ω is nonsingular, where Ω ∈ Rn×n is given matrix. If

ρ
(

|(M +Ω)−1(N +Ω)|+ |(M +Ω)−1B|
)

< 1,

then Algorithm 8 is convergent.

Another convergence result focuses on positive definite matrices. Note that
the case with M = A and Ω = N = 0 yields the condition ‖A−1‖ < 1.

Theorem 20 Let A be positive definite and A = M − N its splitting, where
M is positive definite. If matrix Ω has positive diagonal and

‖M−1‖ <
1

‖Ω‖2 + ‖Ω +N‖2 + ‖B‖2
,

then Algorithm 8 is convergent.

For linear systems, matrix splittings often split the matrix into lower and
upper diagonal parts. Let D,E and F be the diagonal, strictly lower triangular
and strictly upper triangular matrices constructed from A such that A =
D − E − F , then the AVE takes the form

(D − E)x − |x| = Fx+ b.

This is the base for the adaptation of the Gauss-Seidel method to the case of
the AVE, as was done by Edalatpour et al. [18]. The iterations then read as

(D − E)xk+1 − |xk+1| = Fxk + b, k = 0, 1, . . . (38)

They assumed that the diagonal entries of A are greater than one. The method
is described in Algorithm 9; we present it in a slightly different fashion.
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Algorithm 9 Generalized Gauss-Seidel iteration method

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: for i = 0, 1, . . . , n do

4: put s := bi −
∑i−1

j=1 aijx
k+1
j −

∑n
j=i+1 aijx

k
j

5: if s ≥ 0 then

6: put xk+1
i

:= s
aii−1

7: else

8: put xk+1
i

:= s
aii+1

9: end if

10: end for

11: if xk+1 solves AVE to a given accuracy then

12: return solution xk+1

13: end if

14: end for

They also considered the Gauss-Seidel iteration method to solve a pre-
conditioned AVE and suggested an efficient preconditioner to expedite the
convergence rate of the method when matrix A is a Z-matrix. For this reason,
they transformed the AVE into a preconditioned system in the form of GAVE

PβAx− Pβ |x| = Pβb, (39)

where Pβ = D + βF . The Generalized Gauss–Seidel iteration method corre-
sponding to the preconditioned system is described in Algorithm 10.

Algorithm 10 Preconditioned generalized Gauss–Seidel

Let PβA = D̃ − Ẽ − F̃ be the splitting to the diagonal, strictly lower and upper triangular
matrices.

1: pick x0 ∈ Rn arbitrarily
2: for k = 0, 1, . . . do

3: solve the following system for xk+1,

D−1(D̃ − Ẽ)xk+1 − |xk+1| = βD−1F |xk|+D−1F̃ xk +D−1Pβb

4: if xk+1 solves AVE to a given accuracy then

5: return solution xk+1

6: end if

7: end for

Other Approaches. He et al. [31] proposed a method based on Hermitian and
skew-Hermitian splitting, a sort of variant to the Picard–HSS iteration method
(Algorithm 6). Shams et al. [117] proposed a novel approach called block split-
ting; it encompasses the Picard iterative method as a specific instance and
closely relates with the SOR-like iterations. Based on the shift splitting tech-
nique, Wu and Li in [125] proposed a special iteration method, which was
obtained by reformulating the AVE equivalently as a two-by-two block non-
linear equation. Based on the mixed-type splitting idea for solving a linear
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Algorithm 11 The sign accord algorithm

1: s := sgn(A−1b)
2: x := (A−B diag(s))−1b

3: p := 0 ∈ Rn

4: while skxk < 0 for some k do

5: k := min{i : sixi < 0}
6: pk := pk + 1
7: if log2(pk) > n− k then

8: return [A− |B|, A+ |B|] is not regular
9: end if

10: sk := −sk
11: x := (A− B diag(s))−1b

12: end while

13: return solution x

system of equations, a new algorithm for solving the AVE was presented by
Fakharzadeh and Shams in [19]. This algorithm utilizes two auxiliary matrices,
which were limited to be nonnegative strictly lower triangular and nonnegative
diagonal matrices. It was shown that by a suitable choice of the auxiliary ma-
trices, the convergence rate of this algorithm outperforms standard variants of
the Picard, generalized Newton, and SOR-like methods. Picard conjugate gra-
dient algorithm was proposed by Lv and Ma [59]; convergence was proved for
a symmetric positive definite matrix A under the assumption of ‖A−1‖2 < 1.

