
An end-to-end attention-based approach for learning on graphs
David Buterez1, Jon Paul Janet2, Dino Oglic3, and Pietro Liò1

1Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
2Molecular AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden

3Centre for AI, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

Abstract
There has been a recent surge in transformer-based architectures for learning on graphs, mainly motivated
by attention as an effective learning mechanism and the desire to supersede handcrafted operators
characteristic of message passing schemes. However, concerns over their empirical effectiveness, scalability,
and complexity of the pre-processing steps have been raised, especially in relation to much simpler graph
neural networks that typically perform on par with them across a wide range of benchmarks. To tackle
these shortcomings, we consider graphs as sets of edges and propose a purely attention-based approach
consisting of an encoder and an attention pooling mechanism. The encoder vertically interleaves masked
and vanilla self-attention modules to learn an effective representations of edges, while allowing for tackling
possible misspecifications in input graphs. Despite its simplicity, the approach outperforms fine-tuned
message passing baselines and recently proposed transformer-based methods on more than 70 node and
graph-level tasks, including challenging long-range benchmarks. Moreover, we demonstrate state-of-the-art
performance across different tasks, ranging from molecular to vision graphs, and heterophilous node
classification. The approach also outperforms graph neural networks and transformers in transfer learning
settings, and scales much better than alternatives with a similar performance level or expressive power.

1 Introduction
We investigate empirically the potential of a purely attention-based approach for learning effective representa-
tions of graph structured data. Typically, learning on graphs is modelled as message passing – an iterative
process that relies on a message function to aggregate information from a given node’s neighbourhood and
an update function to incorporate the encoded message into the output representation of the node. The
resulting graph neural networks (GNNs) typically stack multiple such layers to learn node representations
based on vertex rooted sub-trees, essentially mimicking the one-dimensional Weisfeiler–Lehman (1-WL) graph
isomorphism test [1, 2]. Variations of message passing have been applied effectively in different fields such as
life sciences [3–8], electrical engineering [9], and weather prediction [10].

Despite the overall success and wide adoption of graph neural networks, several practical challenges have
been identified over time. While the message passing framework is highly flexible, the design of new layers
is a challenging research problem where improvements take years to achieve and often rely on hand-crafted
operators. This is particularly the case for general purpose graph neural networks that do not exploit
additional input modalities such as atomic coordinates. For instance, principal neighbourhood aggregation
(PNA) is regarded as one of the most powerful message passing layers [11], but it is built using a collection of
manually selected neighbourhood aggregation functions, requires a dataset degree histogram which must be
pre-computed prior to learning, and further uses manually selected degree scaling. The nature of message
passing also imposes certain limitations which have shaped the majority of the literature. One of the most
prominent examples is the readout function used to combine node-level features into a single graph-level
representation, and which is required to be permutation invariant with respect to the node order. Thus, the
default choice for graph neural networks and even graph transformers remains a simple, non-learnable function
such as sum, mean, or max [12–14]. Limitations of this approach have been identified by Wagstaff et al. [15],
who have shown that simple readout functions might require complex item embedding functions that are
difficult to learn using standard neural networks. Additionally, graph neural networks have shown limitations
in terms of over-smoothing [16], linked to node representations becoming similar with increased depth, and
over-squashing [17] due to information compression through bottleneck edges. The proposed solutions typically
take the form of message regularisation schemes [18–20]. However, there is generally no consensus on the
right architectural choices for building effective deep message passing neural networks. Transfer learning and
strategies like pre-training and fine-tuning are also less ubiquitous in graph neural networks because of modest
or ambiguous benefits, as opposed to large language models [21].

The attention mechanism [22] is one of the main sources of innovation within graph learning, either by
directly incorporating attention within message passing [23, 24], by formulating graph learning as a language
processing task [25, 26], or by combining vanilla GNN layers with attention layers [12, 13, 27, 28]. However,
several concerns have been raised regarding the performance, scalability, and complexity of such methods.

1

ar
X

iv
:2

40
2.

10
79

3v
2

 [
cs

.L
G

]
 6

 D
ec

 2
02

4

Performance-wise, recent reports indicate that sophisticated graph transformers underperform compared to
simple but tuned GNNs [29, 30]. This line of work highlights the importance of empirically evaluating new
methods relative to strong baselines. Separately, recent graph transformers have focused on increasingly
more complex helper mechanisms, such as computationally expensive pre-processing and learning steps [25],
various different encodings (e.g., positional, structural, and relational) [25–27, 31], inclusion of virtual nodes
and edges [25, 28], conversion of the problem to natural language processing [25, 26], and other non-trivial
graph transformations [28, 31]. These complications can significantly increase the computational requirements,
reducing the chance of being widely adopted and replacing GNNs.

Motivated by the effectiveness of attention as a learning mechanism and recent advances in efficient and exact
attention, we introduce an end-to-end attention-based architecture for learning on graphs that is simple to
implement, scalable, and achieves state-of-the-art results. The proposed architecture considers graphs as
sets of edges, leveraging an encoder that interleaves masked and self-attention mechanisms to learn effective
representations. The attention-based pooling component mimics the functionality of a readout function and it
is responsible for aggregating the edge-level features into a permutation invariant graph-level representation.
The masked attention mechanism allows for learning effective edge representations originating from the graph
connectivity and the combination with self-attention layers vertically allows for expanding on this information
while having a strong prior. Masking can, thus, be seen as leveraging specified relational information and its
vertical combination with self-attention as a means to overcome possible misspecification of the input graph.
The masking operator is injected into the pairwise attention weight matrix and allows only for attention
between linked primitives. For a pair of edges, the connectivity translates to having a shared node between
them. We focus primarily on learning through edge sets due to empirically high performance, and refer to our
architecture as edge-set attention (ESA). We also demonstrate that the overall architecture is effective for
propagating information across nodes through dedicated node-level benchmarks. The ESA architecture is
general purpose, in the sense that it only relies on the graph structure and possibly node and edge features,
and it is not restricted to any particular domain. Furthermore, ESA does not use positional, structural,
relative, or similar encodings, it does not encode graph structures as tokens or other language (sequence)
specific concepts, and it does not require any pre-computations.

Despite its apparent simplicity, ESA-based learning overwhelmingly outperforms strong and tuned GNN
baselines and much more involved transformer-based models. Our evaluation is extensive, totalling 70 datasets
and benchmarks from different domains such as quantum mechanics, molecular docking, physical chemistry,
biophysics, bioinformatics, computer vision, social networks, functional call graphs, and synthetic graphs. At
the node level, we include both homophilous and heterophilous graph tasks, as well as shortest path problems,
as these require modelling long-range interactions. Beyond supervised learning tasks, we explore the potential
for transfer learning in the context of drug discovery and quantum mechanics [32] and show that ESA is a
viable transfer learning strategy compared to vanilla GNNs and graph transformers.

2 Related Work
An attention mechanism that mimics message passing and limits the attention computations to neighbouring
nodes has been first proposed in GAT [23]. We consider masking as an abstraction of the GAT attention
operator that allows for building general purpose relational structures between items in a set (e.g., k-hop
neighbourhoods or conformational masks extracted from 3D molecular structures). The attention mechanism
in GAT is implemented as a single linear projection matrix that does not explicitly distinguish between keys,
queries, and values as in standard dot product attention and an additional linear layer after concatenating the
representations of connected nodes, along with a non-linearity. This type of simplified attention has been
labelled by subsequent work as static and was shown to have limited expressive power [24]. Brody et al.
instead proposed dynamic attention, a simple reordering of operations in GAT, resulting in a more expressive
GATv2 model [24] – however, at the price of doubling the parameter count and the corresponding memory
consumption. A high-level overview of GAT in the context of masked attention is provided in Figure 1, along
with the main differences to the proposed architecture. Similar to GAT, several adaptations of the original
scaled dot product attention have been proposed for graphs [33, 34], where the focus was on defining an
attention mechanism constrained by the node connectivity and replacing the positional encodings of the
original transformer model with more appropriate graph alternatives, such as Laplacian eigenvectors. These
approaches, while interesting and forward-looking, did not convincingly outperform simple GNNs. Building
up on this line of work, an architecture that can be seen as an instance of masked transformers has been
proposed in SAN [35], illustrated in Figure 2. Attention coefficients there are defined as a convex combination
of the scores (controlled by hyper-parameter γ) associated with the original graph and its complement. Min
et al. [36] have also considered a masking mechanism for standard transformers. However, the graph structure
itself is not used directly in the masking process as the devised masks correspond to four types of prior
interaction graphs (induced, similarity, cross neighbourhood, and complete sub-graphs), acting as an inductive
bias. Furthermore, the method was not designed for general purpose graph learning as it relies on helper
mechanisms such as neighbour sampling and a heterogeneous information network.

2

����
���

���������
������

n1

n2

n3 n4

n5

n6
n6

n5

n4

n3

n2

n1

������

�

�

softmax

leakyReLU

pairwise
concatenate

GAT attention

������

��
���������

��
���������

��
���������

��������

���������
������

GAT model

node
readout

� �

Figure 1: A high level overview of the GAT message passing algorithm [23]. Panel A: A GAT layer receives node representations
and the adjacency matrix as inputs. First a projection matrix is applied to all the nodes, which are then concatenated pairwise
and passed through another linear layer, followed by a non-linearity. The final attention score is computed by the softmax
function. Panel B: A GAT model stacks multiple GAT layers and uses a readout function over nodes to generate a graph-level
representation. Residual connections are also illustrated as a modern enhancement of GNNs (not included in the original
approach). GAT vs ESA: Our masked self-attention module relies on masking within classical scaled dot product attention
which comes with different projection matrices for keys, queries, and values. Additionally, we wrap the masked scaled dot product
attention with layer normalization and skip connections, the output of which is passed through an MLP. The latter is not done
classically in GAT as part of its attention modules nor in the overall architecture. In contrast to GAT that operates over nodes,
our masking operator is defined over sets of edges that are connected if they share a node in common. When it comes to the
readout, GAT uses sum, mean or max and aggregates over nodes whereas our architecture relies on pooling by multi-head
attention and aggregation over learned representations of seed vectors inherent to that module. In terms of the encoder that is
responsible for learning representations of set items, ours interleaves masked and self-attention layers vertically whereas in GATs
the stacked layers are entirely based on neighbourhood attention.

Recent trends in learning on graphs are dominated by architectures based on standard self-attention layers as
the only learning mechanism, with a significant amount of effort put into representing the graph structure
exclusively through positional and structural encodings. Graphormer [25] is one of the most prominent
approaches from this class. It comes with an involved and computation-heavy suite of pre-processing steps,
involving a centrality, spatial, and edge encoding. For instance, spatial encodings rely on the Floyd–Warshall
algorithm that has cubic time complexity in the number of nodes and quadratic memory complexity. Also,
the model employs a virtual mean-readout node that is connected to all other nodes in the graph. While
Graphormer has originally been evaluated only on four datasets, the results were promising relative to GNNs
and SAN. Another related approach is the Tokenized Graph Transformer (TokenGT) [26], which treats all the
nodes and edges as independent tokens. To adapt sequence learning to the graph domain, TokenGT encodes
the graph information using node identifiers derived from orthogonal random features or Laplacian eigenvectors,
and learnable type identifiers for nodes and edges. TokenGT is provably more expressive than standard GNNs,
and can approximate k-WL tests with the appropriate architecture (number of layers, adequate pooling, etc.).
However, this theoretical guarantee holds only with the use of positional encodings that typically break the
permutation invariance over nodes that is required for consistent predictions over the same graph presented
with a different node order. The main strength of TokenGT is its theoretical expressiveness, as it has only
been evaluated on a single dataset where it did not outperform Graphormer.

A route involving a hybrid between classical transformers and message passing has been pursued in the
GraphGPS framework [37], which combines message passing and transformer layers. As in previous works,
GraphGPS puts a large emphasis on different types of encodings, proposing and analysing positional and
structural encodings, further divided into local, global, and relative encodings. Exphormer [28] is an evolution
of GraphGPS that adds virtual global nodes and sparse attention based on expander graphs. While effective,
such frameworks do still rely on message passing and are thus not purely attention-based solutions. Limitations
include dependence on approximations (Performer [38] for both, expander graphs for Exphormer), and decreased
performance when encodings (GraphGPS) or special nodes (Exphormer) are removed. Notably, Exphormer is
the first approach from this class to consider custom attention patterns given by node neighbourhoods.

3 Methods
In this section, we provide a high-level overview of our architecture and describe the masked attention module
that allows for information propagation across edges as primitives. An alternative implementation for the
more traditional node-based propagation is also presented. The section starts with a formal definition of the
masked self-attention mechanism and then proceeds to describe our end-to-end attention-based approach for
learning on graphs, involving the encoder and pooling components (illustrated in Figure 3).

3

����������
��������
���������

����������
��������
���������

�

��������
������

 graph
complement

residual �	�

SAN attention

���
���������

����
���

��������
������

SAN model

node
readout���

���������
���

���������

� �

Figure 2: A high level overview of the SAN architecture [35]. Panel A: Two independent attention modules with a tied/shared
value projection matrix are used for the input graph and its complement. The outputs of these two modules are convexly
combined using a hyperparameter γ before being residually added to the input. Panel B: The overall SAN architecture that
stacks multiple SAN layers without residual connections, and uses a standard readout function over nodes. SAN vs ESA: What
is truly different in relation to this architecture is horizontal versus vertical combination of masked and self-attention. While it is
possible to set γ = 0 for some layers and γ = 1 for others, this avenue has never been explored in SAN and it would still result in
a slightly different encoder as the query and key projections are different for the input graph and its complement. The empirical
analysis in [35] also provides no insights relative to vertical combination of masked and self-attention, nor the impact of attention
pooling which is a differentiating factor and an important part of our architecture.

������
���������

	���

����
���

����
����

ESA model

��	�
���������

	���

��	�
���������

	���

������
���������

	���

���	����
�
��	������
���������

�

� �

�

�

Masked dot product attention

e1

e2

e3

e4
e5

e6

e7

q1

q2

q3

q4

q5

q6

q7

k1
k2
k3
k4
k5
k6
k7

v1
v2
v3
v4
v5
v6
v7

WQ WK WV

e7

e6

e5

e4

e3

e2

e1

softmax

Edge mask

left

right

�

Edge
set

Seed tensor Sk

�

� ����
��������
���������

If k > 1

Seed
readout���	������

��������
���������

������

s1
s2

.
.

sk-1
sk

�
���

��������
���������

������� ����

Self Attention Block (SAB)

�
����������
��������
���������

������� ����

Masked Attention Block (MAB)
Edge
mask

Pooling by Multi-Head Attention (PMA)

Figure 3: A high-level overview of Edge Set Attention and its main building blocks. Panel A: An illustration of masked
scaled dot product attention with edge inputs. Edge features derived from the edge set are processed by query, key, and value
projections as in standard attention. An additive edge mask, derived as in Algorithm 1, is applied prior to the softmax operator.
A mask value of 0 leaves the attention score unchanged, while a large negative value completely discards that attention score.
Panel B: The Pooling by Multi-Head Attention Block (PMA). A learnable set of seed tensors Sk is randomly initialised and
used as the query for a cross attention operation with the inputs. The result is further processed by Self Attention Blocks.
Panel C: The Self Attention Block (SAB), illustrated here with a pre-layer-normalization architecture. The input is normalised,
processed by self attention, then further normalised and processed by an MLP. The block uses residual connections. Panel
D: Illustration of the Masked (Self) Attention Block (MAB). The only difference compared to SAB is the edge mask, which
follows the computation outlined in Panel A. Panel E: An instantiation of the ESA model. Edge inputs are processed by various
different attention blocks, here in the order MSMSP, corresponding to masked, self, masked, self, and pooling attention layers.

