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Abstract: Even in the absence of an experimental effect, functional magnetic resonance imaging (fMRI) time
series generally demonstrate serial dependence. This colored noise or endogenous autocorrelation typically
has disproportionate spectral power at low frequencies, i.e., its spectrum is 1

f
-like. Various pre-whitening and

pre-coloring strategies have been proposed to make valid inference on standardised test statistics estimated by
time series regression in this context of residually autocorrelated errors. Here we introduce a new method
based on random permutation after orthogonal transformation of the observed time series to the wavelet
domain. This scheme exploits the general whitening or decorrelating property of the discrete wavelet
transform and is implemented using a Daubechies wavelet with four vanishing moments to ensure exchange-
ability of wavelet coefficients within each scale of decomposition. For 1

f
-like or fractal noises, e.g., realisations

of fractional Brownian motion (fBm) parameterised by Hurst exponent 0 , H , 1, this resampling algorithm
exactly preserves wavelet-based estimates of the second order stochastic properties of the (possibly nonsta-
tionary) time series. Performance of the method is assessed empirically using 1

f
-like noise simulated by

multiple physical relaxation processes, and experimental fMRI data. Nominal type 1 error control in brain
activation mapping is demonstrated by analysis of 13 images acquired under null or resting conditions.
Compared to autoregressive pre-whitening methods for computational inference, a key advantage of wavelet
resampling seems to be its robustness in activation mapping of experimental fMRI data acquired at 3 Tesla
field strength. We conclude that wavelet resampling may be a generally useful method for inference on
naturally complex time series. Hum. Brain Mapping 12:61–78, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Colored noise

Neurophysiological time series obtained by func-
tional magnetic resonance imaging (fMRI) are com

monly tested for an experimental effect in the time
domain, by fitting a linear regression model to the
time series y or {Yt} t 5 1, 2, 3, . . . , N at each voxel:

y 5 Xb 1 r. (1)

This model partitions each time series into a compo-
nent determined by the experimental design Xb,
where X is the design matrix and b is the vector of
regression model parameters, and a residual compo-
nent y 2 Xb 5 r or {rt} with variance s2 and covari-

*Correspondence to: Ed Bullmore, Brain Mapping Unit, Dept Psy-
chiatry (Box 255), Addenbrooke’s Hospital, Cambridge CB2 2QQ,
UK. E-mail: etb23@cam.ac.uk
Received for publication 26 May 2000; accepted 14 September 2000

r Human Brain Mapping 12:61–78(2001) r

© 2001 Wiley-Liss, Inc.



ance matrix V. If the model residuals are serially in-
dependent or white noise then the off-diagonal
elements of V are zero, i.e., V 5 s2I, where I is the
identity matrix, and the Gauss-Markov theorem guar-
antees that ordinary least squares estimates will be
unbiased and will have minimum variance over all
linear estimates. As a rule, however, the residuals
generated by fitting a linear model to an fMRI time
series will not be white noise; more usually, they will
be colored noise demonstrating some degree of serial
dependency or temporal autocorrelation, i.e., the off-
diagonal elements of V will not be zero.

In the frequency domain, this is equivalent to stat-
ing that the power spectral density of the noise Sf(r) is
not uniform over all frequencies f, i.e., Sf (r) ÷ f 0. A
careful analysis of the spectral characteristics of fMRI
noise, examined in datasets acquired under resting or
“null” conditions, has instead suggested that the noise
may generally have 1

f
-like properties with dispropor-

tionate power at lower frequencies, i.e., Sf (r) ' f 2a

with spectral exponent a . 0 [Zarahn et al., 1997;
Aguirre et al., 1997].1

Several sources of color in fMRI have been sug-
gested, including hemodynamically-convolved neuro-
nal or instrumental (white) noise, aliased cardiorespi-
ratory pulsation, uncorrected head movement, and
experimentally-induced variance that is not well-mod-
elled by the design matrix. It is clear from studies of
cadavers and phantoms that colored noise may arise
in the absence of physiological processes and must
therefore be due, at least partly, to physical effects
[Zarahn et al., 1997; Smith et al., 1999]. It is also known
that the magnitude and form of residual autocorrela-
tion may vary considerably from voxel to voxel within
the brain [Bullmore et al., 1996; Locascio et al., 1997]
and may be influenced by experimental parameters
including the repetition time (TR) between consecu-
tive time points in the series, and the period length in
blocked periodic experimental designs [Purdon and
Weisskoff, 1998]. The characterisation of fMRI noise as
a 1

f
-like process does not by itself discriminate between

physical and physiological sources. 1
f
-like processes,

which are generally self-affine and have non-integer
fractal dimensions in the time domain, are naturally
ubiquitous [Mandelbrot, 1977; Voss, 1988]; see Appen-
dix. Physical systems in which many particles are

relaxing from excited states at different rates are well
known generators of 1

f
-like noise [Schroeder, 1991],

which seems potentially relevant to fMRI. And phys-
iological time series recorded by electrocardiography
[Goldberger et al., 1990] and electroencephalography
[Bullmore et al., 1994a] have demonstrated 1

f
-like or

fractal properties, indicating that this may be a com-
mon mode of dynamic behavior for human biological
processes also.

Pre-whitening and pre-coloring

But regardless of the source(s) of colored noise in
fMRI, it represents a problem for inference based on
time series regression parameters. Ordinary least
squares estimates of parameter standard errors, given
by s2(XTX)21, will then be under-estimates, meaning
that standardised test statistics, constructed as the ra-
tio of a parameter to its standard error, will be over-
estimates, and type 1 error will be inflated above its
nominal rate. This problem has been addressed in the
time domain in one of two main ways: either by
estimating the off-diagonal elements of V by model-
ling the residual series r [Bullmore et al., 1996; Locas-
cio et al., 1997; Purdon and Weisskoff, 1998; Dale,
1999]; or by predicting the off-diagonal elements of V
by convolving the data and design matrix with a
known smoothing kernel [Friston et al., 1995; Worsley
and Friston, 1995; Friston et al., 2000]. The first method
is often called pre-whitening because it attempts to
remove endogenous autocorrelation from the residu-
als of an iterative least squares fit; the second method
has been called pre-coloring because it attempts to re-
place endogenous autocorrelation of unknown form
by imposing exogenous auto-correlation of a known
form. Fundamentally, the two approaches are very
similar.

To pre-whiten the data, we find the whitening or
deconvolution matrix K21, where KKT 5 V is the
factorisation or Cholesky decomposition of the covari-
ance matrix V, and pre-multiply both the data and the
design matrix by this whitening matrix before fitting
the transformed model,

K 2 1y 5 K21Xb 1 e, (2)

by least squares to yield a serially independent or
white noise residual series {et}. The estimated param-
eters and their standard errors will then have the
desirable properties of being unbiased with minimum
variance.