To avoid solving the linear systems at each iteration exactly, Yu et al. [134]
developed an inexact version of the matrix splitting iteration method.

For matrix AVE in the form AX +B|X | = C, Dehghan and Shirilord [15]
developed a Picard-type matrix splitting iteration method.

4.6 Other Methods

In this section, we present methods that approach to solving the AVE or
GAVE in a different way. The fact that we mention them in this section does
not mean that they are marginal. On the contrary, it turned out that they are
very efficient in solving certain types of problems.

The Sign Accord Algorithm. This algorithmwas originally introduced by Rohn [97]
for computing the particular vertices of the convex hull of the solution set of
interval linear equations. Later, Rohn [100] adapted it to solve a more general
class of GAVE systems Ax−B|x| = b.

The scheme of the method is presented in Algorithm 11. The underlying
idea is that we try to find an agreement between a candidate solution x and
a sign vector s; in that case, we have a solution of the Gthe AVE (recall that
once we know the sign s of the solution, then we are done; the solution is
x = (A−B diag(s))−1b). For each iteration, Algorithm 11 switches the sign of
one entry until we have a solution or exceed the number of iterations.

The algorithm terminates in a finite number of steps. It either finds a
unique solution of the GAVE or states that interval matrix [A− |B|, A+ |B|]
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is not regular. By Theorem 10, the latter means that the GAVE system Ax−
B′|x| = b′ has not a unique solution (in fact, has infinitely many solutions) for
some |B′| ≤ |B| and b′ ∈ Rn. The case where [A− |B|, A+ |B|] is not regular
is identified either by singularity of A or A − B diag(s) or by a high number
of iterations (log2(pk) > n − k). Later, Rohn [102] improved the algorithm
such that it always returns a singular matrix S ∈ [A − |B|, A + |B|] in case
[A− |B|, A+ |B|] is not regular.

Let us give some practical details. The choice of sign vector s in step 1
is optional; the proposed choice is a heuristic supported by numerical ex-
periments. To avoid solving a system of equations from scratch, the original
Rohn’s method utilizes the Sherman–Morrison formula for x in step 11; indeed,
the matrix change has rank one. The algorithm demonstrates remarkable effi-
ciency, averaging approximately 0.11 · n iterations per example.

Signed Gaussian elimination. Radons [92] proposed a modified Gaussian
elimination to solve the GAVE in the form x − B|x| = b, that is, the GAVE
with A = In. The key observation is that if ‖B‖∞ < 1, then there is i such
that the sign of bi coincides with the sign of x∗

i , where x
∗ is the unique solution

of the system. Such i can be hard to identify in general; however, there are
certain classes of problems for which we can take any i maximizing the value
of |b|i. There were found the following classes having this property (the last
one was proved in [93]):

1. ‖B‖∞ < 1
2 ,

2. B is irreducible and ‖B‖∞ ≤ 1
2 ,

3. B is strictly diagonally dominant and ‖B‖∞ ≤ 2
3 ,

4. |B| is symmetric and tridiagonal, n ≥ 2, and ‖B‖∞ < 1.

Once we identify such index i, we can replace |x|i with xi and perform one
step of full-step Gaussian elimination. The above conditions also remain valid
for the reduced matrix after the elimination step. Therefore, one can proceed
further and complete the Gaussian elimination. The computational cost is
cubic, as for the classical Gaussian elimination. The cost of a tridiagonal matrix
B corresponds to sorting n floating point numbers.

Metaheuristics. Since the AVE is generally an intractable problem, we can-
not hope for an exact and efficient algorithm to solve the AVE in higher di-
mensions. That is what motivates the study and use of various heuristics and
metaheuristics.