3.1 Masked Attention Modules
We first introduce the basic notation and then give a formal description of the masked attention mechanism
with a focus on the connectivity pattern specific to graphs. Following this, we provide algorithms for an
efficient implementation of the masking operators using native tensor operations.

As in most graph learning settings, a graph is a tuple G = (N , E) where N represents the set of nodes (vertices),
E ⊆ N × N is the set of edges, and Nn = |N |, Ne = |E|. Nodes are associated with feature vectors ni of
dimension dn for all nodes i ∈ N , and de-dimensional edge features eij for all edges e ∈ E . The node features
are collected as rows in a matrix N ∈ RNn×dn , and similarly for edge features into E ∈ RNe×de . The graph

4

Algorithm 1: Edge masking in PyTorch Geometric (T is the transpose; helper functions are explained in SI 6).
1 from esa import consecutive, first unique index
2 function edge adjacency(batched edge index)
3 N e ← batched edge index.size(1)
4 source nodes ← batched edge index[0]
5 target nodes ← batched edge index[1]
6
7 # unsqueeze and expand
8 exp src ← source nodes.unsq(1).expand((-1, N e))
9 exp trg ← target nodes.unsq(1).expand((-1, N e))

10
11 src adj ← (exp src T(exp src)
12 trg adj ← (exp trg T(exp trg)
13 cross ← (exp src T(exp trg)) logical or
14 (exp trg T(exp src))
15
16 return (src adj logical or trg adj logical or cross)

17 function edge mask(b ei, b map, B, L)
18 mask ← torch.full(size=(B, L, L), fill=False)
19 edge to graph ← b map.index select(0, b ei[0, :])
20
21 edge adj ← edge adjacency(b ei)
22 ei to original ← consecutive(
23 first unique index(edge to graph), b ei.size(1))
24
25 edges ← edge adj.nonzero()
26 graph index ← edge to graph.idx select(0, edges[:, 0])
27 coord 1 ← ei to original.idx select(0, edges[:, 0])
28 coord 2 ← ei to original.idx select(0, edges[:, 1])
29
30 mask[graph index, coord 1, coord 2] ← True
31 return ∼mask

connectivity information can be represented as an adjacency matrix A, where Aij = 1 if (i, j) ∈ E and Aij = 0
otherwise. The edge list (edge index) representation is equivalent but more common in practice.

The main building block in ESA is masked scaled dot product attention. Panel A in Figure 3 illustrates this
attention mechanism schematically. More formally, this attention mechanism is given by

SDPA(Q, K, V, M) = softmax
(

QK⊤√
dk

+ M
)

V (1)

where Q, K, and V are projections of the edge representations to queries, keys, and values, respectively. This
is a minor extension of the standard scaled dot product attention via the additive mask M that can censor
any of the pairwise attention scores, and dk is the key dimension. The generalisation to masked multihead
attention follows the same steps as in the original transformer [22]. Below and in the specification of the
overall architecture, we refer to this function as MultiHead(Q, K, V, M).

Masked self-attention for graphs can be seen as graph-structured attention, and an instance of a generalized
attention mechanism with custom attention patterns [28]. More specifically, in ESA the attention pattern
is given by an edge adjacency matrix rather than allowing for interactions between all set items. Crucially,
the edge adjacency matrix can be efficiently computed both for a single graph and for batched graphs using
exclusively tensor operations. The case for a single graph is covered in the left side of Algorithm 1 through
the edge adjacency function. The first 3 lines of the function correspond to getting the number of edges,
then separating the source and target nodes from the edge adjacency list (also called edge index), which is
equivalent to the standard adjacency matrix of a graph. The source and target node tensors each have a
dimension equal to the number of edges (Ne). Lines 7-9 add an additional dimension and efficiently repeat
(‘expand’) the existing tensors to shape (Ne, Ne) without allocating new memory. Using the transpose, line 11
checks if the source nodes of any two edges are the same, and the same for target nodes on line 12. On line
13, cross connections are checked, where the source node of an edge is the target node of another, and vice
versa. The operations of lines 11-14 result in boolean matrices of shape (Ne, Ne) which are summed for the
final returned edge adjacency matrix. The right panel of Algorithm 1 depicts the case where the input graph
represents a batch of smaller graphs. This requires an additional batch mapping tensor that maps each node
in the batched graph to its original graph, and carefully manipulating the indices to create the final edge
adjacency mask of shape (B, L, L), where L is the maximum number of edges in the batch.

Since in ESA attention is computed over edges, we chose to separate source and target node features for each
edge, similarly to lines 4-5 of Algorithm 1, and concatenate them to the edge features:

xij = ni ∥ nj ∥ eij (2)

for each edge eij . The resulting features xij are collected in a matrix X ∈ RNe×(2dn+de).

Having defined the mask generation process and the masked multihead attention function, we next define the
modular blocks of ESA, starting with the Masked Self Attention Block (MAB):

MAB(X, M) = H + MLP(LayerNorm(H)) (3)
H = X + MultiHead(X, X, X, M) (4)
X = LayerNorm(X) (5)

where the mask M is computed as in Algorithm 1 and has shape B × L × L, with B the batch size, and MLP
is a multi-layer perceptron. A Self Attention Block (SAB) can be formally defined as:

SAB(X) = MAB(X, 0) (6)

In principle, the masks can be arbitrary and a promising avenue of research could be in designing new mask

5

Algorithm 2: Node masking in the PyTorch Geometric framework.
1 from torch geometric import unbatch edge index
2 function node mask(batched edge index, batch map, B, M)
3 # batched edge index batches all edge index tensors into a single tensor
4 # batch map maps nodes to graphs
5 # B, M are the batch, respectively mask size
6 mask ← torch.full(size=(B, M, M), fill=False)
7 graph idx ← batch map.index select(0, batched edge index[0, :])
8 edge index list ← unbatch edge index(batched edge index, batch map)
9 edge index ← torch.cat(edge index list, dim=1)

10 mask[graph idx, edge index[0, :], edge index[1, :]] ← True
11 return ∼mask

types. For certain tasks such as node classification, we also defined an alternative version of ESA for nodes
(NSA). The only major difference is the mask generation step. The single graph case is trivial as all the masking
information is available in the edge index, so we provide the general batched case in Algorithm 2.

3.2 ESA Architecture
Our architecture consists of two components: i) an encoder that interleaves masked and self-attention blocks
to learn an effective representation of edges, and ii) a pooling block based on multi-head attention, inspired
by the decoder component from the set transformer architecture [39]. The latter comes naturally when one
considers graphs as sets of edges (or nodes), as done here. ESA is a purely attention-based architecture that
leverages the scaled dot product mechanism proposed by Vaswani et al. [22] through masked- and standard
self-attention blocks (MABs and SABs) and a pooling by multi-head attention (PMA) block.

The encoder consisting of arbitrarily interleaved MAB and SAB blocks is given by:

Encoder(X, M) = AB ◦ AB ◦ · · · ◦ AB(X, M), where AB ∈ {MAB, SAB} (7)

Here, ‘AB’ refers to an attention block that can be instantiated as an MAB or SAB.

The pooling module that is responsible for aggregating the processed edge representations into a graph-level
representation is formally defined by:

PMAk,p(Z) = SABp
(
S + MLP(S)

)
(8)

S = LayerNorm (MultiHead (Sk, Z, Z, 0)) (9)

where Sk is a tensor of k learnable seed vectors that are randomly initialised and SABp(·) is the application
of p SABs. Technically, it suffices to set k = 1 to output a single representation for the entire graph. However,
we have empirically found it beneficial to set it to a small value, such as k = 32. Moreover, this change allows
self attention (SABs) to further process the k resulting representations, which can be simply summed or
averaged due to the small k. Contrary to classical readouts that aggregate directly over set items (i.e., nodes),
pooling by multi-head attention performs the final aggregation over the embeddings of learnt seed vectors
Sk. While tasks involving node-level predictions require only the Encoder component, the predictive tasks
involving graph-level representations require all the modules, both the encoder and pooling by multi-head
attention. The architecture in the latter setting is formally given by

Zout = PMAk,p(Encoder(X, M) + X)

As optimal configurations are task specific, we do not explicitly fix all the architectural details. For example, it
is possible to select between layer and batch normalisation, a pre-LN or post-LN architecture [40], or standard
and gated MLPs, along with GLU variants, e.g., SwiGLU [41].

3.3 Time and Memory Scaling
ESA is enabled by recent advances in efficient and exact attention, such as memory-efficient attention and
Flash attention [42–45]. Flash attention does not yet support masking, but memory-efficient implementations
with arbitrary masking capabilities exist in both PyTorch and xFormers [46, 47]. Theoretically, the memory
complexity of memory-efficient approaches is O(

√
n), where n is the sequence/set size, with the same time

complexity as standard attention. Since all operations in ESA except the cross-attention in PMA are based
on self-attention, our method benefits directly from all of these advances. Moreover, our cross-attention is
performed between the full set of size n and a small set of k ≤ 32 learnable seeds, such that the complexity of
the operation is O(kn) even for standard attention. Flash attention, which has linear memory complexity even
for self-attention and is up to ×25 times faster than standard attention, supports cross-attention and we use
it for further uplifts. However, these implementations are not optimised for graph learning and we have found
that the biggest bottleneck is not the attention computation, but rather storing the dense edge adjacency mask,
which requires memory quadratic in the number of edges. An evident, but not yet available, optimisation
could amount to storing the masks in a sparse tensor format. Alternatively, even a single boolean requires an

6

Table 1: The table reports root mean squared error on qm9 (RMSE is the standard metric for quantum mechanics)
and R2 for dockstring (dock) and MoleculeNet (mn), presented as mean ± standard deviation over 5 runs. The
mean absolute error (MAE) is reported for pcqm4mv2 (MAE is the standard metric for this task) over a single run
due to the size of the dataset. The lowest MAEs and RMSEs, and the highest R2 values are highlighted in bold. oom
denotes out-of-memory errors. A complete table, including GCN and GIN, is provided in Supplementary Table 1.

Target DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

qm
9

(↓
)

µ 0.55 ± 0.01 0.55 ± 0.01 0.55 ± 0.01 0.53 ± 0.01 0.63 ± 0.01 0.76 ± 0.02 0.94 ± 0.17 0.56 ± 0.00
α 0.44 ± 0.03 0.48 ± 0.02 0.46 ± 0.02 0.48 ± 0.07 0.40 ± 0.02 0.45 ± 0.01 0.60 ± 0.13 0.40 ± 0.00
ϵHOMO 0.11 ± 0.00 0.11 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.11 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.10 ± 0.00
ϵLUMO 0.12 ± 0.00 0.12 ± 0.00 0.13 ± 0.00 0.11 ± 0.00 0.11 ± 0.00 0.13 ± 0.00 0.11 ± 0.00 0.11 ± 0.00
∆ϵ 0.17 ± 0.00 0.16 ± 0.01 0.16 ± 0.00 0.14 ± 0.00 0.16 ± 0.00 0.18 ± 0.01 0.15 ± 0.01 0.15 ± 0.00
⟨R2⟩ 29.87 ± 0.34 30.91 ± 0.15 30.15 ± 0.36 28.50 ± 0.44 29.63 ± 0.35 31.54 ± 0.42 30.42 ± 1.19 28.33 ± 0.32
ZPVE 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.06 ± 0.03 0.03 ± 0.00 0.03 ± 0.01 0.03 ± 0.00
U0 29.82 ± 6.32 27.82 ± 3.98 25.40 ± 3.62 31.64 ± 6.49 24.60 ± 4.70 15.48 ± 4.67 14.50 ± 4.34 4.78 ± 0.67
U 24.74 ± 6.31 30.91 ± 2.62 24.92 ± 4.18 25.04 ± 5.48 15.55 ± 8.23 12.45 ± 1.86 15.82 ± 4.26 6.80 ± 2.81
H 34.02 ± 5.66 28.92 ± 4.11 23.42 ± 2.77 27.34 ± 8.17 19.01 ± 4.65 11.42 ± 3.72 12.92 ± 4.29 6.02 ± 1.32
G 25.41 ± 4.86 31.49 ± 1.86 23.24 ± 2.54 22.31 ± 3.45 31.20 ± 4.61 29.72 ± 8.79 13.08 ± 4.81 6.10 ± 1.33
cV 0.19 ± 0.01 0.19 ± 0.01 0.19 ± 0.00 0.18 ± 0.01 0.18 ± 0.02 0.18 ± 0.00 0.19 ± 0.03 0.16 ± 0.00
UATOM

0 0.38 ± 0.02 0.39 ± 0.03 0.38 ± 0.02 0.35 ± 0.02 0.29 ± 0.00 0.30 ± 0.02 0.33 ± 0.05 0.24 ± 0.01
UATOM 0.40 ± 0.04 0.48 ± 0.07 0.40 ± 0.04 0.36 ± 0.02 0.30 ± 0.01 0.30 ± 0.00 0.33 ± 0.06 0.24 ± 0.01
HATOM 0.38 ± 0.04 0.38 ± 0.02 0.41 ± 0.06 0.37 ± 0.03 0.30 ± 0.01 0.31 ± 0.01 0.36 ± 0.09 0.25 ± 0.00
GATOM 0.37 ± 0.04 0.34 ± 0.02 0.33 ± 0.01 0.31 ± 0.02 0.26 ± 0.01 0.27 ± 0.01 0.36 ± 0.08 0.22 ± 0.02
A 0.90 ± 0.06 0.97 ± 0.12 1.08 ± 0.16 1.01 ± 0.10 64.88 ±29.77 3.82 ± 2.05 1.42 ± 0.44 0.75 ± 0.11
B 0.19 ± 0.05 0.21 ± 0.04 0.26 ± 0.01 0.26 ± 0.02 0.10 ± 0.03 0.11 ± 0.01 0.16 ± 0.05 0.08 ± 0.01
C 0.27 ± 0.02 0.27 ± 0.01 0.28 ± 0.00 0.28 ± 0.01 0.12 ± 0.04 0.10 ± 0.02 0.12 ± 0.05 0.05 ± 0.01

do
ck

(↑
) esr2 0.68 ± 0.00 0.67 ± 0.00 0.65 ± 0.00 0.70 ± 0.00 oom 0.64 ± 0.01 0.68 ± 0.00 0.70 ± 0.00

f2 0.89 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 oom 0.87 ± 0.01 0.88 ± 0.00 0.89 ± 0.00
kit 0.83 ± 0.00 0.83 ± 0.00 0.83 ± 0.00 0.84 ± 0.00 oom 0.80 ± 0.01 0.83 ± 0.00 0.84 ± 0.00
parp1 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 0.92 ± 0.00 oom 0.91 ± 0.00 0.92 ± 0.01 0.93 ± 0.00
pgr 0.70 ± 0.00 0.68 ± 0.01 0.67 ± 0.01 0.72 ± 0.00 oom 0.68 ± 0.01 0.70 ± 0.01 0.73 ± 0.00

m
n

(↑
) freesolv 0.97 ± 0.00 0.96 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.93 ± 0.00 0.93 ± 0.02 0.86 ± 0.03 0.98 ± 0.00

lipo 0.81 ± 0.01 0.82 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 0.61 ± 0.04 0.55 ± 0.02 0.79 ± 0.00 0.81 ± 0.01
esol 0.94 ± 0.01 0.93 ± 0.01 0.93 ± 0.00 0.94 ± 0.01 0.91 ± 0.02 0.89 ± 0.03 0.91 ± 0.00 0.94 ± 0.00

pcqm4mv2 (↓) n/a n/a n/a n/a n/a n/a n/a 0.0235

Table 2: The table reports mean absolute error (MAE) on the zinc dataset, presented as mean ± standard deviation
over 5 runs. The best/lowest value is highlighted in bold. A complete table, including GCN, GIN, and DropGIN is
provided in Supplementary Table 2.