To pre-color the data, we specify a coloring or con-
volution matrix K, and pre-multiply both the data and

1A notational note: The term 1
f
-like is used here in preference to the

simpler 1
f

partly because the spectral exponent 1 # a # 3 may not
always be exactly equal to 1 and partly because many such “pink”
or fractal or fractional noises are not stationary and therefore cannot
strictly be described in terms of a power spectrum; see Appendix.
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the design matrix by this coloring matrix before fitting
the transformed model,

Ky 5 KXb 1 Ke, (3)

by least squares to yield a serially dependent or col-
ored noise series Ke which has covariance matrix V 5
s2KKT. Appropriately adjusted estimates of parameter
standard errors are then given by the theory of gen-
eralised least squares [Worsley and Friston, 1995].

These two approaches have some complementary
strengths and weaknesses: pre-whitening is theoreti-
cally more efficient but may be biased if the unknown
form of the endogenous autocorrelation is not cor-
rectly modelled; pre-coloring is less efficient but less
prone to bias provided the coloring matrix is robust
enough to impose its predicted form on the residual
autocorrelation [Friston et al., 2000]. Pre-coloring will
also incur a risk of attenuating high frequency features
in the data that may be experimentally determined
[Marchini and Ripley, 2000], perhaps especially if the
experimental design involves rapidly sequential pre-
sentation of discrete trials. But, at present, there is
probably insufficient data to judge the adequacy of
either approach in dealing with the greater challenges
of treating colored noise in event-related experiments
or experiments conducted at high field strength, i.e., $
3 Tesla.

Both pre-coloring and pre-whitening share strengths
and weaknesses in common compared to alternative
methods in the frequency domain [Lange and Zeger,
1997; Marchini and Ripley, 2000]. The main relative
strength of Fourier-based methods, for periodically
designed experiments, is that the Fourier transform is
asymptotically independent at different frequencies
and this simplifies inference. For example, a test sta-
tistic constructed as the ratio of the log periodogram to
the smoothed spectral density of the noise at a given
frequency will be unbiased by endogenous color con-
tributing power at other frequencies [Marchini and
Ripley, 2000]. But time domain methods seem rela-
tively stronger in two related ways: they are adaptable
to a wider range of experimental designs; and so may
be conceptually more accessible to psychologically-
minded consumers, rather than statistically-minded
producers, of brain mapping methods. To illustrate
this point, consider an experiment in which blocks of
four contrasting conditions are presented in a regu-
larly repeated sequence ABCDABCD . . . . Perio-
dogram-based methods will not be able to distinguish
the contrast between conditions A and C from the
contrast between conditions B and D, since both have

the same frequency; whereas this distinction is trivial
in the time domain. Non-periodic or event-related
designs will also be less naturally treated in the fre-
quency domain than in the time domain.

Finally, it is worth noting that both time and fre-
quency domain methods share an important limita-
tion: they assume that fMRI noise is stationary. This
assumption may simplify the mathematical treatment
of noise but it is unlikely to be realistic. More gener-
ally, we should allow that the stochastic properties of
fMRI noise may change over time and/or that the
noise may include transients and singularities.

Theoretical and computational inference

Returning to the choice between pre-whitening and
pre-coloring methods of estimation, one important cri-
terion to consider is the method by which statistical
inferences will be made on these estimates. If the
probability distribution of the test statistic under the
null hypothesis will be theoretically derived then it is
important above all that estimation is unbiased and
some loss of efficiency may be tolerated to that end; in
other words, a pre-coloring strategy might seem at-
tractive. However, if the null distribution of the test
statistic will be ascertained computationally, i.e., by
repeated random resampling of the observed data
[Efron and Tibshirani, 1993; Edgington, 1995; Davison
and Hinkley, 1997], then any bias in parameters esti-
mated on the observed data may equally apply to
parameters estimated on resampled data. In which
case, a pre-whitening strategy will seem preferable.

However, in order for a computationally ascer-
tained null distribution “automatically” to correct the
probabilities of observed test statistics for bias in their
estimation, the data must be exchangeable or, approxi-
mately, independent in whatever form they are resa-
mpled [Lehmann, 1986]. If this is so, then the autocor-
relational structure of the data will be preserved under
resampling and biased estimation will be irrelevant to
valid inference.

It is easy enough to prescribe a resampling scheme
for fMRI which fails to meet these conditions. We can
estimate the test statistic by ordinary least squares
before and after naı̈vely, repeatedly reshuffling the
time points at random. This will fail because consec-
utive time points in the raw time series are not inde-
pendent or exchangeable under the null hypothesis;
but they will be rendered independent by reshuffling.
The observed and resampled statistics will thus be
estimated on the basis of time series with different
second order properties and will be differentially bi-
ased as a result. However, if we have adequately
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pre-whitened the raw data, so that given b 5 0 we
have K21y 5 e (see Eq. 2), then we can legitimately
resample the time series by permuting {Yt} or equiv-
alently {et}. This kind of model-based resampling in
the time domain has previously been used for com-
putational inference on fMRI data [Bullmore et al.,
1996; Locascio et al., 1997] and examples of this ap-
proach are described in greater detail below. Clearly
the validity of such methods depends critically on the
adequacy of the pre-whitening matrix K21 to render
the residuals {et} independent. If the residuals are not
in fact whitened by K21 then the pre-whitened data
will not be exchangeable, there will be differential bias
in estimation of parameters on observed and resa-
mpled data, and uncontrolled type 1 error.

A rather different approach to resampling in the
time domain is to make the resampling unit a block of
consecutive time points rather than a single time
point. Provided the number of points per block is
large enough to encompass all long-range dependen-
cies in the data, we might assume that the blocks are
exchangeable and that the unknown stochastic prop-
erties of the time series under the null hypothesis will
then be preserved after resampling. There is a large
literature on block resampling for time series analysis
and sophisticated refinements have been proposed to
the basic scheme of randomly permuting non-overlap-
ping blocks of arbitrary length [Carlstein et al., 1998].
But, in practice, block resampling can fail “catastroph-
ically” to preserve serial dependencies in the data, so
that the resampled series are whiter than the observed
data, leading again to uncontrolled type 1 error [Davi-
son and Hinkley, 1997].

Another possibility is to resample the observed time
series after orthogonal transformation to another do-
main. An established example of this approach is to
take the Fourier transform of the observed time series;
randomly permute the phases of the complex-valued
transform over all Fourier frequencies; then take the
inverse Fourier transform of the “phase scrambled”
data to obtain a resampled time series which should
preserve the spectral properties of the observed data.
This method, like theoretical methods of inference in
the frequency domain [Lange and Zeger, 1997;
Marchini and Ripley, 2000], is justified by the inde-
pendence of the Fourier transform at different fre-
quencies, and by the independence of the real and
imaginary components of the transform at each fre-
quency. However, if the observed data are nonstation-
ary or include non-linear processes or long-range de-
pendencies then this phase scrambling algorithm also
may fail adequately to preserve the second order sto-

chastic properties of the observed data [Davison and
Hinkley, 1997; but see also Christofferson, 1997].

The rest of this paper

Here we introduce a new method for inference on
endogenously colored fMRI time series. Briefly, this
involves taking the discrete wavelet transform of the
time series, randomly permuting the wavelet coeffi-
cients, then inverting the transform and thereby recon-
stituting the resampled data in the time domain. This
algorithm exploits the whitening property of the dis-
crete wavelet transform, which has previously been
exploited for theoretical inference on positron emis-
sion tomography (PET) data [Ruttimann et al., 1996];
and it exactly preserves wavelet-estimated second or-
der stochastic properties of 1

f
-like noises, such as frac-

tional Brownian motion. In the next section, we de-
scribe experimental data and statistical methods; this
is followed in turn by some results of applying the
method to simulated time series and experimental
fMRI data, and then by a discussion. Some supple-
mentary material on fractals and fractional Brownian
motion is consigned to an Appendix.