Mansoori et al. [69] designed an efficient neural network model to provide
an analytical solution for the AVE. The model is based on the equivalence of
the AVE and the linear complementarity problem. They proved the stability
of the model using the Lyapunov stability theory and demonstrated global
convergence.

For the AVE with possibly multiple solutions, Moosaei et al. [77] proposed
and implemented a simulated annealing algorithm.

Transformation to other problems. We saw in Section 2.2 that the AVE is
equivalent to the linear complementarity problem (LCP), so in principle, we
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can solve the AVE by using this transformation employing any solver for the
LCP.

Another possible reduction is to mixed-integer linear programming, for
which efficient solvers now exist. In Section 2.3, we presented some reformu-
lations.

All solutions. Rohn [103] proposed an algorithm to generate all (finitely
many) solutions of the GAVE system Ax−B|x| = b. It succeeds if and only if
matrix A−B diag(s) is nonsingular for each s ∈ {±1}; this condition ensures
that there are finitely many solutions, see Proposition 13. For matrix updates,
it utilizes the Sherman–Morrison formula so that there is no need to solve a
system of equations in each step. However, the algorithm is exponential since
it processes all orthants. To reduce the number of orthants to be processed,
various bounds of the overall solution set can be employed (see Section 2.4.1).
The experiments by Hlad́ık [33] showed that for random data using certain
bounds, the orthant reduction is tremendous.

Others. Mansoori and Erfanian [68] proposed a dynamic system model
based on the projection function, enabling the AVE’s analytic solution.

Yong at el. [133] and Achache and Hazzam in [1] reformulated the AVE
as a linear complementarity problem and then applied an interior point algo-
rithm to solve it. Designing a suitable interior point algorithm for the original
formulation seems not to have been investigated deeply so far.

The homotopy perturbation method is a method designed for solving non-
linear problems. This method gives the solution in an infinite series, converging
to an accurate solution under some assumptions. Moosaei et al. [78] modified
the homotopy perturbation method to solve the AVE.

In [131], a modified Barzilai–Borwein algorithm tailored for addressing the
GAVE was introduced. The distinct advantage of this algorithm lies in its
avoidance of solving subproblems and the unnecessary requirement of gradi-
ent information from the objective function during iterative sequences. The
paper established the global convergence of the proposed algorithm under ap-
propriate assumptions.

5 Further Aspects of the AVE

This section reviews other aspects of the AVE regarding solutions, solvability
and relations to other areas.

5.1 Minimum Norm Solutions for Absolute Value Equation

If the solution set of the AVE is nonempty, it may have a finite number of
solutions (at most 2n) or infinitely many solutions. In such cases, selecting a
particular solution may be important, and a natural choice is a solution with
the minimum norm; cf. [110].
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The minimum norm solution problem can be formulated as the optimiza-
tion problem

min
x∈Rn

‖x‖2 s.t. Ax− |x| = b.

To solve it, Ketabchi and Moosaei [47] transformed the problem to an uncon-
strained optimization problem with a once differentiable objective function;
for this problem one, they proposed an extension of Newton’s method with
the step size chosen by the Armijo rule. In contrast, Ketabchi and Moosaei [48]
investigated this model when 1-norm is used instead of the Euclidean norm.
Despite the theoretical complexity, their numerical experiments demonstrated
convergence to high accuracy in a few of iterations.

5.2 Sparse Solution of Absolute Value Equation

Finding a sparse solution to a system is a well-motivated problem. This NP-
hard problem, which refers to an optimization problem involving the zero-
norm in objectives or constraints, is a nonconvex and nonsmooth optimization
problem. Liu et al. [57] focused on the problem of finding the sparse solution
of the AVE, which could be expressed as follows:

min ‖x‖0 s.t. Ax− |x| = b,

where the zero-norm ‖x‖0 = is defined as the number of nonzero entries in x;
recall that it is not a real vector norm. They proposed an algorithm based on
a concave programming relaxation, whose main part was solving a series of
linear programming problems.