Dataset (↓) GAT GATv2 PNA Graphormer TokenGT GPS ESA ESA (PE)

zinc 0.078 ± 0.01 0.079 ± 0.00 0.057 ± 0.01 0.036 ± 0.00 0.047 ± 0.01 0.024 ± 0.01 0.027 ± 0.00 0.017 ± 0.00

entire byte of storage in PyTorch, increasing the theoretical memory usage by 8 times. Further limitations and
possible optimisations are discussed in SI 5. Despite some of these limitations, we have successfully trained
ESA models for graphs with up to approximately 30,000 edges (e.g., dd in Table 6).

4 Results
We perform a comprehensive evaluation of ESA on 70 different tasks, including domains such as molecular
property prediction, vision graphs, and social networks, as well as different aspects of representation learning
on graphs, ranging from node-level tasks with homophily and heterophily graph types to modelling long range
dependencies, shortest paths, and 3D atomic systems. We quantify the performance of our approach relative to
6 GNN baselines: GCN, GAT, GATv2, PNA, GIN, and DropGIN (more expressive than 1-WL), and 3 graph
transformer baselines: Graphormer, TokenGT, and GraphGPS. All the details on hyper-parameter tuning,
rationale for the selected metrics, and selection of baselines can be found in SI 7.1 to SI 7.3. In the remainder
of the section, we summarize our findings across molecular learning, mixed graph-level tasks, node-level tasks,
and ablations on the interleaving operator along with insights on time and memory scaling.

4.1 Molecular Learning
As learning on molecules has emerged as one of the most successful applications of graph learning, we present
an in-depth evaluation including quantum mechanics, molecular docking, and various physical chemistry and
biophysics benchmarks, as well as an exploration of learning on 3D atomic systems, transfer learning, and
learning on large molecules of therapeutic relevance (peptides).

QM9. We report results for all 19 qm9 [48] targets in Table 1, with GCN and GIN separately in Supplementary
Table 1 due to space restrictions. We observe that on 15 out of 19 properties, ESA is the best performing
model. The exceptions are the frontier orbital energies (HOMO and LUMO energy, HOMO-LUMO gap) and
the dipole moment (µ), where PNA is slightly ahead of it. Other graph transformers are competitive relative
to GNNs on many properties but vary in performance across tasks.

DOCKSTRING. dockstring [49] is a recent drug discovery data collection consisting of molecular docking
scores for 260,155 small molecules and 5 high-quality targets from different protein families that were selected

7

Table 3: The table reports Matthews correlation coefficient (MCC) for graph-level molecular classification tasks from
MoleculeNet and National Cancer Institute (nci), presented as mean ± standard deviation over 5 different runs. oom
denotes out-of-memory errors. The highest mean values are highlighted in bold. A complete table, including GCN and
GIN, is provided in Supplementary Table 4 with MCC as metric, and in Supplementary Table 5 with accuracy.

Data (↑) DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

m
n

bbbp 0.68 ± 0.02 0.74 ± 0.01 0.73 ± 0.03 0.73 ± 0.03 0.55 ± 0.01 0.58 ± 0.07 0.70 ± 0.04 0.84 ± 0.01
bace 0.65 ± 0.03 0.63 ± 0.02 0.64 ± 0.03 0.64 ± 0.02 0.52 ± 0.02 0.58 ± 0.03 0.62 ± 0.03 0.72 ± 0.02
hiv 0.46 ± 0.03 0.42 ± 0.06 0.34 ± 0.06 0.42 ± 0.04 oom 0.46 ± 0.02 0.25 ± 0.21 0.53 ± 0.01

nc
i nci1 0.69 ± 0.03 0.70 ± 0.02 0.65 ± 0.03 0.70 ± 0.03 0.54 ± 0.02 0.53 ± 0.03 0.70 ± 0.03 0.75 ± 0.01

nci109 0.68 ± 0.02 0.66 ± 0.01 0.66 ± 0.01 0.67 ± 0.02 0.50 ± 0.02 0.45 ± 0.03 0.62 ± 0.01 0.70 ± 0.01

Table 4: The table reports mean absolute error (MAE) and average precision (AP) for two long-range molecular
benchmarks involving peptides. The molecular graph of a peptide is much larger than that of a small drug-like
molecule and this makes the tasks well-suited for long-range benchmarking. All the results except the ones for ESA
and TokenGT are extracted from [29]. The number of layers for pept-struct, respectively pept-func is given as (·/·).

Dataset GCN (6/6) GIN (10/8) GPS (8/6) TokenGT (10/10) ESA (3/4)

pept-str (MAE ↓) 0.2460 ± 0.0007 0.2473 ± 0.0017 0.2509 ± 0.0014 0.2489 ± 0.0013 0.2453 ± 0.0003
pept-fn (AP ↑) 0.6860 ± 0.0050 0.6621 ± 0.0067 0.6534 ± 0.0091 0.6263 ± 0.0117 0.6863 ± 0.0044

as a regression benchmark, with different levels of difficulty: parp1 (enzyme, easy), f2 (protease, easy to
medium), kit (kinase, medium), esr2 (nuclear receptor, hard), and pgr (nuclear receptor, hard). We report
results for the 5 targets in Table 1 (and Supplementary Table 1) and observe that ESA is the best performing
method on 4 out of 5 tasks, with PNA slightly ahead on the medium-difficulty kit. TokenGT and GraphGPS
do not generally match ESA or even PNA. Molecular docking scores also depend heavily on the 3D geometry,
as discussed in the original paper [49], posing a difficult challenge for all methods. Interestingly, not only ESA
but all tuned GNN baselines outperform the strongest method in the original manuscript (Attentive FP, a
GNN based on attention [50]) despite using 20,000 less training molecules (which we leave out as a validation
set). This illustrates the importance of evaluation relative to baselines with tuned hyper-parameters.

MoleculeNet and NCI. We report results for a varied selection of three regression and three classification
benchmarks from MoleculeNet, as well as two benchmarks from the National Cancer Institute (NCI) consisting
of compounds screened for anti-cancer activity (Tables 1 and 3, and Supplementary Tables 1 and 4). We
also report the accuracy in Supplementary Table 5. Except hiv, these datasets pose a challenge to graph
transformers due to their small size (<5,000 compounds). With the exception of the Lipophilicity (lipo)
dataset from MoleculeNet, we observe that ESA is the preferred method, and often by a significant margin,
for example on bbbp and bace, despite their small size (2,039, respectively 1,513 total compounds before
splitting). On the other hand, Graphormer and TokenGT perform poorly, possibly due to the small-sample
nature of these tasks. GraphGPS is closer to the top performers but still underperforms compared to GAT(v2)
and PNA. These results also show the importance of appropriate evaluation metrics, as the accuracy on hiv
for all methods is above 97% (Supplementary Table 5), but the MCC (Table 3) is significantly lower.

PCQM4MV2. pcqm4mv2 is a quantum chemistry benchmark introduced as a competition through the
Open Graph Benchmark Large-Scale Challenge (OGB-LSC) project [51]. It consists of 3,378,606 training
molecules with the goal of predicting the DFT-calculated HOMO-LUMO energy gap from 2D molecular
graphs. It has been widely used in the literature, especially to evaluate graph transformers [25, 26, 52]. Since
the test splits are not public, we use the available validation set (73,545 molecules) as a test set, as is often
done in the literature, and report results on it after training for 400 epochs. We report results from a single
run, as it is common in the field due to the large size of the dataset [25, 26, 52]. For the same reason, we
do not run our baselines and instead chose to focus on the state-of-the-art results published on the official
leaderboard∗. At the time of writing (November 2024), the best performing model achieves a validation set
MAE of 0.0671 [53]. Here, ESA achieves a MAE of 0.0235, which is almost 3 times lower. It it worth noting
that the top 3 methods for this dataset are all bespoke architectures designed for molecular learning, for
example Uni-Mol+ [54], Transformer-M [55], and TGT [53]. In contrast, ESA is general purpose (does not
use any information or technique specifically for molecular learning), uses only the 2D input graph, and does
not use any positional or structural encodings.

ZINC. We report results on the full zinc dataset with 250,000 compounds (Table 2), which is commonly
used for generative purposes [56, 57]. This is one of the only benchmarks where the graph transformer
baselines (Graphormer, TokenGT, GraphGPS) convincingly outperformed strong GNN baselines. ESA,
without positional encodings, slightly underperforms compared to GraphGPS, which uses random-walk
structural encodings (RWSE). This type of encoding is known to be beneficial in molecular tasks, and
especially for zinc [27, 58]. Thus, we also evaluated an ESA + RWSE model, which increased relative
performance by almost 40%. While there is no leaderboard available for the full version of zinc, recently Ma
et al. [31] evaluated their own method (GRIT) against 11 other baselines, including higher-order GNNs, with

∗https://ogb.stanford.edu/docs/lsc/leaderboards/#pcqm4mv2

8

https://ogb.stanford.edu/docs/lsc/leaderboards/#pcqm4mv2

Table 5: A summary of the transfer learning performance on qm9 for HOMO and LUMO properties, presented as
mean ± standard deviation over 5 different runs. The metric is the root mean squared error (RMSE). All the models
use the 3D atomic coordinates and atom types as inputs and no other node or edge features. ‘Strat.’ stands for strategy
and specifies the type of learning: GW only (no transfer learning), inductive, or transductive. The lowest values are
highlighted in bold. A complete table, including GCN and GIN, is provided in Supplementary Table 3.

Task Strat. DropGIN GAT GATv2 PNA Grph. TokenGT GPS ESA

HOMO
GW 0.162 ± 0.00 0.159 ± 0.00 0.157 ± 0.00 0.151 ± 0.00 0.179 ± 0.01 0.200 ± 0.01 0.162 ± 0.00 0.152 ± 0.00
Ind. 0.136 ± 0.00 0.131 ± 0.00 0.133 ± 0.00 0.132 ± 0.00 0.134 ± 0.00 0.156 ± 0.00 0.151 ± 0.00 0.131 ± 0.00
Trans. 0.126 ± 0.00 0.123 ± 0.00 0.124 ± 0.00 0.121 ± 0.00 0.125 ± 0.00 0.137 ± 0.00 0.147 ± 0.00 0.119 ± 0.00

LUMO
GW 0.180 ± 0.00 0.181 ± 0.00 0.178 ± 0.00 0.174 ± 0.00 0.190 ± 0.01 0.204 ± 0.01 0.178 ± 0.00 0.174 ± 0.00
Ind. 0.159 ± 0.00 0.156 ± 0.00 0.157 ± 0.00 0.156 ± 0.00 0.151 ± 0.00 0.165 ± 0.00 0.167 ± 0.00 0.150 ± 0.00
Trans. 0.157 ± 0.00 0.153 ± 0.00 0.153 ± 0.00 0.153 ± 0.00 0.147 ± 0.00 0.156 ± 0.00 0.169 ± 0.00 0.146 ± 0.00

the best reported MAE being 0.023 ± 0.001. This shows that ESA can already almost match state-of-the-art
models without structural encodings, and significantly improves upon this result when augmented.

Long-range peptide tasks. Graph learning with transformers has traditionally been evaluated on long-
range graph benchmarks (LRGB) [59]. However, it was recently shown that simple graph neural networks
outperform most attention-based methods [29]. We selected two long-range benchmarks involving peptide
property prediction: peptides-struct and peptides-func. From the LRGB collection, these two stand
out due to having the longest average shortest path (20.89 ± 9.79 versus 10.74 ± 0.51 for the next) and the
largest average diameter (56.99 ± 28.72 versus 27.62 ± 2.13). We report ESA results against tuned GNNs and
GraphGPS models from [59], as well as our own optimised TokenGT model (Table 4). Despite using only half
the number of layers as other methods or less, ESA outperformed these baselines and matched the second
model on the pept-struct leaderboard, and is within the top 5 for pept-func (as of November 2024).

Learning on 3D atomic systems. We adapt a subset from the Open Catalyst Project (OCP) [60, 61]
for evaluation, with the full steps in SI 9, including deriving edges from atom positions based on a cutoff,
pre-processing specific to crystal systems, and encoding atomic distances using Gaussian basis functions. As a
prototype, we compare NSA (MAE of 0.799 ± 0.008) against Graphormer (0.839 ± 0.005), one of the best
models that have been used for the Open Catalyst Project [62]. These encouraging results on a subset of
OCP motivated us to further study modelling 3D atomic system through the lens of transfer learning.

Transfer learning on frontier orbital energies. We follow the recipe recently outlined for drug discovery
and quantum mechanics by [32] and leverage a recent, refined version of the qm9 HOMO and LUMO energies
[63] that provides alternative DFT calculations and new calculations at the more accurate GW level of theory.
As outlined by [32], transfer learning can occur transductively or inductively. The transfer learning scenario
is important and is detailed in SI 4. We use a 25K/5K/10K train/validation/test split for the high-fidelity
GW data, and we train separate low-fidelity DFT models on the entire dataset (transductive) or with the
high-fidelity test set molecules removed (inductive). Since the HOMO and LUMO energies depend to a large
extent on the molecular geometry, we use the 3D-aware version of ESA from the previous section, and adapt
all of our baselines to the 3D setup. Our results are reported in Table 5. Without transfer learning (strategy
‘GW’ in Table 5), ESA and PNA are almost evenly matched, which is already an improvement since PNA was
better for frontier orbital energies without 3D structures (Table 1), while the graph transformers perform
poorly. Employing transfer learning all the methods improve significantly, but ESA outperforms all baselines
for both HOMO and LUMO, in both transductive and inductive tasks.

4.2 Mixed Graph-level Tasks
Other than molecular learning, we examine a suite of graph-level benchmarks from various domains, including
computer vision, bioinformatics, synthetic graphs, and social graphs. Our results are reported in Table 6
and Supplementary Table 7, where ESA generally outperforms all the baselines. In the context of state-of-the-
art models from online leaderboards, of particular note are the accuracy results (provided in Supplementary
Table 7) on the vision datasets, where on mnist ESA matches the best performing model [64], and is in the
top 5 on cifar10 at the time of submission (November 2024), without positional or structural encodings
or other helper mechanisms. Similarly, on the malnettiny dataset of function call graphs popularised by
GraphGPS [27], we achieve the highest recorded accuracy.