METHODS AND MATERIALS

Experimental designs and data acquisition

Gradient-echo echoplanar imaging data were ac-
quired as follows:

Null (1.5T)

Thirteen normal volunteers were studied while they
lay quietly in the scanner with their eyes closed for 5
min. One hundred T*2-weighted images were acquired
at each of 14 non-contiguous slices of data in an
oblique axial plane using the 1.5 Tesla (T) GE Signa
system (General Electric, Milwaukee WI) at the Maud-
sley Hospital, London, UK: time to echo (TE) 5 40 ms,
TR 5 3 sec, in-plane resolution 5 3 mm, slice thick-
ness 5 7.7 mm, number of excitations 5 1.

Bimodal sensory stimulation (1.5T AB)

One normal volunteer was studied during blocked
periodic stimulation in both visual and auditory mo-
dalities. Visual stimulation consisted of 30 sec epochs
of 8 Hz photic flash alternating with 30 sec epochs of
darkness. Auditory stimulation consisted of 39 sec
epochs of a spoken narrative alternating with 39 sec
epochs of silence. There were five cycles of alternation
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between activation (A) and baseline (B) conditions in
the visual modality and 3.8 cycles of AB alternation in
the auditory modality. These data were acquired us-
ing the 1.5T system at the Maudsley Hospital with the
same acquisition parameters as for the null data. This
experiment was designed to activate (at different fre-
quencies) primary visual and auditory cortices.

Spatial working memory (3.0T AB)

One normal volunteer was studied using a blocked
periodic design which alternated between 32 sec ep-
ochs of a spatial working memory task (A) and 32 sec
epochs of visual fixation on a central crosshair (B).
During each epoch of the spatial working memory
condition, two or four elements of a 5 3 5 square grid
were sequentially highlighted, each element being
highlighted for 1,000 ms. Then the empty grid was
shown for 2,000 or 4,000 ms before a single element of
the grid was differently highlighted. The subject’s task
was to indicate by right-handed button press if the
(blue) element highlighted after the delay was or was
not the same as one of the series of (black) elements
highlighted before the delay. A different series of el-
ements was highlighted before the delay period in
each trial. 256 T*2-weighted images were acquired at
each of 17 non-contiguous slices in an oblique axial
plane using the 3T Bruker system (Bruker Medical,
Etlinger, Germany) at the Wolfson Brain Imaging Cen-
tre (WBIC), Cambridge, UK: TE 5 40 ms, TR 5 2 sec,
in-plane resolution 5 1.95 3 3.9 mm, slice thickness 5
5.5 mm, number of excitations 5 1. This experiment
was designed to activate lateral prefrontal, medial
premotor, and bilateral posterior parietal regions.

Sign language (3.0T ABAC)

One normal volunteer was studied using a blocked
ABACABAC . . . design, each epoch lasting for 21 sec.
During the A condition, the subject saw a static image
of a person, “the signer;” during the B condition, the
signer moved his hands to express a sentence using
British Sign Language (BSL); during the C condition,
the signer moved his hands to express single words in
BSL. The subject’s task was to look at these displays
and understand the signs they were shown. 140 T*2-
weighted images were acquired at each of 16 non-
contiguous slices in an oblique axial plane using the
3T Varian system (Varian NMR Instruments, Palo Alto
CA) at the Functional Magnetic Resonance Imaging of
the Brain (FMRIB) Centre, Oxford, UK: TE 5 30 ms,
TR 5 3 sec, in-plane resolution 5 3 mm, slice thick-
ness 5 8 mm, number of excitations 5 1. This exper-

iment was designed to activate visual areas in the
vicinity of the occipito-temporal junction that have
previously been activated in studies of lip-reading
[Calvert et al., 1997], which also demands extraction of
semantic information from visual stimuli.

Motor attention and reaction (3.0T ER)

One normal volunteer was studied using a discrete
trial or event-related (ER) design. Images were acquired
continuously for 10 min, with the same acquisition pa-
rameters as for the sign language experiment, and the
subject was asked to wait for a simple visual cue (a white
circle on a black background) before immediately oppos-
ing the thumb and index finger of his right hand. Only
five cues were presented in the course of the experiment
(mean ISI 5 2 min). This experiment was designed to
activate systems for motor response selection, motor ac-
tion, and visual cue perception.

Time domain models for the experimental effect

For all of these experimental data the same general
approach to regression model specification was
adopted [Friston et al., 1995]. An N-length vector was
constructed to indicate which images were acquired
during presentation of an activation condition (1) and
which were acquired during presentation of a baseline
condition (0). This vector was separately convolved
with two Poisson kernels, parameterised by l 5 4 s or
l 5 8 s. These two Poisson-convolved input functions
were combined to form the (N 3 2) design matrix X.
The design matrix was fit after motion correction
[Bullmore et al., 1999b], linear detrending, and mean-
zeroing of each observed fMRI time series.

Autoregressive pre-whitening

To implement model-based resampling in the time
domain, we must inevitably assume some model for
the endogenous autocorrelation. We chose to specify
autoregressive AR(p) models of orders p 5 1 and 3 for
the colored component in the least squares residuals,

r 5 y 2 Xb,

rt 5 O
i51

p

airt2i 1 et, e , 1~0, s2I). (4)

We have previously used an AR(1) model for autore-
gressive pre-whitening and shown that this was suf-
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ficient to whiten periodically designed data acquired
at 1.5T [Bullmore et al., 1996]. We expected that the
AR(3) model might have some additional capacity to
whiten any residual series not satisfactorily treated by
the simpler form. It is predictable that even higher
order AR processes might have even greater whiten-
ing properties but this will be at the cost of degrees of
freedom in the prewhitened time series and the spec-
ification of very high order AR models in this context
is not recommended [Marchini and Ripley, 2000].

The estimated autoregressive coefficients {âi} were
used to pre-whiten the observed data and design ma-
trix by the Cochrane-Orcutt procedure [Cochrane and
Orcutt, 1949; Venables and Ripley, 1999]. This algo-
rithm is computationally quicker than explicitly con-
structing the whitening matrix K21 but achieves al-
most exactly the same result:

1. Fit the model y 5 Xb 1 r by least squares
2. Fit the AR(p) model, Eq 4, to the residuals r
3. Transform the data and each row of the design

matrix Xt by the estimated AR coefficients

Y*t 5 Yt 2 O
i51

p

âiYt2i

X*t 5 Xt 2 O
i51

p

âiXt2i (5)

4. Fit the transformed model to the transformed
data y* 5 X*b* 1 e to obtain a new set of regres-
sion parameter estimates b̂* and their standard
errors se

2(X*TX*)21.
5. Iterate the AR modelling process by multiplying

the original design matrix by the new parameter
vector to generate a new set of residuals r* 5 y 2
Xb*, which are returned to the algorithm at step
2. This loop is iterated, usually two to three times,
until the sum of squared differences between
consecutive estimates of the AR parameter vector
is less than 1025.