5.3 Optimal Correction of an Infeasible System of Absolute Value Equation

Numerous reasons for the infeasibility of a system, including errors in data,
errors in modeling, and many other reasons, can be argued. Because the re-
modeling of a problem, finding its errors, and generally removing its obstacles
to feasibility might require a considerable amount of time and expense and
might result in yet another infeasible system, researchers are reluctant to do
so. Researchers, therefore, focused on the optimal correction of the given sys-
tem, where optimality means the least changes in data.

Ketabchi and Moosaei [46] considered minimal correction in the right-hand
side vector b. This leads to the optimization problem

min
x∈Rn

‖Ax− |x| − b‖2. (40)

Its optimal solution x∗ is the solution of the corrected AVE, and the cor-
responding corrected right-hand side b′ reads as b′ = Ax∗ − |x∗|. To solve
problem (40), they adopted a generalized Newton method.
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Ketabchi et al. [49] extended the result to the case of correction in both the
coefficient matrix and the right-hand side vector. The problem is formulated
as the optimization problem

min
x,R,r

‖(R | r)‖F s.t. (A+R)x− |x| = b+ r, (41)

where ‖ ·‖F denotes the Frobenius norm. It was shown that the problem could
be reduced to the nonconvex fractional problem

min
x∈Rn

‖Ax− |x| − b‖2
1 + ‖x‖2 . (42)

If x∗ is its optimal solution, then the minimum correction values are

R := −Ax∗ − |x∗| − b

1 + ‖x‖2 (x∗)⊤, r := −Ax∗ − |x∗| − b

1 + ‖x‖2 .

To solve the optimization problem (42), Ketabchi et al. [49] designed a genetic
algorithm. Moosaei at el. [76] proposed several methods, including an exact but
time-consuming orthant enumeration method, a variation of Newton’s method,
and a lower bound approximation based on the reformulation-linearization
technique.

Since solving problem (42) sometimes leads to solutions with very large
norms that are practically impossible to use, Moosaei at el. [79] utilized Tikhonov
regularization to control the norm of the resulting vector. Hashemi and Ketabchi [30]
considered the infeasible GAVE and proposed an exact regularization method
in the form

min
x∈Rn

‖Ax−B|x| − b‖2
1 + ‖x‖2 + λ‖x‖pp,

where λ > 0 is a parameter. They proposed a DC (difference of convex func-
tions) algorithm to solve it. In the following study, Hashemi and Ketabchi [29]
used the classical Dinkelbach’s transform to handle the fractional objective
function, and they also applied the smoothing functions to write it as a smooth
problem.

Moosaei at el. [76] extended formula (42) to other norms. If we employ the
spectral norm in (41), then the formula remains the same. If we employ the
Chebyshev (component-wise maximum) norm in (41), then the formula takes
the form

min
x∈Rn

‖Ax− |x| − b‖∞
1 + ‖x‖1

.

Notice that the minimum in (42) may or may not be achieved. Moosaei at
el. [76] derived some sufficient conditions for the existence of the minimum.
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5.4 Error Bounds

In fact, most of the methods to solving the AVE compute only an approximate
solution x∗ such that Ax∗−|x∗| ≈ b. This is due to the essence of the iterative
methods and because of the rounding errors of the floating-point arithmetic.
A small residual value, i.e., ‖Ax∗ − |x∗| − b‖ < ε, does not guarantee that x∗

is close to the true solution. That is why we need some error bounds.
Verification [112] is a technique that calculates numerically rigorous bounds

for an approximate solution. To this end, methods of interval computations
are often used. For the AVE, a verification algorithm was proposed by Wang
et al. [121]; it is based an an iterative ǫ-inflation method to obtain an interval
enclosure containing the unique solution. The width of this interval serves
as an error estimate then. Another verification techniques based on interval
methods were proposed by Wang et al. [122, 123].