4.3 Node-level Benchmarks
Node-level tasks are an interesting challenge for our proposed approach as the PMA module is not needed
and node-level propagation is the most natural strategy of learning node representations. To this end, we did
prototype with an edge-to-node pooling module which would allow ESA to learn node embeddings, with good
results. However, the approach does not currently scale to the millions of edges that some heterophilous graphs
have. For these reasons, we revert to the simpler node-set attention (NSA) formulation. Table 7 summarizes
our results, indicating that NSA performs well on all 11 node-level benchmarks, including homophilous
(citation), heterophilous, and shortest path tasks. We have adapted Graphormer and TokenGT for node

9

https://paperswithcode.com/dataset/pascalvoc-sp

Table 6: The table reports Matthews correlation coefficient (MCC) for graph-level classification tasks from various
domains, presented as mean ± standard deviation over 5 different runs. oom denotes out-of-memory errors, and
n/a that the model is unavailable (e.g., node/edge features are not integers, which are required for Graphormer
and TokenGT). The poor performance of GraphGPS on malnettiny in Table 6 can be explained by our use of
one-hot degrees as node features for datasets lacking pre-computed features, while GraphGPS originally used the more
informative local degree profile [65]. The highest mean values are highlighted in bold. A complete table, including GCN
and GIN, is provided in Supplementary Table 6 with MCC as metric, and in Supplementary Table 7 with accuracy.

Data DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

malnettiny 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 oom 0.78 ± 0.01 0.79 ± 0.01 0.93 ± 0.00

V
is

. mnist 0.97 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 n/a n/a 0.98 ± 0.00 0.99 ± 0.00
cifar10 0.61 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.69 ± 0.01 n/a n/a 0.71 ± 0.01 0.73 ± 0.00

B
io

. enzymes 0.58 ± 0.04 0.75 ± 0.02 0.74 ± 0.02 0.68 ± 0.03 n/a n/a 0.73 ± 0.05 0.75 ± 0.01
proteins 0.46 ± 0.01 0.46 ± 0.04 0.49 ± 0.04 0.47 ± 0.07 n/a n/a 0.44 ± 0.02 0.59 ± 0.02
dd 0.54 ± 0.07 0.47 ± 0.05 0.53 ± 0.03 0.56 ± 0.08 oom 0.46 ± 0.05 0.60 ± 0.05 0.65 ± 0.03

Sy
nt

h synth 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 n/a n/a 1.00 ± 0.00 1.00 ± 1.00
synt n. 0.97 ± 0.05 0.76 ± 0.07 0.91 ± 0.07 1.00 ± 0.00 n/a n/a 1.00 ± 0.00 1.00 ± 0.00
synthie 0.94 ± 0.02 0.70 ± 0.04 0.80 ± 0.04 0.88 ± 0.06 n/a n/a 0.95 ± 0.02 0.95 ± 0.02

So
ci

al

imdb-b 0.61 ± 0.06 0.69 ± 0.04 0.60 ± 0.05 0.56 ± 0.07 0.56 ± 0.05 0.61 ± 0.05 0.60 ± 0.05 0.74 ± 0.03
imdb-m 0.12 ± 0.10 0.20 ± 0.05 0.20 ± 0.03 0.03 ± 0.07 0.22 ± 0.03 0.20 ± 0.02 0.23 ± 0.02 0.25 ± 0.03
twitch e. 0.38 ± 0.01 0.37 ± 0.01 0.37 ± 0.01 0.08 ± 0.16 0.39 ± 0.00 0.39 ± 0.00 0.40 ± 0.00 0.40 ± 0.00
rdt. thr. 0.56 ± 0.01 0.53 ± 0.02 0.54 ± 0.02 0.11 ± 0.23 0.57 ± 0.00 0.56 ± 0.00 0.57 ± 0.00 0.57 ± 0.00

Table 7: The table reports Matthews correlation coefficient (MCC) for 11 node-level classification tasks, presented
as mean ± standard deviation over 5 different runs. The number of nodes for the shortest path (sp) benchmarks is
given in parentheses (based on randomly-generated ‘infected’ Erdős–Rényi (ER) graphs; details are provided in SI 8).
For squirrel and chameleon, we used the filtered datasets introduced by Platonov et al. [66] to fix existing data
leaks. The highest mean values are highlighted in bold. Additional heterophily results are provided in Supplementary
Table 10. A complete table, including GIN and DropGIN, is provided in Supplementary Table 8 with MCC as the
performance metric, and in Supplementary Table 9 with accuracy.

Data (↑) GCN GAT GATv2 PNA Graphormer TokenGT GPS NSA

ppi 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 n/a n/a n/a 0.99 ± 0.00

ci
te citeseer 0.61 ± 0.01 0.59 ± 0.03 0.61 ± 0.01 0.51 ± 0.03 oom 0.38 ± 0.02 0.54 ± 0.01 0.63 ± 0.00

cora 0.77 ± 0.01 0.75 ± 0.01 0.73 ± 0.01 0.64 ± 0.03 oom 0.37 ± 0.18 0.64 ± 0.04 0.77 ± 0.00

he
te

ro

roman e. 0.47 ± 0.00 0.74 ± 0.01 0.76 ± 0.00 0.86 ± 0.00 n/a n/a 0.84 ± 0.01 0.87 ± 0.00
amazon r. 0.18 ± 0.00 0.26 ± 0.01 0.25 ± 0.01 0.21 ± 0.02 n/a n/a 0.11 ± 0.14 0.34 ± 0.01
minesweeper 0.30 ± 0.00 0.48 ± 0.02 0.51 ± 0.01 0.62 ± 0.04 n/a n/a 0.56 ± 0.01 0.69 ± 0.00
tolokers 0.30 ± 0.01 0.38 ± 0.01 0.39 ± 0.00 0.35 ± 0.05 n/a n/a 0.35 ± 0.02 0.43 ± 0.00
squirrel 0.20 ± 0.01 0.24 ± 0.02 0.24 ± 0.01 0.22 ± 0.01 0.10 ± 0.09 0.18 ± 0.02 0.23 ± 0.02 0.29 ± 0.01
chameleon 0.32 ± 0.01 0.24 ± 0.06 0.28 ± 0.03 0.27 ± 0.03 0.25 ± 0.04 0.26 ± 0.04 0.30 ± 0.08 0.39 ± 0.02

sp

er (15k) 0.22 ± 0.02 0.32 ± 0.00 0.32 ± 0.00 0.54 ± 0.09 oom 0.06 ± 0.00 0.18 ± 0.04 0.92 ± 0.01
er (30k) 0.09 ± 0.03 0.10 ± 0.06 0.10 ± 0.06 0.42 ± 0.05 oom oom oom 0.87 ± 0.01

Table 8: Example of multiple ESA configurations and their impact on performance via three different kinds of
benchmarks: a graph-level molecular task (bbbp), a graph-level vision task (mnist), and a node-level heterophilous
task (chameleon). In the model configurations, ‘M’ denotes a MAB, ‘S’ a SAB before the PMA module and ‘S’
afterwards, and ‘P’ is the PMA module. The performance metric is the Matthews correlation coefficient (MCC).

Dataset Model MCC (↑)

bbbp

M M M M S P S 0.845
M M M S P S S 0.835
S S S M M P S 0.812
M M M M M P 0.782
S M S M S P 0.768

Dataset Model MCC (↑)

mnist

S S M M M M M M M P S 0.986
S M S M S M S M S M P 0.983
S S S M M M S S S P 0.982
M S M S M S M S M S P 0.980
M M M M M M M M M P 0.980

Dataset Model MCC (↑)

chame-
leon

M S M S M S 0.422
S S M M S S 0.384
S M S M S M 0.378
M M M M M 0.359
S S M M M M 0.351

classification as this functionality was not originally available, although they require integer node and edge
features which restricts their use on some datasets (denoted by n/a in Table 7). NSA achieves the highest MCC
score on homophilous and heterophilous graphs, but GCN has the highest accuracy on cora (Supplementary
Table 9). Some methods, for instance GraphSAGE [67] are designed to perform particularly well under
heterophily and to account for that we include GraphSAGE [67] and Graph Transformer [33] as the two top
performing baselines from Platonov et al. [66] in our extended results in Supplementary Table 10. With the
exception of the amazon ratings datasets, we outperform the two baselines by a noticeable margin. Our
results on chameleon stand out in particular, as well as on the shortest path benchmarks, where other graph
transformers are unable to learn and even PNA fails to be competitive.

4.4 Effects of Varying the Layer Order and Type
In Table 8, we summarise the results of an ablation relative to the interleaving operator with different order
and types of layers in our architecture. Smaller datasets perform well with 4 to 6 feature extraction layers,
while larger datasets with more complex graphs like mnist benefit from up to 10 layers. We have generally
observed that the top configurations tend to include self-attention layers at the front, with masked attention
layers in the middle and self-attention layers at the end, surrounding the PMA readout. Naive configurations
such as all-masked layers or simply alternating masked and self-attention layers do not tend to be optimal for

10

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

25

50

75

100

125

150

175

200
Ti

m
e

(s
)

QM9
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
Graphormer
TokenGT
GPS
ESA

(a) Training time for qm9.

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

2

4

6

8

M
ax

im
um

 m
em

or
y

(G
B)

QM9
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
Graphormer
TokenGT
GPS
ESA

(b) Allocated memory for qm9.

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

100

200

300

400

500

600

700

800

Ti
m

e
(s

)

MNIST
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
TokenGT
GPS
ESA

(c) Training time for mnist.

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

5

10

15

20

M
ax

im
um

 m
em

or
y

(G
B)

MNIST
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
TokenGT
GPS
ESA

(d) Allocated memory for mnist.

Figure 4: The elapsed time for training a single epoch for different datasets (in seconds), and the maximum allocated
memory during this training epoch (GB). Different configurations are tested, while varying hidden dimensions and
number of layers. qm9 has around 130K small molecules (a maximum of 29 nodes and 56 edges), dockstring has
around 260K graphs that are around 6 times larger, and finally mnist has 70K graphs which are around 11-12 times
larger than qm9. We use dummy integer features for TokenGT when benchmarking mnist. Graphormer runs out of
memory for dockstring and mnist.

graph-level prediction tasks. This ablation experiment demonstrates the importance of vertical combination
of masked and self-attention layers for the performance of our model.

4.5 Time and Memory Scaling
The theoretical properties of ESA are discussed in Methods, Section 3.3, where we also cover deep learning
library limitations and possible optimisations (also see SI 5). Here, we have empirically evaluated the time
and memory scaling of ESA against all 9 baselines. For a fair evaluation, we implement Flash attention for
TokenGT as it was not originally supported. GraphGPS natively supports Flash attention, while Graphormer
requires specific modifications to the attention matrix which are not currently supported.

We report the training time for a single epoch and the maximum allocated memory during training for qm9
and mnist in Figure 4, and dockstring in Supplementary Figure 1. In terms of training time, GCN and
GIN are consistently the fastest due to their simplicity and low number of parameters (also see Figure 6a).
ESA is usually the next fastest, followed by other graph transformers. The strong GNN baselines, particularly
PNA, and to an extent GATv2 and GAT, are among the slowest methods. In terms of memory, GCN and
GIN are again the most efficient, followed by GraphGPS and TokenGT. ESA is only slightly behind, with
PNA, DropGIN, GATv2, and GAT all being more memory intensive, particularly DropGIN.

We also order all methods according to their achieved performance and illustrate their rank relative to the
total time spent training and the maximum memory allocated during training (Figure 5). ESA occupies the
top left corner in the time plot, confirming its efficiency. The results are more spread out regarding memory,
however the performance is still remarkable considering that ESA works over edges, whose number rapidly
increases relative to the number of nodes that dictates the scaling of all other methods.

Finally, we report the number of parameters for all methods and their configurations (Figure 6a). Apart
from GCN, GIN, and DropGIN, ESA has the lowest number of parameters. GAT and GATv2 have rapidly
increasing parameter counts, likely due to the concatenation that happens between attention heads, while
PNA also increases significantly quicker than ESA. Lastly, we demonstrate and discuss one of the bottlenecks

11

0 200 400 600 800 1000
Time (minutes)

2

4

6

8

10

R
an

k

(a) Time-rank plot for all methods.

0 5 10 15 20 25 30 35
Maximum memory (GB)

2

4

6

8

10

R
an

k

Algorithm
ESA
GATv2
GPS
Graphormer
PNA
TokenGT
Dataset-Target
BBBP
DOCKSTRING-PARP1
DOCKSTRING-PGR
HIV
NCI109
QM9-gap
QM9-u0
ZINC

(b) Memory-rank plot for all methods.

Figure 5: All methods illustrated according to their achieved performance (rank) versus the total time spent training
(minutes) in Panel (a) and the maximum allocated memory (GB) in Panel (b).

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

20

40

60

80

100

120

140

160

Pa
ra

m
et

er
s

(m
ill

io
ns

) Algorithm
GCN
GIN
GINDrop
GAT
GATv2
PNA
Graphormer
TokenGT
GPS
ESA

(a) The number of parameters (in millions) for all the methods
and different configurations in terms of the hidden dimension
and the number of layers.

(4, 1) (10, 1) (4, 2) (10, 2) (4, 4) (10, 4) (4, 8) (10, 8)

20

40

60

80

Ti
m

e
(s

)

HIV (Graphormer)

(4, 1) (10, 1) (4, 2) (10, 2) (4, 4) (10, 4) (4, 8) (10, 8)
Architecture (layers, batch)

5

10

15

20

25

M
em

or
y

(G
B)

(b) The time and memory utilisation for a selection of Graphormer
configurations. The varying parameters are the number of layers,
and the number of input graphs.

Figure 6: The number of parameters for all methods in Panel (a) and an illustration of the time and memory
bottleneck in Graphormer in Panel (b). For Graphormer, even training on a single graph from hiv takes over 10
seconds and slightly under 5GB. Increasing the number of graphs to 8 and setting the batch size to 8 to ensure parallel
computation increases the running time to around 80 seconds and slightly under 30GB. Extrapolating these numbers
for a batch size of 8 to the entire dataset results in a training time of around 5 days for a single epoch.

in Graphormer for the dataset hiv (Figure 6b). This lack of efficiency is likely caused by the edge features
computed by Graphormer, which depend quadratically on the number of nodes in the graph, and on the
maximum shortest path in the graph.

5 Discussion
We presented an end-to-end attention-based approach for learning on graphs and demonstrated its effectiveness
relative to tuned graph neural networks and recently proposed graph transformer architectures. The approach
is free of expensive pre-processing steps and numerous other additional components designed to improve the
inductive bias or expressive power (e.g., shortest paths, centrality, spatial and structural encodings, virtual
nodes as readouts, expander graphs, transformations via interaction graphs, etc.). This shows huge potential
and plenty of room for further fine-tuning and task-specific improvements. The interleaving operator inherent
to ESA allows for vertical combination of masked and self-attention modules for learning effective token
(i.e., edge or node) representations, leveraging relational information specified by input graphs while at the
same time allowing to expand on this prior structure via self-attention. The recently released Flex Attention
feature in PyTorch allows for further extensions via rich masking operators informed by graph structure while
leveraging advancements in exact and efficient attention that have enabled our work.