For activation mapping, our test statistic S for an
experimental effect is the sum of squared standardised
regression coefficients b or {b1, b2}:

S 5 S b̂1

SE~b̂1!
D 2

1 S b̂2

SE~b̂2!
D 2

, (6)

where the estimated parameters and their standard
errors (SE) are those returned by the Cochrane-Orcutt

algorithm at convergence (asterisks are omitted for
notational convenience).

To sample the permutation distribution of S under
the null hypothesis, we randomly resample the ob-
served time series y without replacement to obtain a
permuted time series ỹ and estimate the same test
statistic in the permuted data S̃ by exactly the same
procedures as those used to estimate S in the observed
data. Resampling is repeated an arbitrary number of
times at each voxel and the resulting test statistics may
be pooled over all intracerebral voxels in the image to
sample the permutation distribution expeditiously.

However, as noted earlier, this resampling scheme
is only valid if the residuals of the pre-whitened data
{et} are serially independent. We therefore estimated
the Box-Pierce statistic BQ in each set of residuals [Box
and Pierce, 1970]:

BQ 5 Ne 3 O
i51

Q

gi
2. (7)

where {gi} i 5 1, 2, 3, . . . , Q are the autocorrelation
coefficients of the residual process e up to an arbitrary
maximum lag Q 5 10. Under the null hypothesis that
the residual process is white noise, BQ ; x2 on Q 2 p
degrees of freedom. So if this null hypothesis was
refuted with P # 0.05 at a given voxel then the ob-
served time series was not resampled to contribute to
the pooled permutation distribution and the observed
statistic S was not tested; in short, that voxel was
excluded from inferential consideration.

Resampling in the wavelet domain

Wavelets are families of orthogonal basis functions
defined by dilation and translation of a mother wave-
let c [Mallat, 1989],

cj,k~t! 5
1

Î2j cS t 2 2jk
2j D , (8)

and by dilation and translation of a father wavelet f or
scaling function,

fJ,k~t! 5
1

Î2J fS t 2 2Jk
2J D , (9)

where j 5 1, 2, 3, . . . , J indexes the scale Sj 5 2j 5 2,
4, . . . , 2J or, approximately, the inverse frequency to
which the mother or father wavelet has been dilated;
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and k 5 1, . . . , N/2j indexes the location in time to
which it has been translated. Note that the father
wavelet is only dilated at the largest scale, meaning it
represents the smoothest, lowest frequency compo-
nents of the signal.

Assuming that the number of time points in the
series is (or can be zero-padded to) a power of 2, the
discrete wavelet transform of y will yield a vector of N
wavelet coefficients w, i.e., DWT(y) 5 w. These coef-
ficients can be understood as the weightings to be
applied to the N locally supported basis elements or
wavelets {cj,k}, {fJ,k} in recovering the signal by the
inverse wavelet transform, i.e., IWT(w) 5 y. Individ-
ual wavelet coefficients are often denoted wj,k where j
and k index scale and time, as before. Wavelet decom-
position therefore projects the signal onto a set of basis
functions or a family of wavelets each of which is
localised simultaneously in time and frequency. The
Heisenberg uncertainty principle means that time and
frequency cannot both be resolved with arbitrary pre-
cision, i.e., the product of temporal resolution Dt and
frequency resolution Df is lower-bounded, DtDf $
1/4p. Wavelets at the highest level of detail j 5 1, Sj 5
2 have the finest temporal resolution but the poorest
scale resolution, whereas wavelets at the lowest level
of detail j 5 J have poor resolution in time, but good
resolution of scale.

Wavelets have been widely used in various signal
and image processing contexts since their mathemat-
ical development in the late 1980s, including many
prior applications to image compression, non-para-
metric regression, and problems in brain mapping
[Ruttimann et al., 1996, 1998; Brammer, 1998; Turkhei-
mer et al., 1999; Raz et al., 1999; Samar et al., 1999].
There are also general introductory texts by Bruce and
Gao [1996] and Mallat [1999].

From the present point of view, however, the single
most important property of the discrete wavelet trans-
form is that generally the correlation between the
wavelet coefficients of a signal will be small even if the
signal itself is highly autocorrelated in time. This is
sometimes called the whitening or decorrelating prop-
erty of the wavelet transform and it was first under-
stood theoretically for the class of signals known as
fractional Brownian motion [Flandrin, 1992; Tewfik
and Kim, 1992; Dijkerman and Mazumdar, 1994].
Wornell [1993, 1996] later showed that wavelet de-
composition also has optimally decorrelating or Kar-
hunen-Loève properties for the wider class of 1

f
-like

signals.
For fractional Brownian motion or other 1

f
-like noise

we can thus more specifically say that the expected

correlation between any two wavelet coefficients wj,k
and wj9,k9

^wj,k, wj9,k9& , 2~u2jk 2 2j9k9u2~H2R!!, (10)

or that the expected correlation between any two
wavelet coefficients at the same scale wj,k and wj,k9

^wj,k, wj,k9& , 2~uk 2 k9u2~H2R!!, (11)

where ^ z & denotes expectation, R is the number of
vanishing moments of the mother wavelet and H is the
Hurst exponent of the process; see Appendix. These
results imply, as can be shown more explicitly
[Flandrin, 1992], that the second order stochastic prop-
erties of wavelet coefficients are stationary within and
between levels of detail (even if the data are non-
stationary in the time domain). Remembering that the
Hurst exponent for fBm cannot be $ 1, we can see
that, provided the number of vanishing moments R is
greater than 2, the correlation between any pair of
wavelets will decay rapidly as an inverse power of
their separation within and between levels of detail.
More precisely, Dijkerman and Mazumdar [1994]
showed that provided R . 2H 1 1 the intercoefficient
correlations will decay hyperbolically fast within lev-
els and exponentially fast between levels. This sug-
gests that the minimum number of vanishing mo-
ments required to decorrelate fractal noises with H ,
1 will be 4.

It does not follow, however, that increasing the
number of vanishing moments above the lower limit
for effective decorrelation necessarily achieves greater
decorrelation. This is because the number of vanishing
moments of a wavelet is related to its local support in
time, which will be at least of size 2R 2 1 [Daubechies,
1988]; and as the local support of a wavelet becomes
less compact, the risk of artefactual intercoefficient
correlations due to periodic boundary correction in
computing the DWT of a finite time series becomes
greater [Tewfik and Kim, 1992]. For this reason, it is
recommended that the maximum scale of the decom-
position 2J should be set such that N/2J21 $ 2R [Tew-
fik and Kim, 1992].

Bearing in mind that an fMRI time series is typically
rather short (N ; 128), and its intercoefficient correla-
tional structure may therefore be especially sensitive
to boundary correction artefacts, it seemed sensible to
adopt the most compactly supported wavelet with
four vanishing moments, which is the fourth-order
Daubechies wavelet [Daubechies, 1988] supported
over eight time points; see Figure 1. (Interestingly,
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Ruttimann et al. [1996] likewise found empirically that
a wavelet with R 5 4 vanishing moments was suffi-
cient to decorrelate the wavelet transform of statistic
maps derived from PET data [without explicitly as-
suming a fractal form for the noise]; although they
chose to use the third order [cubic spline] Battle-
Lemarié wavelet rather than the more compactly sup-
ported Daubechies wavelet.)