Classical-type error bounds were studied by Zamani and Hlad́ık [137]. Let
[A − In, A + In] be regular and x∗ the unique solution of the AVE. Ten for
every x ∈ Rn we have

‖x− x∗‖ ≤ c(A) · ‖Ax− |x| − b‖,

where

c(A) = max
|D|≤In

‖(A−D)−1‖

is the proposed condition number for the AVE. A finite reduction is known:
the value c(A) is achieved for D such that |D| = In. When matrix p-norm is
used, the condition number is NP-hard to compute for p ∈ {1,∞}, and the
complexity is unknown for p = 2.

Besides this, also a relative condition number was introduced in the form

c∗(A) = max
|D|≤In

‖(A−D)−1‖ · max
|D|≤In

‖A−D‖.

If b 6= 0, then the relative error bounds

c∗(A)−1 ‖Ax− |x| − b‖
‖b‖ ≤ ‖x− x∗‖

‖x∗‖ ≤ c∗(A)
‖Ax − |x| − b‖

‖b‖

are valid. Zamani and Hlad́ık [137] also showed how to utilize the error bounds
in proving convergence results for the generalized Newton and Picard methods.

5.5 Relation to Interval Analysis

There is a close connection between the AVE/GAVE and interval analysis. We
already noticed the usage of interval matrices in expressing the conditions for
the unique solvability of the AVE (Theorem 3) and the GAVE (Theorem 8).
In this section, we look into other relations, particularly the relation of the
AVE/GAVE with interval systems of linear equations.
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GAVE in the Context of Interval Analysis. Let [A,A] = [Ac − A∆, Ac + A∆]
be an interval matrix of size n × n and [b, b] = [bc − b∆, bc + b∆] an interval
vector of length n (see the notation on page 2). Then, an interval system of
linear equations [80] is the set of systems

Ax = b, where A ∈ [A,A], b ∈ [b, b].

In short we often write [A,A]x = [b, b]. The solution set is defined as

Σ = {x : Ax = b, A ≤ A ≤ A, b ≤ b ≤ b}.

That is,Σ is the set of all solutions of all realizations of the system of equations.
The solution set has a complicated structure, similar to the AVE in a certain
aspect. The set Σ need not be convex, but in any orthant, it forms a convex
polyhedron. Hence, Σ may consist of a union of up to 2n convex polyhedra.

When [A,A] is regular, the solution set is connected. In this case, Rohn [97]
discovered that the most important points of Σ, the vertices of its convex hull
convΣ, are solutions of special GAVEs.

Theorem 21 If [A,A] is regular, then

convΣ = {xs : s ∈ {±1}n},

where xs is the unique solution of the GAVE

Acx− diag(s)A∆|x| = b∆ + diag(s)b∆. (43)

Indeed, due to regularity of [A,A], the GAVE (43) has a unique solution
(see Theorem 7). To solve the GAVE, Rohn also proposed a so-called sign
accord algorithm; see Algorithm 11 for a generalized version.

GAVE systems also appear in different characterizations of the regularity of
interval matrices. Rohn [101] surveyed 40 necessary and sufficient conditions
for regularity, and many of them have the form of the GAVE. We do not
present all of them; as a teaser we chose just one: Interval matrix [A,A] is
regular if and only if for each s ∈ {±1}n, the GAVE

Acx− diag(s)A∆|x| = s

has a solution.

GAVE by Means of Interval Systems. Absolute value systems appear often in
the context of interval linear equations. The opposite direction, i.e., to express
the solution set of the AVE or GAVE by means of an interval system, is less
common and less studied but still possible.

Consider an interval system of linear inequalities [A,A]x ≤ [b, b], which is
a shortage for the family

Ax ≤ b, where A ∈ [A,A], b ∈ [b, b].
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There are two basic types of solutions associated to it [99]. A vector x is a
weak [strong] solution if it satisfies the system Ax ≤ b for some [for every]
A ∈ [A,A] and b ∈ [b, b]. Weak solutions are characterized by the Gerlach
theorem as [24, 99]

Acx−A∆|x| ≤ b, (44)

whereas the strong solutions are described by the system

Acx+A∆|x| ≤ b. (45)

Now, we rewrite the AVE equivalently as double inequalities

Ax− |x| ≤ b, −Ax+ |x| ≤ −b.