Our comprehensive evaluation shows that the proposed approach consistently outperforms strong message
passing baselines and recently proposed transformer-based approaches for learning on graphs. The takeaway
from our extensive study is that the proposed approach is well suited for being a simple and yet extremely
effective starting point for learning on graphs. Moreover, the approach has favourable computational complexity
and scales better than strong GNNs and some graph transformers. The approach also does well in transfer
learning settings, possibly paving the way for more research on foundational models for drug discovery, where
the problem arises frequently in property prediction for expensive high-fidelity experiments.

12

References
1. Babai, L. & Kucera, L. Canonical labelling of graphs in linear average time in Proceedings of the 20th

Annual Symposium on Foundations of Computer Science (1979), 39–46.
2. Morris, C. et al. Weisfeiler and Leman go machine learning: the story so far. Journal of Machine Learning

Research 24 (2024).
3. Stokes, J. M. et al. A Deep Learning Approach to Antibiotic Discovery. Cell 180, 688–702.e13. issn:

0092-8674 (2020).
4. Wong, F., Omori, S., Donghia, N. M., Zheng, E. J. & Collins, J. J. Discovering small-molecule senolytics

with deep neural networks. Nature Aging 3, 734–750. issn: 2662-8465 (June 2023).
5. Gasteiger, J., Groß, J. & Günnemann, S. Directional Message Passing for Molecular Graphs in Interna-

tional Conference on Learning Representations (ICLR) (2020).
6. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85. issn: 1476-4687

(Dec. 2023).
7. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural

network. Science 373, 871–876 (2021).
8. Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science

378, 49–56 (2022).
9. Chien, E. et al. Opportunities and challenges of graph neural networks in electrical engineering. Nature

Reviews Electrical Engineering 1, 529–546. issn: 2948-1201 (Aug. 2024).
10. Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).
11. Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Velickovic, P. Principal Neighbourhood Aggregation for

Graph Nets in Proceedings of the 34th International Conference on Neural Information Processing Systems
(Curran Associates Inc., Vancouver, BC, Canada, 2020). isbn: 9781713829546.

12. Buterez, D., Janet, J. P., Kiddle, S. J., Oglic, D. & Liò, P. Graph Neural Networks with Adaptive Readouts
in Advances in Neural Information Processing Systems (eds Oh, A. H., Agarwal, A., Belgrave, D. &
Cho, K.) (2022).

13. Buterez, D., Janet, J. P., Kiddle, S. J., Oglic, D. & Liò, P. Modelling local and general quantum
mechanical properties with attention-based pooling. Communications Chemistry 6, 262. issn: 2399-3669
(Nov. 2023).

14. Chen, K., Kunkel, C., Cheng, B., Reuter, K. & Margraf, J. T. Physics-inspired machine learning of
localized intensive properties. Chem. Sci. 14, 4913–4922 (18 2023).

15. Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I. & Osborne, M. A. On the Limitations of Representing
Functions on Sets in Proceedings of the 36th International Conference on Machine Learning 97 (2019),
6487–6494.

16. Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised
learning in Proceedings of the 32nd AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances
in Artificial Intelligence (2018).

17. Alon, U. & Yahav, E. On the Bottleneck of Graph Neural Networks and its Practical Implications in
International Conference on Learning Representations (2021).

18. Godwin, J. et al. Simple GNN Regularisation for 3D Molecular Property Prediction and Beyond in
International Conference on Learning Representations (2022).

19. Zhao, L. & Akoglu, L. PairNorm: Tackling Oversmoothing in GNNs in International Conference on
Learning Representations (2020).

20. Cai, T. et al. GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training in
2021 International Conference on Machine Learning (May 2021).

21. Hu, W. et al. Strategies for Pre-training Graph Neural Networks in International Conference on Learning
Representations (2020).

22. Vaswani, A. et al. Attention is All you Need in Advances in Neural Information Processing Systems (eds
Guyon, I. et al.) 30 (Curran Associates, Inc., 2017).

23. Veličković, P. et al. Graph Attention Networks in International Conference on Learning Representations
(2018).

24. Brody, S., Alon, U. & Yahav, E. How Attentive are Graph Attention Networks? in International Conference
on Learning Representations (2022).

25. Ying, C. et al. Do Transformers Really Perform Badly for Graph Representation? in Thirty-Fifth
Conference on Neural Information Processing Systems (2021).

26. Kim, J. et al. Pure Transformers are Powerful Graph Learners in Advances in Neural Information
Processing Systems (eds Oh, A. H., Agarwal, A., Belgrave, D. & Cho, K.) (2022).

27. Rampasek, L. et al. Recipe for a General, Powerful, Scalable Graph Transformer in Advances in Neural
Information Processing Systems (eds Oh, A. H., Agarwal, A., Belgrave, D. & Cho, K.) (2022).

28. Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J. & Sinop, A. K. EXPHORMER: sparse
transformers for graphs in Proceedings of the 40th International Conference on Machine Learning
(JMLR.org, 2023).

13

29. Tönshoff, J., Ritzert, M., Rosenbluth, E. & Grohe, M. Where Did the Gap Go? Reassessing the Long-Range
Graph Benchmark in The Second Learning on Graphs Conference (2023).

30. Luo, Y., Shi, L. & Wu, X.-M. Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classifi-
cation 2024.

31. Ma, L. et al. Graph inductive biases in transformers without message passing in Proceedings of the 40th
International Conference on Machine Learning (JMLR.org, Honolulu, Hawaii, USA, 2023).

32. Buterez, D., Janet, J. P., Kiddle, S. J., Oglic, D. & Lió, P. Transfer learning with graph neural networks
for improved molecular property prediction in the multi-fidelity setting. Nature Communications 15,
1517. issn: 2041-1723 (Feb. 2024).

33. Shi, Y. et al. Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21 (ed
Zhou, Z.-H.) Main Track (International Joint Conferences on Artificial Intelligence Organization, Aug.
2021), 1548–1554.

34. Dwivedi, V. P. & Bresson, X. A Generalization of Transformer Networks to Graphs. AAAI Workshop on
Deep Learning on Graphs: Methods and Applications (2021).

35. Kreuzer, D., Beaini, D., Hamilton, W. L., Létourneau, V. & Tossou, P. Rethinking Graph Transformers
with Spectral Attention in Advances in Neural Information Processing Systems (eds Beygelzimer, A.,
Dauphin, Y., Liang, P. & Vaughan, J. W.) (2021).

36. Min, E. et al. Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer
in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Association for Computing Machinery, Madrid, Spain, 2022), 353–362. isbn:
9781450387323.

37. Rampášek, L. et al. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems 35 (2022).

38. Choromanski, K. M. et al. Rethinking Attention with Performers in International Conference on Learning
Representations (2021).

39. Lee, J. et al. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
in Proceedings of the 36th International Conference on Machine Learning (2019), 3744–3753.

40. Xiong, R. et al. On Layer Normalization in the Transformer Architecture in Proceedings of the 37th
International Conference on Machine Learning (JMLR.org, 2020).

41. Shazeer, N. GLU Variants Improve Transformer (2020).
42. Rabe, M. N. & Staats, C. Self-attention Does Not Need O(n2) Memory (2021).
43. Dao, T., Fu, D. Y., Ermon, S., Rudra, A. & Ré, C. FlashAttention: Fast and Memory-Efficient Exact

Attention with IO-Awareness in Advances in Neural Information Processing Systems (2022).
44. Dao, T. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning 2023.
45. Shah, J. et al. FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision 2024.
46. Paszke, A. et al. in Advances in Neural Information Processing Systems 32 8024–8035 (Curran Associates,

Inc., 2019).
47. Lefaudeux, B. et al. xFormers: A modular and hackable Transformer modelling library https://github.

com/facebookresearch/xformers. 2022.
48. Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and

properties of 134 kilo molecules. Scientific Data 1, 140022. issn: 2052-4463 (Aug. 2014).
49. Garćıa-Ortegón, M. et al. DOCKSTRING: Easy Molecular Docking Yields Better Benchmarks for Ligand

Design. Journal of Chemical Information and Modeling 62. PMID: 35849793, 3486–3502 (2022).
50. Xiong, Z. et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph

Attention Mechanism. Journal of Medicinal Chemistry 63. PMID: 31408336, 8749–8760 (2020).
51. Hu, W. et al. OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs. arXiv preprint

arXiv:2103.09430 (2021).
52. Choi, Y. Y., Park, S. W., Lee, M. & Woo, Y. Topology-Informed Graph Transformer 2024.
53. Hussain, M. S., Zaki, M. J. & Subramanian, D. Triplet Interaction Improves Graph Transformers: Accurate

Molecular Graph Learning with Triplet Graph Transformers in Forty-first International Conference on
Machine Learning (2024).

54. Lu, S., Gao, Z., He, D., Zhang, L. & Ke, G. Data-driven quantum chemical property prediction leveraging
3D conformations with Uni-Mol+. Nature Communications 15, 7104. issn: 2041-1723 (Aug. 2024).

55. Luo, S. et al. One Transformer Can Understand Both 2D & 3D Molecular Data in The Eleventh
International Conference on Learning Representations (2023).

56. Jin, W., Barzilay, R. & Jaakkola, T. Junction Tree Variational Autoencoder for Molecular Graph
Generation in Proceedings of the 35th International Conference on Machine Learning (eds Dy, J. &
Krause, A.) 80 (PMLR, July 2018), 2323–2332.

57. Kondratyev, V., Dryzhakov, M., Gimadiev, T. & Slutskiy, D. Generative model based on junction tree vari-
ational autoencoder for HOMO value prediction and molecular optimization. Journal of Cheminformatics
15, 11. issn: 1758-2946 (Feb. 2023).

14

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

58. Dwivedi, V. P. et al. Benchmarking graph neural networks. J. Mach. Learn. Res. 24. issn: 1532-4435
(Mar. 2024).

59. Dwivedi, V. P. et al. Long Range Graph Benchmark in Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (2022).

60. Zitnick, C. L. et al. An Introduction to Electrocatalyst Design using Machine Learning for Renewable
Energy Storage 2020.

61. Chanussot, L. et al. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catalysis 11,
6059–6072 (2021).

62. Shi, Y. et al. Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets 2023.
63. Fediai, A., Reiser, P., Peña, J. E. O., Friederich, P. & Wenzel, W. Accurate GW frontier orbital energies

of 134 kilo molecules. Scientific Data 10, 581. issn: 2052-4463 (Sept. 2023).
64. Chen, D., Schulz, T. H. & Borgwardt, K. Learning Long Range Dependencies on Graphs via Random

Walks 2024.
65. Cai, C. & Wang, Y. A simple yet effective baseline for non-attribute graph classification. CoRR

abs/1811.03508 (2018).
66. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A. & Prokhorenkova, L. A critical look at the

evaluation of GNNs under heterophily: Are we really making progress? in The Eleventh International
Conference on Learning Representations (2023).

67. Hamilton, W. L., Ying, R. & Leskovec, J. Inductive Representation Learning on Large Graphs in
Proceedings of the 31st International Conference on Neural Information Processing Systems (Curran
Associates Inc., Long Beach, California, USA, 2017), 1025–1035. isbn: 9781510860964.

68. Loshchilov, I. & Hutter, F. Decoupled Weight Decay Regularization in International Conference on
Learning Representations (2019).

69. Dettmers, T., Lewis, M., Shleifer, S. & Zettlemoyer, L. 8-bit Optimizers via Block-wise Quantization in
International Conference on Learning Representations (2022).

70. Wolf, T. et al. Transformers: State-of-the-Art Natural Language Processing in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations (eds Liu, Q.
& Schlangen, D.) (Association for Computational Linguistics, Online, Oct. 2020), 38–45.

71. Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation. BMC Genomics 21, 6. issn: 1471-2164 (Jan. 2020).

72. Chicco, D., Warrens, M. J. & Jurman, G. The Matthews Correlation Coefficient (MCC) is More
Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment. IEEE Access 9,
78368–78381 (2021).

73. Chicco, D., Tötsch, N. & Jurman, G. The Matthews correlation coefficient (MCC) is more reliable than
balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation.
BioData Mining 14, 13. issn: 1756-0381 (Feb. 2021).

74. Stoica, P. & Babu, P. Pearson–Matthews correlation coefficients for binary and multinary classification.
Signal Processing 222, 109511. issn: 0165-1684 (2024).

75. Chicco, D. & Jurman, G. The Matthews correlation coefficient (MCC) should replace the ROC AUC
as the standard metric for assessing binary classification. BioData Mining 16, 4. issn: 1756-0381 (Feb.
2023).

76. Hand, D. J. Mismatched models, wrong results, and dreadful decisions: on choosing appropriate data
mining tools in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (Association for Computing Machinery, Paris, France, 2009), 1–2. isbn: 9781605584959.

77. Kwegyir-Aggrey, K., Gerchick, M., Mohan, M., Horowitz, A. & Venkatasubramanian, S. The Misuse of
AUC: What High Impact Risk Assessment Gets Wrong in Proceedings of the 2023 ACM Conference on
Fairness, Accountability, and Transparency (Association for Computing Machinery, Chicago, IL, USA,
2023), 1570–1583. isbn: 9798400701924.

78. Chicco, D., Warrens, M. J. & Jurman, G. The coefficient of determination R-squared is more informative
than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. en. PeerJ Comput Sci
7, e623 (July 2021).

79. Wang, Q., Chen, D. Z., Wijesinghe, A., Li, S. & Farhan, M. N -WL: A New Hierarchy of Expressivity for
Graph Neural Networks in The Eleventh International Conference on Learning Representations (2023).

15

SI 1 Additional benchmarking results

Supplementary Table 1: The root mean squared error on qm9 (RMSE is the standard for quantum mechanics) and the R2 for dockstring (dock) and MoleculeNet (mn),
presented as mean ± standard deviation over 5 runs, and including GCN and GIN. The mean absolute error (MAE) is reported for pcqm4mv2 over a single run due to the size
of the dataset and the field standards. The lowest MAEs and RMSEs and highest R2 values are highlighted in bold. oom denotes out-of-memory errors.