The algorithm

We apply these ideas to resampling of time series
quite directly by the following algorithm:

1. Select the fourth order Daubechies wavelet, R 5
4

2. Set J 5 5, so that N/2J21 5 8 5 2R (assuming N 5
128)

3. Take the discrete wavelet transform of the zero
mean data, DWT(y) 5 w

4. Randomly resample without replacement the
wavelet coefficients w 5 {wi,j} at each level of
detail j to obtain a permuted coefficient vector w̃

5. Take the inverse wavelet transform of the per-
muted coefficients IWT(w̃) 5 ỹ to reconstruct the
resampled data in the time domain.

For activation mapping, we identically computed
the test statistic S by ordinary least squares in ob-
served and resampled data alike. We resampled each
time series in the image 10 times and pooled the
resulting estimates of S̃ over all voxels to sample its
permutation distribution.

Computational issues

Results on simulated data were obtained using S-
PLUS [Venables and Ripley, 1999]. For activation map-
ping, the wavelet resampling algorithm was imple-
mented in C [Press et al., 1992]. A pragmatic
advantage of resampling in the wavelet domain is that
the discrete wavelet transform is famously fast to com-
pute by Mallat’s pyramidal algorithm, which has com-
plexity 2(N), i.e., it is faster than fast Fourier trans-
forms with complexity 2(N log N) [Mallat, 1999].

RESULTS

Simulated noises

Fractal or 1
f
-like noises have been extensively used

in the movie industry and elsewhere to simulate nat-
ural landscapes and several algorithms for synthesis
of so-called “fractal forgeries” [Voss, 1988] are de-
scribed in the computer graphics and statistics litera-
tures [Wornell, 1993; Stoksik et al., 1994; Abry and
Sellan, 1996]. Here we use two methods of synthesis—
one based on the statistical model of fBm and the other
based on a physical process known to generate frac-
tional noise.

Fractional Brownian motion

To synthesise a realisation of fBm with arbitrary H,
a Gaussian white noise process e is multiplied by the
coloring matrix KB given by factorisation (Cholesky
decomposition) of the theoretically predicted covari-
ance matrix VB 5 KBKB

T [Krueger et al., 1996]. The
^t, u&th element of VB is defined by substituting t, u,
and the variance of the Gaussian white noise process
s2 in Eq. 17. The process is then realised (in vector
notation) by

b 5 eTKB. (12)

The expected covariance matrices VB for H 5 0.5
and H 5 0.25 are shown in Figure 2, together with
realisations of the corresponding fractional Brownian
processes. The Hurst exponents empirically estimated

Figure 1.
Daubechies mother c and father f wavelets with four vanishing
moments and local support over eight time points. This is the basis
adopted for resampling of time series in the wavelet domain
because this number of vanishing moments is sufficient to decor-
relate the wavelet coefficients of fractal noises with Hurst expo-
nent H , 1; Daubechies wavelets have minimum local support for
any given number of vanishing moments; and compactness of
support minimises artefactual intercoefficient correlations due to
boundary correction in finite time series.
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in these simulated data by fitting Eq. 21 were Ĥ 5 0.45
and 0.23, respectively. Also shown in Figure 2 are
resampled processes obtained by random permuta-
tion of the wavelet coefficients of the simulated pro-
cesses. The estimated Hurst exponents for the resa-
mpled series are exactly the same as for the simulated
series. This is not surprising because this estimator of
H depends only on the variance of the wavelet coef-
ficients at a given scale, and this quantity is not

changed by random permutation of wavelet coeffi-
cients separately within each scale. Therefore we can
say that wavelet-estimated second order stochastic
properties of fractional Brownian noise are perfectly
preserved by this resampling scheme.

Parallel hyperbolic relaxation

Not all fractional or 1
f
-like noises represent frac-

tional Brownian motion; indeed, in some respects,
fractional Brownian motion is an awkward model
for naturally fractal noises [Wornell, 1996]. To assess
the performance of wavelet resampling in the
broader class of 1

f
-like noises, we also simulated

fractional noise by a physical model [Schroeder,
1991]. Superposition of many independent, parallel
relaxation processes with hyperbolically distributed
relaxation times {t} can be shown theoretically to
generate 1

f
-like behavior over several decades of

frequency, and empirically this behavior has been
demonstrated in many physical systems. It is simply
simulated by generating a few, say three, relaxa-
tion processes {rt} t 5 1, 2, 4, . . . , N and summing
them. The discrete elements of each process are
defined

rt11 5 krt 1 Î1 2 k2et (13)

where r0 5 0, et is a random variable independently
drawn from a standard normal distribution, and k 5
exp(21/t). Schroeder [1990] suggests using a set of
three relaxation times that increase by a factor of 10,
e.g., t 5 1, 10, 100, giving correlations k 5 0.37, 0.90,
0.97.

An example of 1
f
-like noise simulated by this

method is shown in Figure 3. Also shown in Figure 3
are the autocorrelation function and discrete wavelet
transform of the simulated series, and the autocorre-
lation functions of the wavelet coefficients at each of
the top three levels of detail. The whitening property
of the DWT is evident. (The coefficients at lower levels
of detail were also not significantly autocorrelated but
these plots are not shown.) Random resampling of
wavelet coefficients within levels, followed by the in-
verse wavelet transform, generates the resampled
time series shown in the bottom row together with its
autocorrelation function.

These plots suggest that wavelet resampling pre-
serves the autocorrelational properties of physically
simulated 1

f
noise. To test this impression more thor-

oughly, we generated 50 realisations of this noise and
calculated the autocorrelation function for each real-

Figure 2.
Synthesis, analysis, and resampling of fractional Brownian motion
(fBm). Top row: Expected autocovariance matrices VB for fBm
with Hurst exponents H 5 0.5 and H 5 0.25. Second row:
Fractional Brownian processes (N 5 128) realised by coloring a
normal white process e with the Cholesky factor of VB, see Eq 12.
Third row: Empirical estimation of Hurst exponents by least
squares fit of Eq 21. The slope of the straight line drawn through
the five points in each plot of level j (on the x-axis) vs. log variance
of wavelet coefficients (on the y-axis) equals 2Ĥ 1 1. Fourth row:
fBm resampled by random permutation of the wavelet coefficients
of the simulated series. The Hurst exponents estimated by Eq 21,
Ĥ 5 0.45 and 0.23, are identical for the simulated and resampled
series.
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isation to estimate the mean autocorrelation coefficient
g# i i 5 1, 2, 3, . . . , 20 at each of 20 lags and its standard
deviation. This defined a 95% confidence envelope for
the autocorrelation function of the simulated noise. We
compared this to the mean and 95% confidence enve-
lope of the autocorrelation function of the resampled
noise. This required generating a single new realisa-
tion of the noise then resampling it 50 times in the
wavelet domain and computing the autocorrelation
function for each resampled series. The results are
shown in Figure 4. It is clear that the mean and vari-
ability of the autocorrelation function over multiple
realisations are very similar to the mean and variabil-
ity of the autocorrelation function over multiple resam-
ples of the same realisation.