By (44), the former characterizes the weak solutions of the interval system
[A − In, A + In]x ≤ b. By (45), the latter inequality characterizes the strong
solutions of the interval system −[A− In, A+ In]x ≤ −b. To sum up, we have
the following statement [37]; we use ∃ and ∀ quantifiers to denote weak and
strong solutions, respectively.

Proposition 25 The AVE system Ax − |x| = b is equivalent to the interval
system of linear inequalities

[A− In, A+ In]
∃x ≤ b, [A− In, A+ In]

∀x ≥ b.

Notice that by swapping the quantifiers, the interval system

[A− In, A+ In]
∀x ≤ b, [A− In, A+ In]

∃x ≥ b.

then characterizes a different AVE, namely Ax+ |x| = b.

6 Challenges and Open Problems

Despite this considerable success and papers published, many challenges and
critical questions remain unanswered. In this section, we attempt to highlight
some of the main issues concerning the AVE and GAVE from different per-
spectives and outline some open problems and future research directions.

Complexity. Since the AVE is an NP-hard problem, it would be desirable to
identify more polynomially solvable sub-problems. The techniques from pa-
rameterized complexity can help here, too; the complexity could be parame-
terized by a suitable characteristic such as the rank of the constraint matrix.

Overdetermined and Underdetermined AVE. In this paper, we considered merely
the square AVE and GAVE, that is, absolute value systems of n equations
with n variables. Overdetermined and underdetermined systems can appear,
too. For instance, in the proof of Theorem 1, the reduction from the Set-
Partitioning problem first resulted in an overdetermined GAVE system of n+1
equations with n variables. To the best of our knowledge, nonsquare AVE and
GAVE have been almost untouched so far.
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Absolute Value Inequalities. There is a natural step from absolute value equa-
tions to absolute value inequalities. While the inequality system Ax+ |x| ≤ b
describes a convex polyhedron a thus it is easy to deal with it in many aspects,
the inequality system Ax + |x| ≥ b is again tough.

Absolute value inequalities often appear in the area of interval systems of
linear equations and inequalities (see Section 5.5). Recall that the weak and
strong solutions of an interval system of linear inequalities [A,A]x ≤ [b, b] are
characterized by (44) and (45), respectively. Analogously, the weak solutions
of an interval system of linear equations [A,A]x = [b, b] are described by an
absolute value system [84, 99]

Acx−A∆|x| ≤ b, Acx+A∆|x| ≥ b,

Most of what is known about absolute value inequalities was derived in
the context of interval linear systems. However, there are also few independent
results [35], and surely there is room for deeper insights.

Absolute Value Programming. Absolute value programming was introduced by
Mangasarian [61] and refers to mathematical programming problems involving
absolute values. There have not been many results in this direction [35]; the
efforts have been expended primarily on absolute value equations.

There are, however, problems leading to linear programs with absolute
values. We mention briefly a problem arising in interval linear programming.
Consider a linear program

f(A, b, c) = min c⊤x s.t. Ax ≤ b,

and suppose that matrix A and vectors b and c come from an interval matrix
[A,A] and interval vectors [b, b] and [c, c], respectively. The best and worst-case
optimal values are defined, respectively, as

f := min f(A, b, c) s.t. A ∈ [A,A], b ∈ [b, b], c ∈ [c, c],

f := max f(A, b, c) s.t. A ∈ [A,A], b ∈ [b, b], c ∈ [c, c].