Target GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

qm
9

(↓
)

µ 0.629 ± 0.005 0.550 ± 0.011 0.552 ± 0.010 0.552 ± 0.011 0.545 ± 0.008 0.535 ± 0.008 0.627 ± 0.014 0.755 ± 0.025 0.945 ± 0.174 0.564 ± 0.004
α 0.525 ± 0.051 0.438 ± 0.020 0.445 ± 0.025 0.479 ± 0.020 0.460 ± 0.018 0.476 ± 0.070 0.404 ± 0.017 0.447 ± 0.014 0.605 ± 0.130 0.398 ± 0.003
ϵHOMO 0.128 ± 0.005 0.104 ± 0.001 0.106 ± 0.002 0.107 ± 0.002 0.104 ± 0.001 0.099 ± 0.001 0.107 ± 0.002 0.123 ± 0.003 0.113 ± 0.003 0.103 ± 0.003
ϵLUMO 0.136 ± 0.002 0.120 ± 0.004 0.123 ± 0.004 0.124 ± 0.003 0.127 ± 0.001 0.109 ± 0.001 0.112 ± 0.001 0.130 ± 0.003 0.108 ± 0.002 0.114 ± 0.001
∆ϵ 0.184 ± 0.006 0.164 ± 0.004 0.166 ± 0.004 0.163 ± 0.006 0.163 ± 0.003 0.139 ± 0.001 0.163 ± 0.004 0.177 ± 0.006 0.154 ± 0.006 0.152 ± 0.001
⟨R2⟩ 33.913 ± 0.922 29.925 ± 0.302 29.870 ± 0.343 30.911 ± 0.152 30.149 ± 0.360 28.503 ± 0.444 29.628 ± 0.351 31.540 ± 0.422 30.421 ± 1.192 28.328 ± 0.321
ZPVE 0.035 ± 0.001 0.032 ± 0.001 0.034 ± 0.002 0.033 ± 0.001 0.032 ± 0.001 0.032 ± 0.003 0.059 ± 0.031 0.030 ± 0.001 0.033 ± 0.006 0.026 ± 0.001
U0 30.971 ± 6.472 42.024 ±17.272 29.817 ± 6.322 27.823 ± 3.981 25.405 ± 3.617 31.644 ± 6.493 24.600 ± 4.699 15.477 ± 4.675 14.496 ± 4.342 4.777 ± 0.671
U 25.276 ± 4.471 25.098 ± 5.972 24.741 ± 6.311 30.914 ± 2.620 24.919 ± 4.183 25.038 ± 5.479 15.546 ± 8.228 12.449 ± 1.864 15.820 ± 4.262 6.799 ± 2.809
H 30.924 ± 5.369 24.746 ± 2.314 34.019 ± 5.663 28.924 ± 4.108 23.422 ± 2.767 27.338 ± 8.167 19.006 ± 4.645 11.418 ± 3.716 12.923 ± 4.287 6.018 ± 1.324
G 26.138 ±10.078 26.942 ± 2.910 25.412 ± 4.863 31.494 ± 1.857 23.240 ± 2.535 22.308 ± 3.453 31.198 ± 4.614 29.721 ± 8.790 13.081 ± 4.806 6.104 ± 1.334
cV 0.221 ± 0.014 0.187 ± 0.008 0.195 ± 0.012 0.191 ± 0.005 0.190 ± 0.002 0.179 ± 0.009 0.177 ± 0.023 0.180 ± 0.004 0.190 ± 0.027 0.158 ± 0.001
UATOM

0 0.371 ± 0.017 0.391 ± 0.035 0.378 ± 0.022 0.392 ± 0.035 0.384 ± 0.021 0.353 ± 0.018 0.289 ± 0.004 0.304 ± 0.021 0.330 ± 0.051 0.241 ± 0.006
UATOM 0.390 ± 0.029 0.377 ± 0.029 0.404 ± 0.044 0.483 ± 0.072 0.397 ± 0.036 0.361 ± 0.020 0.302 ± 0.014 0.302 ± 0.004 0.334 ± 0.058 0.243 ± 0.005
HATOM 0.396 ± 0.025 0.370 ± 0.026 0.376 ± 0.038 0.383 ± 0.021 0.406 ± 0.062 0.373 ± 0.029 0.301 ± 0.012 0.312 ± 0.014 0.363 ± 0.089 0.245 ± 0.004
GATOM 0.368 ± 0.008 0.385 ± 0.021 0.372 ± 0.036 0.342 ± 0.018 0.329 ± 0.009 0.314 ± 0.021 0.261 ± 0.005 0.273 ± 0.006 0.360 ± 0.075 0.225 ± 0.015
A 0.979 ± 0.049 1.317 ± 0.386 0.904 ± 0.059 0.972 ± 0.122 1.078 ± 0.161 1.007 ± 0.101 64.877 ± 29.771 3.823 ± 2.052 1.422 ± 0.437 0.746 ± 0.106
B 0.295 ± 0.004 0.196 ± 0.047 0.194 ± 0.050 0.211 ± 0.038 0.264 ± 0.010 0.256 ± 0.024 0.102 ± 0.028 0.109 ± 0.013 0.158 ± 0.052 0.079 ± 0.011
C 0.284 ± 0.001 0.167 ± 0.062 0.269 ± 0.016 0.266 ± 0.006 0.276 ± 0.004 0.277 ± 0.012 0.115 ± 0.037 0.097 ± 0.025 0.124 ± 0.046 0.050 ± 0.012

do
ck

(↑
) esr2 0.642 ± 0.003 0.668 ± 0.003 0.675 ± 0.003 0.666 ± 0.002 0.655 ± 0.004 0.696 ± 0.002 oom 0.641 ± 0.008 0.676 ± 0.002 0.697 ± 0.001

f2 0.878 ± 0.001 0.887 ± 0.002 0.886 ± 0.001 0.886 ± 0.001 0.885 ± 0.002 0.891 ± 0.002 oom 0.872 ± 0.006 0.879 ± 0.004 0.891 ± 0.000
kit 0.814 ± 0.002 0.833 ± 0.001 0.835 ± 0.002 0.833 ± 0.000 0.826 ± 0.001 0.843 ± 0.001 oom 0.800 ± 0.009 0.832 ± 0.001 0.841 ± 0.001
parp1 0.912 ± 0.001 0.922 ± 0.001 0.920 ± 0.002 0.921 ± 0.001 0.919 ± 0.001 0.924 ± 0.001 oom 0.907 ± 0.005 0.915 ± 0.005 0.925 ± 0.000
pgr 0.658 ± 0.004 0.696 ± 0.001 0.702 ± 0.002 0.681 ± 0.005 0.666 ± 0.006 0.717 ± 0.003 oom 0.684 ± 0.010 0.703 ± 0.009 0.725 ± 0.003

m
n

(↑
) fsolv 0.957 ± 0.008 0.964 ± 0.007 0.972 ± 0.005 0.959 ± 0.009 0.970 ± 0.007 0.951 ± 0.008 0.927 ± 0.005 0.930 ± 0.016 0.861 ± 0.032 0.977 ± 0.001

lipo 0.800 ± 0.007 0.819 ± 0.006 0.809 ± 0.007 0.820 ± 0.012 0.821 ± 0.008 0.830 ± 0.006 0.607 ± 0.043 0.545 ± 0.022 0.790 ± 0.004 0.809 ± 0.007
esol 0.936 ± 0.005 0.938 ± 0.010 0.935 ± 0.011 0.930 ± 0.006 0.928 ± 0.005 0.942 ± 0.006 0.908 ± 0.018 0.892 ± 0.032 0.911 ± 0.003 0.944 ± 0.002

1

Supplementary Table 2: The mean absolute error (MAE) on zinc, presented as mean ± standard deviation over 5 runs. The lowest values are highlighted in bold.

Dataset (↓) GCN GIN GAT GATv2 PNA Graphormer TokenGT GPS ESA ESA (PE)

zinc 0.152 ± 0.02 0.068 ± 0.00 0.078 ± 0.01 0.079 ± 0.00 0.057 ± 0.01 0.036 ± 0.00 0.047 ± 0.01 0.024 ± 0.01 0.027 ± 0.00 0.017 ± 0.00

Supplementary Table 3: Transfer learning performance (RMSE) on qm9 for HOMO and LUMO, presented as mean ± standard deviation over 5 different runs, including GCN
and GIN. All models use the 3D atomic coordinates and atom types as inputs and no other node or edge features. ‘Strat.’ stands for strategy and specifies the type of learning:
GW only (no transfer learning), inductive, or transductive. The lowest values are highlighted in bold.

Task Strat. GCN GIN DropGIN GAT GATv2 PNA Grph. TokenGT GPS ESA

homo
GW 0.171 ± 0.004 0.162 ± 0.002 0.162 ± 0.002 0.159 ± 0.003 0.157 ± 0.002 0.151 ± 0.001 0.179 ± 0.009 0.200 ± 0.008 0.162 ± 0.002 0.152 ± 0.003
Ind. 0.143 ± 0.004 0.138 ± 0.001 0.136 ± 0.000 0.131 ± 0.001 0.133 ± 0.003 0.132 ± 0.002 0.134 ± 0.000 0.156 ± 0.000 0.151 ± 0.002 0.131 ± 0.000
Trans. 0.131 ± 0.001 0.125 ± 0.001 0.126 ± 0.002 0.123 ± 0.001 0.124 ± 0.001 0.121 ± 0.001 0.125 ± 0.001 0.137 ± 0.000 0.147 ± 0.002 0.119 ± 0.000

lumo
GW 0.181 ± 0.002 0.180 ± 0.002 0.180 ± 0.002 0.181 ± 0.002 0.178 ± 0.002 0.174 ± 0.004 0.190 ± 0.006 0.204 ± 0.006 0.178 ± 0.002 0.174 ± 0.001
Ind. 0.161 ± 0.001 0.159 ± 0.001 0.159 ± 0.001 0.156 ± 0.001 0.157 ± 0.001 0.156 ± 0.002 0.151 ± 0.001 0.165 ± 0.000 0.167 ± 0.001 0.150 ± 0.001
Trans. 0.159 ± 0.002 0.155 ± 0.001 0.157 ± 0.001 0.153 ± 0.001 0.153 ± 0.001 0.153 ± 0.001 0.147 ± 0.001 0.156 ± 0.000 0.169 ± 0.001 0.146 ± 0.000

Supplementary Table 4: Matthews correlation coefficient (MCC) for graph-level molecular classification tasks – MoleculeNet and National Cancer Institute (nci), presented as
mean ± standard deviation over 5 different runs, and including GCN and GIN. oom denotes out-of-memory errors. The highest mean values are highlighted in bold.

Data (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

m
n

bbbp 0.674 ± 0.034 0.704 ± 0.028 0.685 ± 0.017 0.744 ± 0.012 0.728 ± 0.032 0.731 ± 0.028 0.552 ± 0.012 0.578 ± 0.065 0.705 ± 0.044 0.835 ± 0.014
bace 0.631 ± 0.028 0.646 ± 0.013 0.654 ± 0.034 0.632 ± 0.018 0.645 ± 0.026 0.638 ± 0.017 0.522 ± 0.020 0.578 ± 0.033 0.618 ± 0.032 0.721 ± 0.019
hiv 0.448 ± 0.035 0.408 ± 0.060 0.458 ± 0.028 0.421 ± 0.061 0.337 ± 0.059 0.417 ± 0.045 oom 0.455 ± 0.017 0.247 ± 0.211 0.533 ± 0.012

nc
i nci1 0.682 ± 0.013 0.694 ± 0.017 0.686 ± 0.027 0.701 ± 0.018 0.646 ± 0.029 0.697 ± 0.025 0.540 ± 0.025 0.532 ± 0.034 0.697 ± 0.027 0.755 ± 0.012

nci109 0.665 ± 0.024 0.684 ± 0.015 0.681 ± 0.021 0.658 ± 0.008 0.664 ± 0.015 0.670 ± 0.018 0.504 ± 0.022 0.453 ± 0.029 0.623 ± 0.014 0.700 ± 0.010

Supplementary Table 5: Accuracy for graph-level molecular classification tasks – MoleculeNet and National Cancer Institute (nci), presented as mean ± standard deviation
over 5 different runs, and including GCN and GIN. oom denotes out-of-memory errors. The highest mean values are highlighted in bold.

Data (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

m
n

bbbp 0.871 ± 0.012 0.882 ± 0.010 0.875 ± 0.006 0.898 ± 0.004 0.892 ± 0.012 0.893 ± 0.010 0.826 ± 0.005 0.832 ± 0.022 0.883 ± 0.017 0.932 ± 0.007
bace 0.813 ± 0.014 0.820 ± 0.007 0.824 ± 0.017 0.813 ± 0.009 0.820 ± 0.012 0.817 ± 0.009 0.758 ± 0.011 0.786 ± 0.015 0.804 ± 0.017 0.858 ± 0.010
hiv 0.974 ± 0.001 0.973 ± 0.001 0.974 ± 0.001 0.973 ± 0.002 0.971 ± 0.001 0.973 ± 0.001 oom 0.973 ± 0.001 0.971 ± 0.003 0.976 ± 0.001

nc
i nci1 0.842 ± 0.006 0.848 ± 0.008 0.843 ± 0.014 0.851 ± 0.010 0.824 ± 0.015 0.850 ± 0.012 0.770 ± 0.012 0.767 ± 0.018 0.850 ± 0.014 0.878 ± 0.006

nci109 0.831 ± 0.011 0.842 ± 0.007 0.840 ± 0.010 0.826 ± 0.005 0.831 ± 0.007 0.834 ± 0.009 0.749 ± 0.011 0.721 ± 0.017 0.809 ± 0.006 0.850 ± 0.005

2

Supplementary Table 6: Matthews correlation coefficient (MCC) for graph-level classification tasks from various domains, presented as mean ± standard deviation over 5
different runs, and including GCN and GIN. oom denotes out-of-memory errors, and n/a that the model is unavailable (e.g., node/edge features are not integers, which are
required for Graphormer and TokenGT). The highest mean values are highlighted in bold.

Dataset (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

malnettiny 0.896 ± 0.006 0.903 ± 0.005 0.902 ± 0.006 0.899 ± 0.006 0.902 ± 0.007 0.915 ± 0.008 oom 0.777 ± 0.008 0.795 ± 0.011 0.931 ± 0.001

V
is

. mnist 0.957 ± 0.002 0.965 ± 0.004 0.970 ± 0.001 0.972 ± 0.002 0.979 ± 0.002 0.978 ± 0.003 n/a n/a 0.980 ± 0.001 0.986 ± 0.000
cifar10 0.621 ± 0.003 0.614 ± 0.006 0.614 ± 0.009 0.659 ± 0.009 0.662 ± 0.011 0.686 ± 0.005 n/a n/a 0.708 ± 0.005 0.727 ± 0.003

B
io

. enzymes 0.695 ± 0.048 0.632 ± 0.046 0.576 ± 0.039 0.748 ± 0.020 0.744 ± 0.023 0.684 ± 0.034 n/a n/a 0.734 ± 0.045 0.751 ± 0.009
proteins 0.419 ± 0.037 0.421 ± 0.036 0.459 ± 0.005 0.463 ± 0.036 0.490 ± 0.042 0.467 ± 0.067 n/a n/a 0.443 ± 0.022 0.589 ± 0.017
dd 0.546 ± 0.058 0.539 ± 0.032 0.537 ± 0.070 0.465 ± 0.049 0.530 ± 0.034 0.559 ± 0.080 oom 0.459 ± 0.049 0.605 ± 0.041 0.652 ± 0.030

Sy
nt

h synth 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 n/a n/a 1.000 ± 0.000 1.000 ± 0.000
synt n. 0.699 ± 0.029 0.910 ± 0.030 0.975 ± 0.051 0.761 ± 0.067 0.909 ± 0.067 1.000 ± 0.000 n/a n/a 1.000 ± 0.000 1.000 ± 0.000
synthie 0.935 ± 0.054 0.930 ± 0.045 0.942 ± 0.024 0.701 ± 0.045 0.798 ± 0.038 0.879 ± 0.058 n/a n/a 0.951 ± 0.019 0.947 ± 0.016

So
ci

al

imdb-b 0.603 ± 0.056 0.537 ± 0.199 0.608 ± 0.061 0.688 ± 0.037 0.600 ± 0.049 0.563 ± 0.067 0.565 ± 0.045 0.606 ± 0.052 0.598 ± 0.045 0.738 ± 0.026
imdb-m 0.216 ± 0.044 0.119 ± 0.079 0.117 ± 0.099 0.203 ± 0.052 0.202 ± 0.035 0.034 ± 0.068 0.222 ± 0.024 0.202 ± 0.023 0.232 ± 0.021 0.247 ± 0.034
twitch e. 0.386 ± 0.006 0.358 ± 0.023 0.379 ± 0.011 0.373 ± 0.011 0.371 ± 0.011 0.078 ± 0.159 0.387 ± 0.003 0.393 ± 0.001 0.395 ± 0.001 0.398 ± 0.000
reddit thr. 0.556 ± 0.007 0.556 ± 0.011 0.556 ± 0.007 0.533 ± 0.021 0.536 ± 0.023 0.113 ± 0.227 0.567 ± 0.003 0.564 ± 0.001 0.568 ± 0.003 0.568 ± 0.002

3

Supplementary Table 7: Accuracy for graph-level classification tasks from various domains, presented as mean ± standard deviation over 5 different runs, and including
GCN and GIN. oom denotes out-of-memory errors, and n/a that the model is unavailable (e.g., node/edge features are not integers, which are required for Graphormer and
TokenGT). The highest mean values are highlighted in bold.