Functional MRI: null data

Time series

A single fMRI time series measured during null or
resting conditions at 1.5 Tesla is shown in Figure 5,
together with its autocorrelation function, and the
mean and 95% confidence envelope for the autocorre-
lation function estimated over 50 resamples of the
observed series. It is clear that this fMRI series is less
strongly autocorrelated than any of these simulated
series (although fMRI time series can be much more
strongly autocorrelated than this particular example);
however, the observed autocorrelation function lies

Figure 3.
Wavelet resampling of simulated 1

f
-like noise. Top row, from left

to right: A time series simulated by a physical model of multiple
relaxation processes (N 5 128); its autocorrelation function
(ACF), with dashed lines indicating Bartlett’s 95% confidence in-
terval for zero, 0 6 2/=N; and its discrete wavelet transform
(DWT). The coefficients of the dilated and translated mother
wavelets are shown for five levels of detail j, labelled d1–d5; and
for the father wavelet, labelled s5. The top row of this panel shows
the time series reconstructed by the inverse wavelet transform.
Middle row, from left to right: The autocorrelation functions of
the wavelet coefficients at levels d1–d3 are shown with dashed

lines indicating 95% CI for zero, 0 6 2/=N/2j. Bottom row, right
to left: The wavelet coefficients after random permutation within
each level of detail; the autocorrelation function of the time series
obtained by the inverse wavelet transform on the resampled
coefficients; the resampled time series. The key point is that
although the original time series is significantly autocorrelated, its
wavelet coefficients are relatively whitened or decorrelated, and
random permutation of these serially independent or exchange-
able coefficients generates a resampled time series with an auto-
correlation function very similar to the original.
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within the 95% confidence envelope of the resampled
autocorrelation function.

Activation mapping

Each of the 13 null datasets was analysed assuming
a periodic input function with period length 5 24
images and each of the V intracerebral voxels in the
resulting statistic images was tested with a probability
of type 1 error P corresponding to an expected number
of false positive tests over the whole image E 5 PV,
1 # E # 200; see Figure 6 and Table I.

For a valid test, the number of positive voxels ob-
served when the null hypothesis (of zero periodic
trend) is true, as presumably it is in these data, should
be less than or equal to the expected number of posi-
tive voxels. By this criterion, all three methods are
valid on average. However, there is more variability
between images in the number of positive tests after
AR(1) prewhitening and the observed number exceeds
the expected number of positive tests in three images.
As expected, AR(3) pre-whitening is a more conserva-
tive procedure and is valid for all images. The wavelet
resampling scheme performs about as well as AR(3)
pre-whitening and is valid for all images. Note that
both AR(3) and wavelet resampling schemes are evi-

dently somewhat over-conservative on average; but a
scheme which was less conservative on average
would likely allow uncontrolled error in at least some
individual images, as indeed is the case with the AR(1)
results shown here.

Functional MRI: experimental data

Selected slices of the activation maps computed
from the experimental data (acquired while subjects
were asked to perform some sensory or cognitive task)

Figure 4.
Wavelet resampling of fractal noise simulated by multiple relax-
ation processes. The mean (dashed line) and 95% confidence
envelope (black shading) for the autocorrelation function esti-
mated over 50 realisations of 1

f
-like noise (N 5 128) can be

compared to the mean (solid line) and 95% confidence envelope
(dark grey shading) for the autocorrelation function estimated
over 50 resamples of a single simulated series. The area of the ACF
envelopes common to both simulated and resampled series is
shaded pale grey. Evidently the resampling scheme mimics closely
the mean and variability of autocorrelational structure in the
multiple simulated series.

Figure 5.
Wavelet resampling of functional MRI noise. Top: A functional MRI
time series observed under resting or null conditions at 1.5 Tesla
(N 5 128). Bottom row, left: Autocorrelation function of ob-
served fMRI series. Bottom row, right: The observed (dashed line)
autocorrelation function can be compared to the mean (solid line)
and 95% confidence envelope (grey shading) for the autocorrela-
tion function estimated over 50 resamples of the observed fMRI
series. The observed autocorrelation function lies within the 95%
confidence envelope estimated by (apparently unbiased) wavelet
resampling.
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are shown in Figure 7. It is immediately clear that both
autoregressive schemes entail some loss of inferential
scope, since there are a number of voxels (colored
blue) where the regression residuals have not been
whitened by the Box-Pierce test. As expected, this
problem is generally more severe for the AR(1) pre-
whitening scheme than for the AR(3) pre-whitening

scheme; and also relatively more severe for both
schemes at 3.0T compared to 1.5T. In some slices,
clumps of blue voxels can be seen to encroach on areas
of activated (red) voxels, suggesting that one cause of
color in regression residuals may be unmodelled ex-
perimental variance. However, in other slices of these
maps of 3.0T data we have seen blue voxels concen-
trated around ventricular spaces and in the vicinity of
susceptibility artefacts, suggesting that there may be
many sources of potentially troublesome color at high
field strength. It is also clear by inspection of the maps
created from the ER and periodic ABAC studies at
3.0T that the problem of colored noise may be quite
variable from image to image, even when they have
been acquired using the same MR system.

The validity of inference by wavelet resampling is
not conditional on the whiteness of the residuals; so all
intracerebral voxels can be tested for an effect. The
areas of activation demonstrated by the wavelet-based
method are very similar to those demonstrated by the
pre-whitening methods. There is no obvious evidence
for differential sensitivity of the various methods to

TABLE I. Expected (E) and mean observed numbers of
false positive tests for autoregressive pre-whitening and

wavelet resampling schemes applied to activation
mapping of 13 null fMRI datasets*

E AR(1) AR(3) Wavelet

1 0.85 (1.21) 0.54 (1.13) 0.15 (0.55)
5 4.23 (2.71) 2.31 (2.32) 1.15 (1.28)

10 6.93 (3.86) 4.85 (2.73) 2.62 (2.84)
15 10.69 (5.75) 7.15 (2.91) 3.85 (3.72)
20 14.92 (7.77) 9.62 (3.78) 6.69 (5.91)
25 18.15 (9.44) 11.54 (4.67) 8.69 (6.43)
50 36.85 (17.07) 25.77 (8.76) 21.15 (11.43)

100 74.85 (28.98) 55.64 (18.03) 48.38 (27.07)
200 150.77 (52.1) 122.31 (42.12) 112.46 (44.05)

* Standard deviations are in parentheses.

Figure 6.

Figure 6.
Type 1 error calibration curves for time domain resampling schemes
based on AR(1) and AR(3) pre-whitening by the Cochrane-Orcutt
procedure, and for wavelet domain resampling. In each plot of the
observed number of positive tests vs. the expected number of pos-
itive tests, each of the dotted lines represents the results for one of
13 images acquired under null or resting conditions; the points rep-
resent the observed number of positive tests averaged over images;
and the solid line y 5 x indicates perfect agreement between obser-
vation and expectation. For a valid test, the observed number of
positive tests under the null hypothesis must be less than or equal to
the expected number. By this criterion all three tests are valid on
average; but AR(3) pre-whitening and wavelet resampling are also
valid for each of the individual images.
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detect activation based on these results. However, any
differential sensitivity of these and other methods of
activation mapping is likely dependent on properties
of both the noise and the design matrix. We are cur-
rently working on a more formal and comprehensive
investigation of the relative sensitivities of these and
other methods under diverse experimental conditions.