These values can be expressed by means of an absolute value linear pro-
grams [32]

f = min (cc)⊤x− (c∆)⊤|x| s.t. Acx−A∆|x| ≤ b, (46)

f = min (cc)⊤x+ (c∆)⊤|x| s.t. Acx+A∆|x| ≤ b. (47)

We cannot easily simplify (46) since it was proved [22] that computing f is an
NP-hard problem. On the other hand, (47) can be reformulated as an ordinary
linear program

f = min (cc)⊤x+ (c∆)⊤y s.t. Acx+A∆y ≤ b, −y ≤ x ≤ y.
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Tensor Absolute Value Equations. In recent years, tensor absolute value equa-
tions have gained increasing attention. So far, researchers have considered
various special tensor classes; they derived sufficient conditions for solvability
and uniqueness and proposed numerical methods [2, 13, 14, 17, 42]. Neverthe-
less, there are many open problems and challenging directions. For example, a
complete characterization of unique solvability is still unknown, even for those
particular tensor absolute value equations having special structures.

Robust Solutions for the AVE and GAVE. In the realm of (generalized) abso-
lute value equations, an open problem that warrants exploration is the devel-
opment of robust solution methodologies that can effectively handle uncertain
data.

The challenge lies in extending the theory and algorithms for AVE and
GAVE to accommodate uncertainty in the coefficients and constants of the
equations. Robust solutions should provide stable results even when the data
is subject to variations or perturbations within known uncertainty bounds.

In this regard, few results are known for absolute value equations. For
systems with interval data, Raayatpanah et al. [91] proposed a robust opti-
mization approach to solve it, and [36] investigated its (unique) solvability
and the overall solutions set. Robust solution models for systems with data
uncertainty in ℓ1 and ℓ∞ norms were addressed in Lu et al. [58].

One key aspect to consider is the characterization and tight approxima-
tion of the set of feasible solutions for uncertain AVE and GAVE. Robust
optimization techniques can be employed to identify solutions that remain
valid under a range of uncertainty scenarios, ensuring stability and feasibility
across different problem instances.

Additionally, the computational complexity of solving robust AVE and
GAVE should be studied. Efficient algorithms that can handle uncertainty
while maintaining acceptable computational performance are essential for prac-
tical applications.

Furthermore, developing robust solution methods for the AVE and GAVE
that are amenable to scalable implementations is crucial. This would enable
the application of these techniques to large-scale real-world problems, such as
those encountered in engineering, finance, and machine learning.

Comparing Solution Methods for the AVE. One of the significant challenges in
studying absolute value equations lies in comparing the performance of existing
solution methods. Conducting comprehensive comparisons regarding accuracy,
computational time, complexity, and effectiveness under specific conditions on
real data or randomly generated problems can provide valuable insights. So
far, no thorough numerical study and a comprehensive comparison of different
methods has been carried out.

Comparing the performance of various solution methods can help identify
the strengths and weaknesses of each approach and provide guidelines for
selecting the most suitable method for different scenarios. It allows researchers
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and practitioners to assess the trade-offs between accuracy and computational
efficiency, enabling informed decision-making in practical applications.

Additionally, exploring the behavior and robustness of different solution
methods under special conditions, such as ill-conditioned systems or highly
sparse matrices, can reveal their limitations and highlight areas for improve-
ment. These investigations can lead to the development of enhanced algorithms
that offer superior performance in challenging problem instances.

Incorporating Sparsity in Complexity Bounds for AVE Algorithms. Practical
optimization algorithms commonly leverage matrix sparsity for enhanced effec-
tiveness. However, conventional complexity bounds often overlook the explicit
consideration of matrix sparsity, particularly in the context of the AVE. The
open problem addresses the need to develop a complexity bound for an algo-
rithm that explicitly incorporates the sparsity of matrices in AVE scenarios.

This challenge is significant, as the existing connection between sparsity
and the computational complexity of solving a single system of linear equa-
tions, especially in the context of AVE, is yet to be conclusively established [87].
To tackle this open problem, future research could explore innovative method-
ologies to bridge the gap between sparsity-aware algorithms and complexity
analyses. By doing so, researchers aim to establish a nuanced understanding
of how sparsity and complexity interact in AVE scenarios. Addressing this
open problem could lead to the development of more effective and tailored
algorithms, ultimately enhancing the optimization of systems involving sparse
matrices, particularly in the context of the AVE.
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