Dataset (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

malnettiny 0.916 ± 0.005 0.922 ± 0.004 0.921 ± 0.005 0.918 ± 0.005 0.921 ± 0.006 0.931 ± 0.006 oom 0.820 ± 0.007 0.835 ± 0.009 0.944 ± 0.001

V
is

. mnist 0.961 ± 0.001 0.969 ± 0.004 0.973 ± 0.001 0.975 ± 0.002 0.981 ± 0.001 0.980 ± 0.003 n/a n/a 0.982 ± 0.001 0.988 ± 0.000
cifar10 0.659 ± 0.003 0.652 ± 0.005 0.652 ± 0.008 0.693 ± 0.008 0.695 ± 0.010 0.717 ± 0.005 n/a n/a 0.737 ± 0.005 0.754 ± 0.002

B
io

. enzymes 0.735 ± 0.039 0.683 ± 0.037 0.651 ± 0.037 0.786 ± 0.014 0.780 ± 0.019 0.730 ± 0.022 n/a n/a 0.777 ± 0.039 0.794 ± 0.015
proteins 0.755 ± 0.015 0.755 ± 0.017 0.768 ± 0.000 0.768 ± 0.015 0.777 ± 0.020 0.777 ± 0.029 n/a n/a 0.768 ± 0.011 0.827 ± 0.007
dd 0.782 ± 0.031 0.773 ± 0.020 0.782 ± 0.033 0.731 ± 0.031 0.760 ± 0.020 0.790 ± 0.039 oom 0.739 ± 0.030 0.808 ± 0.017 0.835 ± 0.016

Sy
nt

h synth 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 n/a n/a 1.000 ± 0.000 1.000 ± 0.000
synt n. 0.847 ± 0.016 0.953 ± 0.016 0.987 ± 0.027 0.880 ± 0.034 0.953 ± 0.034 1.000 ± 0.000 n/a n/a 1.000 ± 0.000 1.000 ± 0.000
synthie 0.956 ± 0.039 0.955 ± 0.033 0.963 ± 0.018 0.776 ± 0.037 0.855 ± 0.031 0.918 ± 0.040 n/a n/a 0.958 ± 0.014 0.963 ± 0.012

So
ci

al

imdb-b 0.802 ± 0.028 0.766 ± 0.097 0.804 ± 0.030 0.842 ± 0.018 0.800 ± 0.024 0.780 ± 0.034 0.780 ± 0.023 0.802 ± 0.026 0.794 ± 0.024 0.868 ± 0.013
imdb-m 0.476 ± 0.030 0.411 ± 0.052 0.410 ± 0.064 0.470 ± 0.033 0.469 ± 0.024 0.356 ± 0.046 0.484 ± 0.015 0.470 ± 0.015 0.476 ± 0.013 0.487 ± 0.011
twitch e. 0.697 ± 0.003 0.682 ± 0.012 0.694 ± 0.005 0.690 ± 0.005 0.690 ± 0.005 0.506 ± 0.098 0.698 ± 0.001 0.701 ± 0.001 0.702 ± 0.000 0.703 ± 0.000
reddit thr. 0.778 ± 0.003 0.776 ± 0.005 0.777 ± 0.003 0.765 ± 0.010 0.767 ± 0.011 0.545 ± 0.118 0.782 ± 0.001 0.780 ± 0.001 0.783 ± 0.001 0.782 ± 0.001

4

Supplementary Table 8: Matthews correlation coefficient (MCC) for 11 node-level classification tasks, presented as mean ± standard deviation over 5 different runs, including
GIN and DropGIN. The number of nodes for the shortest path (sp) benchmarks is given in parentheses (based on randomly-generated ‘infected’ Erdős–Rényi (ER) graphs; SI 8
for details). Additional heterophily results are provided in Supplementary Table 10. The highest mean values are highlighted in bold.

Dataset (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

ppi 0.979 ± 0.002 0.905 ± 0.066 0.785 ± 0.141 0.990 ± 0.000 0.982 ± 0.005 0.990 ± 0.000 n/a n/a n/a 0.989 ± 0.001

ci
te citeseer 0.608 ± 0.008 0.587 ± 0.010 0.324 ± 0.017 0.587 ± 0.030 0.613 ± 0.006 0.511 ± 0.033 oom 0.384 ± 0.022 0.538 ± 0.012 0.632 ± 0.005

cora 0.767 ± 0.008 0.727 ± 0.010 0.490 ± 0.033 0.748 ± 0.014 0.727 ± 0.010 0.637 ± 0.029 oom 0.366 ± 0.185 0.643 ± 0.039 0.768 ± 0.005

he
te

ro
ph

il
y roman emp. 0.470 ± 0.004 0.791 ± 0.003 0.796 ± 0.002 0.741 ± 0.010 0.763 ± 0.004 0.855 ± 0.002 n/a n/a 0.837 ± 0.014 0.869 ± 0.002

amazon r. 0.179 ± 0.003 0.262 ± 0.015 0.228 ± 0.018 0.256 ± 0.009 0.253 ± 0.013 0.206 ± 0.018 n/a n/a 0.114 ± 0.139 0.336 ± 0.006
minesweeper 0.303 ± 0.002 0.563 ± 0.028 0.455 ± 0.162 0.477 ± 0.018 0.512 ± 0.010 0.624 ± 0.043 n/a n/a 0.564 ± 0.011 0.688 ± 0.001
tolokers 0.299 ± 0.011 0.299 ± 0.065 0.340 ± 0.012 0.384 ± 0.009 0.386 ± 0.005 0.350 ± 0.048 n/a n/a 0.351 ± 0.021 0.427 ± 0.004
squirrel 0.197 ± 0.011 0.194 ± 0.026 0.230 ± 0.019 0.237 ± 0.017 0.238 ± 0.013 0.224 ± 0.011 0.104 ± 0.085 0.175 ± 0.017 0.228 ± 0.021 0.289 ± 0.006
chameleon 0.324 ± 0.006 0.272 ± 0.024 0.287 ± 0.026 0.240 ± 0.056 0.281 ± 0.030 0.267 ± 0.030 0.253 ± 0.038 0.260 ± 0.045 0.298 ± 0.081 0.387 ± 0.018

in
f er (15k) 0.216 ± 0.016 0.387 ± 0.067 0.244 ± 0.049 0.315 ± 0.001 0.316 ± 0.000 0.543 ± 0.086 oom 0.065 ± 0.000 0.178 ± 0.040 0.915 ± 0.007

er (30k) 0.094 ± 0.035 0.330 ± 0.021 0.292 ± 0.022 0.102 ± 0.064 0.102 ± 0.058 0.423 ± 0.049 oom oom oom 0.872 ± 0.008

Supplementary Table 9: Accuracy for 11 node-level classification tasks, presented as mean ± standard deviation over 5 different runs, including GIN and DropGIN. The
number of nodes for the shortest path (sp) benchmarks is given in parentheses (based on randomly-generated ‘infected’ Erdős–Rényi (ER) graphs; SI 8 for details). Additional
heterophily results are provided in Supplementary Table 10. The highest mean values are highlighted in bold.

Dataset (↑) GCN GIN DropGIN GAT GATv2 PNA Graphormer TokenGT GPS ESA

ppi 0.991 ± 0.001 0.960 ± 0.027 0.913 ± 0.056 0.996 ± 0.000 0.992 ± 0.002 0.996 ± 6.480 n/a n/a n/a 0.995 ± 0.000

ci
te citeseer 0.648 ± 0.008 0.626 ± 0.008 0.426 ± 0.016 0.625 ± 0.018 0.649 ± 0.005 0.557 ± 0.027 oom 0.470 ± 0.016 0.614 ± 0.011 0.651 ± 0.008

cora 0.822 ± 0.005 0.786 ± 0.012 0.595 ± 0.029 0.803 ± 0.014 0.785 ± 0.007 0.716 ± 0.019 oom 0.456 ± 0.159 0.698 ± 0.033 0.820 ± 0.004

he
te

ro
ph

il
y roman emp. 0.462 ± 0.002 0.755 ± 0.005 0.764 ± 0.003 0.703 ± 0.016 0.721 ± 0.009 0.831 ± 0.004 n/a n/a 0.851 ± 0.013 0.850 ± 0.007

amazon r. 0.284 ± 0.003 0.363 ± 0.013 0.324 ± 0.013 0.358 ± 0.013 0.352 ± 0.017 0.311 ± 0.016 n/a n/a 0.418 ± 0.061 0.445 ± 0.016
minesweeper 0.605 ± 0.001 0.764 ± 0.022 0.702 ± 0.092 0.713 ± 0.016 0.729 ± 0.007 0.801 ± 0.033 n/a n/a 0.862 ± 0.002 0.852 ± 0.003
tolokers 0.595 ± 0.006 0.601 ± 0.034 0.628 ± 0.011 0.649 ± 0.007 0.642 ± 0.005 0.649 ± 0.022 n/a n/a 0.805 ± 0.003 0.714 ± 0.011
squirrel 0.318 ± 0.010 0.318 ± 0.025 0.346 ± 0.024 0.351 ± 0.010 0.353 ± 0.013 0.338 ± 0.018 0.258 ± 0.048 0.294 ± 0.017 0.422 ± 0.013 0.409 ± 0.008
chameleon 0.436 ± 0.004 0.399 ± 0.020 0.414 ± 0.019 0.363 ± 0.042 0.400 ± 0.023 0.395 ± 0.021 0.378 ± 0.032 0.381 ± 0.034 0.431 ± 0.068 0.478 ± 0.015

in
f er (15k) 0.227 ± 0.020 0.351 ± 0.116 0.154 ± 0.086 0.361 ± 0.003 0.364 ± 0.000 0.528 ± 0.073 oom 0.091 ± 0.000 0.626 ± 0.003 0.886 ± 0.011

er (30k) 0.159 ± 0.020 0.189 ± 0.103 0.124 ± 0.078 0.246 ± 0.130 0.237 ± 0.121 0.442 ± 0.087 oom oom oom 0.760 ± 0.040

5

Supplementary Table 10: Matthews correlation coefficient (MCC) for the heterophilous node-level classifica-
tion tasks and two additional baselines, presented as mean ± standard deviation over 5 different runs.

Dataset (↑) GraphSAGE GT

he
te

ro
ph

il
y roman empire 0.83 ± 0.00 0.84 ± 0.00

amazon ratings 0.36 ± 0.00 0.34 ± 0.01
minesweeper 0.65 ± 0.01 0.57 ± 0.04
tolokers 0.23 ± 0.02 0.38 ± 0.01
squirrel filtered 0.14 ± 0.03 0.18 ± 0.01
chameleon filtered 0.27 ± 0.03 0.25 ± 0.04

SI 2 Additional time and memory results

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

200

400

600

800

1000

Ti
m

e
(s

)

DOCKSTRING
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
TokenGT
GPS
ESA

(a) Training time for dockstring.

(1
28

, 4
)

(1
28

, 6
)

(1
28

, 8
)

(1
28

, 1
0)

(2
56

, 4
)

(2
56

, 6
)

(2
56

, 8
)

(2
56

, 1
0)

(5
12

, 4
)

(5
12

, 6
)

(5
12

, 8
)

(5
12

, 1
0)

Architecture (dimension, layers)

0

5

10

15

20

M
ax

im
um

 m
em

or
y

(G
B)

DOCKSTRING
Algorithm

GCN
GIN
GINDrop
GAT
GATv2
PNA
TokenGT
GPS
ESA

(b) Allocated memory for dockstring.

Supplementary Figure 1: The elapsed time for training for a single epoch on the dockstring dataset (in
seconds), and the maximum allocated memory during this training epoch (GB).

SI 3 Sourcing and licensing
Most datasets are sourced from the PyTorch Geometric library (MIT license). Datasets with different sources
include: dockstring (Apache 2.0, https://github.com/dockstring/dockstring), the heterophily datasets
(MIT license, https://github.com/yandex-research/heterophilous-graphs), the peptide datasets from the
Long Range Graph Benchmark project (MIT license, https://github.com/vijaydwivedi75/lrgb), the GW
frontier orbital energies for qm9 (CC BY 4.0 license, https://doi.org/10.6084/m9.figshare.21610077.v1),
and the Open Catalyst Project (CC BY 4.0 license for the datasets, MIT license for the Python package,
https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset).

All GNN implementations used in this work are sourced from the PyTorch Geometric library (MIT license).
The Graphormer and TokenGT implementations are sourced from the Huggingface project (Apache 2.0
license). The Graphormer implementation used for the 3D modelling task is sourced from the official GitHub
repository (MIT license, https://github.com/microsoft/Graphormer). GraphGPS also uses the MIT license.
PyTorch uses the BSD-3 license.

SI 4 Transfer learning setup
The transfer learning setup consists of randomly selected training, validation, and test sets of 25K, 5K, and
respectively 10K molecules with GW calculations (from the total 133,885). This setup mimics the low amounts
of high quality/fidelity data available in drug discovery and quantum simulations projects. In the transductive
case, the entire dataset with DFT targets is used for pre-training (including the 10K test set compounds, but
only with DFT-level measurements), while in the inductive setting the 10K set is completely excluded. Here,
we perform transfer learning by pre-training a model on the DFT target for a fixed number of epochs (150)
and then fine-tuning it on the subset of 25K GW calculations. In the transductive case, pre-training occurs
on the full set of 133K DFT calculations, while in the inductive case the DFT test set values are removed
(note that the evaluation is done on the test set GW measurements).