DISCUSSION

The wavelet resampling algorithm at the heart of
this paper is simple. We take the discrete wavelet
transform of a time series; randomly permute the
wavelet coefficients within each level of detail; then
reconstitute the data in the time domain by taking the
inverse wavelet transform of the shuffled coefficients.
To the best of our knowledge, this scheme has not
previously been proposed as a basis for inference on
time series although the whitening or decorrelating
property of the wavelet transform, which underpins
the validity of the resampling, has been best-estab-
lished theoretically for fractal time series with 1

f
-like

spectral properties.
We have comparatively evaluated the performance

of this novel resampling scheme in functional MRI
data analysis. First, we have calibrated the number of
positive tests observed in analysis of 13 null datasets
against the expected number. Wavelet resampling,
like the more established alternative procedures based
on autoregressive pre-whitening, was shown to sup-
port valid hypothesis testing in the context of residu-
ally autocorrelated regression errors. Such a demon-
stration of nominal type 1 error control is a necessary
step in the validation of any candidate algorithm for
hypothesis testing; but by this criterion alone there
was little to choose between wavelet resampling and a
Cochrane-Orcutt procedure modelling the noise as a
third order autoregressive process. Nor was there a
great deal of difference between these methods in
analysis of a periodically designed 1.5T experiment.
However, we also compared their performance in the
apparently more exacting context of experimental
fMRI data acquired at 3T. At the higher field strength,
both pre-whitening procedures often failed ade-
quately to pre-whiten the residuals. Since standard-
ised statistics estimated by least squares in the context
of colored residuals will be over-estimated, leading to
a greater risk of type 1 error at truly unactivated
voxels, we must exclude unwhitened voxels from in-
ferential consideration. This meant that we were un-
able to make any decision about activation at very
large numbers of voxels in some of the 3T images.
Although this problem was predictably more severe

for the simpler AR(1) pre-whitening scheme it also
afflicted the maps supposedly pre-whitened by fitting
an AR(3) model to the regression residuals. In con-
trast, the wavelet resampling scheme, which does not
depend for its validity on the whiteness of the model
residuals, could be used to infer activation at every
voxel in all images. These results suggest a decisive
advantage for wavelet resampling in terms of its ro-
bustness to cope with fMRI data acquired under var-
ious experimental conditions from two different high
field MR systems (at Cambridge and Oxford). They
also illustrate the value of continually re-evaluating
statistical methods, such as AR(1) pre-whitening, as
imaging technology evolves: what worked at 1.5T may
not always be sufficient at 3T.

Although we have considered several methods for
treating the problem of colored noise in fMRI, we have
not investigated its sources or spatial distribution in
any detail. We have suggested, on the basis of limited
data, that colored noise may be especially problematic
at higher field strength but this assertion needs to be
tested and explained more carefully. If it is true that
high field strength generally predisposes to problem-
atically colored noise then what accounts for the vari-
able severity of this problem, as illustrated by the
three high-field datasets considered here? It would
also be interesting to characterise resting and residual
fMRI noise in greater detail, especially at high field
strength, and in this respect we note an additional
advantage of wavelet decomposition: it can be used
conveniently to estimate the parameters of 1

f
-like

noise. For example, one could use Eq. 21 or a more
elaborate maximum likelihood estimator [Wornell,
1996] to produce a map of the Hurst exponent, spec-
tral exponent or fractal dimension of the noise at each
voxel of brain or phantom images. This analysis
would likely shed light on the sources of colored
noise; more fundamentally, it would also test our key
assumption, based on the natural ubiquity of fractal
processes and, more specifically, on prior work by
Zarahn and colleagues [1997], that fMRI noise is 1

f
-like.

Similarly, it would be useful to clarify to what extent
fMRI noise empirically demonstrates nonstationary
features and, therefore, to what extent wavelet resam-
pling can be theoretically expected to cope better than
time or frequency domain resampling schemes which
assume stationarity of noise.

It will also be interesting in the future to compare
the performance of wavelet resampling to pre-color-
ing strategies in the time domain as, for example,
implemented in SPM (http://www.fil.ion.ucl.ac.uk/
spm). One advantage in principle of wavelet resam-
pling is that it can cope with nonstationary noise
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structure; whereas pre-coloring (or pre-whitening) is
limited to predicting (or estimating) a stationary or
linear time invariant noise structure. Another poten-
tial advantage of wavelet resampling is that, unlike
pre-coloring, it does not risk attenuating sensitivity to
detect experimentally designed variance by temporal
smoothing of the data [Hopfinger et al., 2000]. How-
ever, these preliminary observations are enough to
suggest that the relative merits of various estimators
and inferential procedures will be conditional on both
the properties of the noise and the form of the design
matrix. We shouldn’t expect that one or other method
will be unconditionally superior under all conceivable
experimental conditions. It would clearly be very use-
ful to have a more comprehensive understanding of
the experimental conditions under which various
methods perform well. But it is difficult to see how
this collective understanding could arise without pro-
vision of an internationally shared library of fMRI
datasets acquired under diverse experimental condi-
tions and freely accessible over the internet to all. It
must surely be a high priority for the brain mapping
community to organise such a facility for itself [Kos-
low, 2000].

Every method has its limitations, of course, and
wavelet resampling is no exception. First, the method
is computationally intensive and therefore more time-
consuming than referring test statistics to a theoreti-
cally-derived distribution. Traditionally, the tedious-
ness of permutation testing has counted heavily
against it [Fisher, 1936]; but the rising tide of cheap
and powerful microprocessors has much eroded this
objection [see Bullmore et al., 2001 for a brief historical
review of resampling methods in brain mapping]. To
put it in a more local and contemporary context, the
central processing time costs of permutation testing
are generally small, in our experience, compared to

the costs of other widely-adopted image analysis pro-
cesses, such as image realignment using sinc interpo-
lation. And in this implementation specifically, the
time costs of the procedure are minimised by using a
fast pyramidal algorithm for the discrete wavelet
transform and by pooling test statistics estimated on
10 permutations of each series over tens of thousands
of voxels to sample their permutation distribution.
Second, because the regression model parameters are
estimated in the context of colored noise, the param-
eters will not be estimated as efficiently as they would
be by an adequately pre-whitening scheme. Since we
have shown that autoregressive pre-whitening is not
always adequate to deal with the autocorrelational
structure of fMRI noise this may seem rather a moot
point. But there are other ways in which the data
might be pre-whitened, including some wavelet-based
methods for diagonalising the residual covariance ma-
trix V and, if these were as robust as the wavelet
resampling scheme we have described, their greater
efficiency would be relatively advantageous. Third,
there is the technically detailed question of minimis-
ing intercoefficient correlations. This requires that the
wavelet basis has a minimum number of vanishing
moments (four) and the most compact possible sup-
port, and that the time series is as long as possible to
reduce the influence of artefactual intercoefficient cor-
relations caused by boundary correction procedures.
Here we have adopted the commonly-used periodic
boundary correction algorithm but the risk of artefac-
tual intercoefficient correlations might be reduced fur-
ther by methods using non-convolutional filters at the
edges of each level of detail [Cohen et al., 1993].
Fourth, it would be desirable to incorporate this par-
ticular resampling scheme in general algorithms for
strong type 1 error control in the context of multiple
comparisons made by computational inference [West-
fall and Young, 1993; Holmes et al., 1996]. Finally,
there remains the challenge of extending this method
to incorporate spatial information in the neighbor-
hood of each voxel. Spatially-informed test statistics
are generally more sensitive than those informed
solely by data at a single voxel [Poline et al., 1997] and
spatial statistics can be readily tested by computa-
tional inference [Bullmore et al., 1999a]. However, to
preserve the spatial correlational structure of the data
under resampling in the time domain requires that the
same set of permutations is applied to all time series in
the image. It is not immediately clear what is the
analogous method for preserving the spatial autocor-
relations of the data under resampling in the wavelet
domain.