6

https://github.com/dockstring/dockstring
https://github.com/yandex-research/heterophilous-graphs
https://github.com/vijaydwivedi75/lrgb
https://doi.org/10.6084/m9.figshare.21610077.v1
https://github.com/Open-Catalyst-Project/Open-Catalyst-Dataset
https://github.com/microsoft/Graphormer

SI 5 Limitations
In terms of limitations, we highlight that the available libraries are not optimised for masking or custom atten-
tion patterns. This is most evident for very dense graphs (tens of thousands of edges or more). Memory efficient
and Flash attention are available natively in PyTorch [46] starting from version 2.0, as well as in the xFormers
library [47]. More specifically, we have tested at least 5 different implementations of ESA: (1) leveraging the
MultiheadAttention module from PyTorch, (2) leveraging the MultiHeadDispatch module from xFormers,
(3) a manual implementation of multihead attention, relying on PyTorch’s scaled dot product attention func-
tion, (4) a manual implementation of multihead attention, relying on xFormers’ memory efficient attention,
and (5) a naive implementation. Options (1) - (4) can all make use of efficient and fast implementations.
However, we have observed performance differences between the 4 implementations, as well as compared
to a naive implementation. This behaviour is likely due to the different low-level kernel implementations.
Moreover, Flash attention does not currently support custom attention masks as there is little interest for
such functionality from a language modelling perspective.

Although the masks can be computed efficiently during training, all frameworks require the last two dimensions
of the input mask tensor to be of shape (Ln, Ln) for nodes or (Le, Le) for edges, effectively squaring the
number of nodes or edges. However, the mask tensors are sparse and a sparse tensor alternative could greatly
reduce the memory consumption for large and dense graphs. Such an option exists for the PyTorch native
attention, but it is currently broken.

Another possible optimisation would be to use nested (ragged) tensors to represent graphs, since padding
is currently necessary to ensure identical dimensions for attention. A prototype nested tensor attention is
available in PyTorch; however, not all the required operations are supported and converting between normal
and nested tensors is slow.

For all implementations, it is required that the mask tensor is repeated by the number of attention heads (e.g.,
8 or 16). However, a notable bottleneck is encountered for the MultiheadAttention and MultiHeadDispatch
variants described above, which require that the repeats happen in the batch dimension, i.e., requiring 3D
mask tensors of shape (B × H, L, L), where H is the number of heads. The other two efficient implementations
require a 4D mask instead, i.e., (B, H, L, L), where one can use PyTorch’s expand function instead of repeat.
The expand alternative does not use any additional memory, while repeat requires ×H memory. Note that it
is not possible to reshape the 4D tensor created using expand without using additional memory.

Finally, we noticed a limitation involving PyTorch’s nonzero() tensor method, which is required as part of
the edge masking algorithm (Algorithm 1). This is covered in detail in SI 9. Currently, the nonzero() method
fails for very dense graphs. A fix would require an update to 64-bit integer limits.

SI 6 Helper functions
consecutive is a helper function that generates consecutive numbers starting from 0, with a length specified
in its tensor argument as the difference between adjacent elements, and a second integer argument used for
the last length computation, e.g., consecutive([1, 4, 6], 10) = [0, 1, 2, 0, 1, 0, 1, 2, 3], and first unique index
finds the first occurrence of each unique element in the tensor (sorted), e.g., first unique index([3, 2, 3, 4, 2])
= [1, 0, 3]. The implementations are available in our code base.

SI 7 Experimental setup
We follow a simple and universal experimental protocol to ensure that it is possible to compare the results
of different methods and to evaluate a large number of datasets with high throughput. Below in SI 7.1 we
described the grid search approach and the used search parameters. For the basic hyperparameters such as
batch size and learning rate, we chose a number of reasonable hyperparameters and settings for all methods,
regardless of their nature (GNN or attention-based). This includes the AdamW optimiser [68], more specifically
the 8-bit version [69], learning rate (0.0001), batch size (128), mixed precision training with the bfloat16 tensor
format, early stopping with a patience of 30 epochs (100 for the very small datasets such as freesolv), and
gradient clipping (set to the default value of 0.5). Furthermore, we used a simple learning rate scheduler that
halved the learning rate if no improvement was encountered for 15 epochs (half the early stopping patience).
If these parameters led to out-of-memory errors, we attempted reducing the batch size by 2 until the error
was fixed, or reducing the hidden dimension as a last resort.

For Graphormer and TokenGT, we leverage the huggingface [70] implementation. We have adapted the
TokenGT implementation to use Flash attention, which was not originally supported. For Graphormer,
this optimisation is not possible since Flash attention is not compatible with some operations required by
Graphormer. However, we did optimise the data loading process compared to the original huggingface
implementation, leading to lower RAM usage.

7

SI 7.1 Hyper-parameter tuning
For a fair and comprehensive evaluation, we tune each algorithm for each dataset using a grid search approach
and a selection of reasonable hyperparameters. These include the number of layers, the number of attention
heads for GAT(v2) and graph transformers, dropout, and hidden dimensions. For graph-level GNNs, we
evaluated configurations with 4 to 6 layers, hidden dimensions in {128, 256, 512}, the number of GAT heads
in {8, 16}, and GAT dropout in {0, 0.2}. For node-level GNNs, we adapted the search since these tasks are
more sensitive to overfitting, and used a number of layers in {1, 2, 4, 6}, hidden dimensions in {64, 128, 256},
the same GAT heads and dropout settings, and dropout after each GNN layer in {0, 0.2}. For Graphormer,
TokenGT, and GraphGPS, we evaluate models with the number of layers in {4, 6, 8, 10}, the number of
attention heads in {4, 8, 16}, and hidden dimensions in {128, 256, 512}. For ESA, we generally focused on
models with 6 to 10 layers, with SABs at the start and end and MABs in the middle. Hidden dimensions
are selected from {256, 512} and the number of attention heads from {8, 16, 32}. We evaluate pre-LN and
post-LN architectures, standard and gated MLPs, and different MLP hidden dimensions and number of MLP
layers on a dataset-by-dataset basis. The best configuration is selected based on the validation loss and results
are reported on the test set from 5 different runs. Based on recent reports on the performance of GNNs
[30], we augmented all 6 GNN baselines with residual connections and normalisation layers for each graph
convolutional layer. These strategies are not part of the original message passing specification but lead to
substantial uplifts. For datasets with established splits, such as cifar10, mnist, or zinc, we use the available
splits. For dockstring, only train and test splits are available, so we randomly extract 20,000 train molecules
for validation. Otherwise, we generate our own splits with a train/validation/test ratio of 80%/10%/10%. All
models are trained and evaluated using mixed-precision training with the bfloat16 tensor format.

SI 7.2 Metrics
Given the scale of our evaluation, it is crucial to use an appropriate selection of performance metrics. To this
end, we selected the metrics according to established and recent literature. For classification tasks, there is a
growing consensus that Matthew’s correlation coefficient (MCC) is the preferred metric over alternatives such
as accuracy, F-score, and the area under the receiver operating characteristic curve (AUROC or ROC-AUC)
[71–74]. The AUROC in particular has been shown to be problematic [75–77]. The MCC is an informative
measure of a classifier’s performance as it summarises the four basic rates of a confusion matrix: sensitivity,
specificity, precision, and negative predictive value [75]. Similarly, the R2 has been proven to be more
informative than alternatives such as the mean absolute or squared errors for regression tasks [78]. Thus,
our first choices for reporting results are the MCC and R2, depending on the task. For comparison with
leaderboard results and for specialised fields such as quantum mechanics, we also report comparable metrics
(i.e., accuracy, mean absolute error, or root mean squared error).

SI 7.3 Baselines
We include classic message passing baselines in the form of GCN, GAT, and GIN due to their recent resurgence
against sophisticated graph transformers and their widespread use. We also include the improved GATv2
[24] to complement GAT, and PNA for being neglected in other works despite its remarkable empirical
performance. We complete the message passing baselines by including DropGNN [79], a family of provably
expressive GNNs that can solve tasks beyond 1-WL in an efficient manner by randomly dropping nodes. As
in the original paper, we use GIN as the main underlying mechanism and label this technique DropGIN.
Regarding transformer baselines, we select Graphormer, TokenGT, and GraphGPS, not only due to their
widespread use, but also due to generally outperforming previous generation graph transformers such as SAN.
This selection is balanced, in the sense that Graphormer and TokenGT are part of a class of algorithms that
focuses on representing the graph structure through encodings and token identifiers, while GraphGPS relies
on GNNs and is thus a hybrid approach.

SI 8 Infected graph generation
The infected graphs are generated using the InfectionDataset from PyTorch Geometric. We generated two
Erdős–Rényi (ER) graphs with different sizes:

• with 15,000 nodes, 40 infected nodes, a maximum shortest path length of 20, and an edge probability of
0.00009.

• with 30,000 nodes, 20 infected nodes, a maximum shortest path length of 20, and an edge probability of
0.00005.

These settings ensure a relatively balanced classification task for both graph sizes.

8

SI 9 Adaptations for Open Catalyst Project
Extending a given model to work with 3D data is not trivial, as demonstrated by the follow-up paper dedicated
to extending and benchmarking Graphormer on 3D molecular problems [62]. As described in that paper, for the
Open Catalyst Project (OCP) data certain pre-processing steps are taken to ensure satisfactory performance.
Concretely, a set of Gaussian basis functions is used to encode atomic distances, which are not used in their
raw form. The idea of encoding raw quantities to achieve expressive and orthogonal representations has also
been studied by Gasteiger et al. for DimeNet [5], taking things further and using Bessel functions. This idea
is prevalent in the literature and shows some of the complications of working with 3D coordinates.

In addition, OCP exhibits several unique characteristics that must be accounted for to extract the most
performance out of any given model. One such property is given by periodic boundary conditions (common
for crystal systems), requiring a dedicated pre-processing step. Another characteristic is the presence of 3
types of atoms: sub-surface slab atoms, surface slab atoms, and adsorbate atoms, which must be distinguished
by the model. Finally, the task chosen in the benchmarking Graphormer paper is not only relaxed energy
prediction, but also relaxed structure prediction, entailing the prediction of new coordinates for all atoms.
This again leverages additional data in the dataset and can be considered a task with synergistic positive
effects for relaxed energy prediction.

On top of this, the 3D implementation of Graphormer is unavailable on huggingface (the version used
throughout the paper). We chose to perform experiments using a 10K training set that is provided as part of
OCP, and the same validation set of size 25K. The entire OCP dataset consists of around 500K dense catalytic
structures and training both Graphormer and ESA/NSA on this task would entail a computational effort
larger than for any other evaluated dataset. To complicate things further, each ‘graph’ is dense, leading to a
significant GPU memory burden, such that only small batch sizes are possible even for high-end GPUs.

Moreover, with higher batch sizes we have hit a limit of PyTorch: the nonzero() tensor method that is
used as part of the mask computation is not defined for tensors with more elements than the 32-bit integer
limit. While this operation can be chunked in smaller tensors, this induces a significant slowdown while
training. Overall, this software limitation highlights the fact that current libraries are not optimised for
masked attention. We present other software limitations in SI 5, as well as possible solutions, and we believe
that ESA can be significantly optimised with careful software (and even hardware) design.

For the 10K train + 25K validation task, we have adapted our method to use the 3D pre-processing described
above, and modified Graphormer to perform only relaxed energy prediction (i.e., without relaxed structure
prediction). We used a batch size of 16 for both models, and roughly equivalent settings between NSA and
Graphormer, where possible, including 4 layers, 16 attention heads, an embedding/hidden size of 256, and
the same learning rate (1e-4). Both methods used mixed precision training. Here, we used the Graphormer
3D implementation from the official repository. We also note that structural information (in the form of
edge index tensors in PyTorch Geometric) is provided in the OCP dataset. They are derived in a similar way
to PyTorch Geometric’s radius graph() function, which connects points based on a distance cutoff. We can
use this information for ESA/NSA.

SI 10 Experimental platform
Representative versions of the software used as part of this paper include Python 3.11, PyTorch version 2.5.1
with CUDA 12.1, PyTorch Geometric 2.5.3 and 2.6.0, PyTorch Lightning 2.4.0, huggingface transformers version
4.35.2, and xFormers version 0.0.27. It is worth noting that attention masking and efficient implementations
of attention are early features that are advancing quickly. This means that their behaviour might change
unexpectedly and there might be bugs. For example, PyTorch 2.1.1 recently fixed a bug that concerned
non-contiguous custom attention masks in the scaled dot product attention function.

In terms of hardware, the GPUs used include an NVIDIA RTX 3090 with 24GB VRAM, NVIDIA V100
with 16GB or 32GB of VRAM, and NVIDIA A100 with 40GB and 80GB of VRAM. Recent, efficient
implementations of attention are optimised for the newest GPU architectures, generally starting from Ampere
(RTX 3090 and A100).

SI 11 Dataset statistics
We present a summary of all the used datasets, along with their size and the maximum number of nodes and
edges encountered in a graph in the dataset (Supplementary Table 11). The last two are important as they
determine the shape of the mask and of the inputs for the attention blocks. Technically, we require that the
maximum number of nodes/edges is determined per batch and the tensors to be padded accordingly. This
per-batch maximum is lower than the dataset maximum for most batches. However, certain operations such

9

https://github.com/pytorch/pytorch/releases/tag/v2.1.1

as layer normalisation, if performed over the last two dimensions, require a constant value. To enable this, we
use the dataset maximum.

Supplementary Table 11: Summary of used datasets, their size, and the maximum number of nodes (N) and
edges (E) seen in a graph in the dataset.

Dataset Size N E

lr
gb pept-struct 15 535 444 928

pept-func 15 535 444 928

no
de

ppi 24 3 480 106 754
cora 1 2 708 10 556
CiteSeer 1 3 327 9 104
roman empire 1 22 662 65 854
amazon ratings 1 24 492 186 100
minesweeper 1 10 000 78 804
tolokers 1 11 758 1 038 000
squirrel 1 2 223 93 996
chameleon 1 890 17 708
infected 15000 1 15 000 20 048
infected 30000 1 30 000 45 258

M
ol

N
et

FreeSolv 642 44 92
lipo 4 200 216 438
esol 1 128 119 252
bbbp 2 039 269 562
bace 1 513 184 376
hiv 41 127 438 882

m
ol zinc 249 456 38 90

pcqm4mv2 3 452 151 51 118

nc
i nci1 4 110 111 238

nci09 4 127 111 238

cv

mnist 70 000 75 600
cifar10 60 000 150 1 200

B
io

In
f enzymes 600 126 298

proteins 1 113 620 2 098
dd 1 178 5 748 28 534

sy
nt

h synthetic 300 100 392
synthetic new 300 100 396
synthie 400 100 424

so
ci

al

imdb-binary 1 000 136 2 498
imdb-multi 1 500 89 2 934
twitch egos 127 094 52 1 572
reddit thr. 203 088 97 370

qm9 133 885 29 56

dockstring 260 060 164 342

MalNetTiny 5 000 4 994 20 096

Open Catalyst Project 35 000 334 11 094

10

	Introduction
	Related Work
	Methods
	Masked Attention Modules
	ESA Architecture
	Time and Memory Scaling

	Results
	Molecular Learning
	Mixed Graph-level Tasks
	Node-level Benchmarks
	Effects of Varying the Layer Order and Type
	Time and Memory Scaling

	Discussion
	Additional benchmarking results
	Additional time and memory results
	Sourcing and licensing
	Transfer learning setup
	Limitations
	Helper functions
	Experimental setup
	Hyper-parameter tuning
	Metrics
	Baselines

	Infected graph generation
	Adaptations for Open Catalyst Project
	Experimental platform
	Dataset statistics