Figure 7.
Brain activation mapping of experimental fMRI data based on
different treatments of residual autocorrelation: AR(1) pre-whit-
ening, middle row AR(3) pre-whitening, bottom row wavelet
resampling. 1.5T AB two-condition periodically designed data ac-
quired at 1.5T; 3.0T AB two-condition periodically designed data
acquired at 3.0T (Cambridge); 3.0T ABAC three-condition period-
ically designed data acquired at 3.0T (Oxford); 3.0T ER event-
related data acquired at 3.0T (Oxford). In all maps, red voxels
indicate significant activation with voxel-wise probability of type 1
error P , 1 3 1023; blue voxels indicate where the “pre-
whitened” regression model residuals were not in fact serially
independent by the Box-Pierce test. The key point to note is that
wavelet resampling is considerably more robust than the pre-
whitening schemes in dealing with some of the higher field data-
sets, but of approximately equivalent sensitivity.
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CONCLUSIONS

We conclude that fMRI time series resampling in the
wavelet domain provides a robust and valid alterna-
tive to methods of inferential brain mapping based on
autoregressive pre-whitening in the time domain; and
that the advantages of wavelet resampling were most
salient in analysis of data acquired at 3T field strength.
More generally, we note that this novel wavelet resa-
mpling scheme exactly preserves estimated second
order properties of fractal noises and might therefore
be useful for inference on a wide variety of other
naturally complex time series.
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APPENDIX

Fractals and fractional Brownian motion

Fractal is a word coined by Mandelbrot [1977] from
the Latin adjective fractus meaning broken or frac-
tured. Fractals are formally irregular, rough, non-dif-
ferentiable, and often have non-integer (fractal) di-
mensions. A key property of fractals is that they
should look more or less the same under magnifica-
tion, i.e., they are at least approximately self-similar. A
familiar example from nature is that magnifying one
of the branches of a tree can make it look approxi-
mately the same as the whole tree, and one of its twigs
may look approximately the same after magnification
as the branch. Historically, some mathematically-gen-
erated fractals have been considered monstrous or
pathological because of their inaccessibility to treat-
ment by classical methods such as calculus and Eu-
clidean geometry. More recently, it has been recog-
nised that fractals are naturally far more common than
the canonical forms they offend; indeed, Mandelbrot
[1977] has claimed that fractal geometry is the geom-
etry of nature. In the human brain, fractal properties
have been demonstrated for both anatomical struc-
tures and physiological processes [Bullmore et al.,
1994a,b].

Fractional Brownian motions (fBm) or processes are
a class of fractals described by Mandelbrot and van
Ness [1968] as a generalisation of the special case of
ordinary Brownian motion (as defined by Kolmog-
orov in the 1940s). A fractional Brownian motion B(t)
is a zero-mean, nonstationary, and nondifferentiable
function of time such that the mean square difference
in value of the function between two time points is
proportional to the time difference D raised to the
power of two times the Hurst exponent H which has
value 0 , H , 1; i.e.,

^uB~t! 2 B~t 2 D!u2& < uDu2H. (14)
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From this definition several properties of fBm can be
deduced. Setting D 5 1, we can see that the mean
square or variance of the fractional Gaussian noise or
increments process I(t) 5 B(t) 2 B(t 2 1) is stationary,

^I~t!2& < 12H. (15)

Setting D 5 t, we confirm that the variance of the
process itself is nonstationary,

^B~t!2& < t2H. (16)

And setting D 5 t 2 u, we can define the expected
(non-stationary) covariance between the process at
two times t and u,

^B~t!, B~u!& 5
s2

2 ~utu2H 1 uuu2H 2 ut 2 uu2H!,

s2

2 5
G~2 2 2H!cos~pH!

2pH~1 2 2H!
. (17)

Finally, it can be shown from Eq 17 that B(t) is self-
affine, i.e., rescaling the process in time by an arbitrary
scalar s . 0 yields a series B(st) with identical statis-
tical properties to the process sHB(t) generated by
rescaling its values on the original time scale by the
scalar sH. And from this self-affine property it follows
[Voss, 1988] that the fractal dimension D of the process
is simply related to its Hurst exponent:

D 5 T 1 1 2 H, (18)

where T is the topological dimension of the data. For
a time series, T 5 1; therefore D 5 2 2 H.

Thus if the Hurst exponent H 3 0, the process is
highly irregular or antipersistent, D3 2; whereas if H
3 1, the fractal dimension also approaches unity and
the process looks smoother or persistent. Ordinary

Brownian motion is the special case of fBm occurring
when the increments are normal, H 5 1

2 and D 5 1.5.

Estimation of
1

f-like noise parameters

Since fBm is non-stationary its second order prop-
erties are not properly described by a power spectrum
or autocorrelation function; although Mandelbrot and
van Ness [1968] introduced the notion of a “gener-
alised” power spectrum for B(t), Sf(B(t)) ' f2a, a 5
2H 1 1. And Wornell [1993, 1996] later showed that
any 1

f
-like process F passed by an ideal bandpass filter

was thereby rendered stationary with spectrum

Sf~F! 5
sF

2

ufua . (19)

Since any real, discrete time series has effectively been
bandpass filtered between the limiting frequencies im-
posed by the sampling rate and duration of the finite
series, this suggests that a 5 2H 1 1 may appropri-
ately be estimated from the Fourier transform of the
series, e.g., by finding the gradient of a straight line
fitted to log power vs. log frequency.

However, it is also possible to estimate H (and
thereby a and D) from the wavelet transform of the
time series. If a 1

f
-like noise is projected onto a wavelet

basis with R vanishing moments then, provided 0 ,
(2H 1 1) , 2R, the variance of the wavelet coefficients
at the jth scale, Var{wk}j, is related to the scale by a
power law with exponent 2H 1 1 [Flandrin, 1992], i.e.,

Var$wk%j < ~2j!2H11. (20)

From this expression various estimators of H can be
derived [Wornell, 1993; Ninness, 1998], of which the
simplest is a least squares fit of the linear model
[Flandrin, 1992]:

log2~Var$wk%j! 5 c 1 ~2H 1 1!j 1 ej. (21)
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