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ABSTRACT

Cervical intraepithelial neoplasia (CIN) and cervical cancer are major health
problems faced by women worldwide. The conventional Papanicolaou (Pap) smear
analysis is an effective method to diagnose cervical pre-malignant and malignant
conditions by analyzing swab images. Various computer vision techniques can be
explored to identify potential precancerous and cancerous lesions by analyzing the
Pap smear image. The majority of existing work cover binary classification
approaches using various classifiers and Convolution Neural Networks. However,
they suffer from inherent challenges for minute feature extraction and precise
classification. We propose a novel methodology to carry out the multiclass
classification of cervical cells from Whole Slide Images (WSI) with optimum feature
extraction. The actualization of Conv Net with Transfer Learning technique
substantiates meaningful Metamorphic Diagnosis of neoplastic and pre-neoplastic
lesions. As the Progressive Resizing technique (an advanced method for training
ConvNet) incorporates prior knowledge of the feature hierarchy and can reuse old
computations while learning new ones, the model can carry forward the extracted
morphological cell features to subsequent Neural Network layers iteratively for
elusive learning. The Progressive Resizing technique superimposition in consultation
with the Transfer Learning technique while training the Conv Net models has
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shown a substantial performance increase. The proposed binary and multiclass
classification methodology succored in achieving benchmark scores on the Herlev
Dataset. We achieved singular multiclass classification scores for WSI images of the
SIPaKMed dataset, that is, accuracy (99.70%), precision (99.70%), recall (99.72%), F-
Beta (99.63%), and Kappa scores (99.31%), which supersede the scores obtained
through principal methodologies. GradCam based feature interpretation extends
enhanced assimilation of the generated results, highlighting the pre-malignant and
malignant lesions by visual localization in the images.
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INTRODUCTION

The global cancer burden is estimated to have risen to 18.1 million new cases and

9.6 million deaths in 2018. One in five men and one in six women worldwide develop
cancer during their lifetime, and one in eight men and one in 11 women die from the
disease. Explicitly, Cervical cancer is the fourth most common malignant tumor
threatening women’s health, especially in developing countries. The total number of
cervical cancer cases in 2018 reported by the World Health Organization (WHO) was
570,000, and the number of deaths equal to 311,000 cervical cancer ranks fourth for both
incidence (6.6%) and mortality (7.5%) (World Health Organization, 2018b). Cervical
cancer develops in a woman’s cervix (the uterus’s entrance from the vagina). Human
papillomaviruses (HPV)—a ubiquitous virus infection—is a primary cause of cervical
cancer in 99% of the cases. Persistent infection of HPV leads to develop cervical cancer in
women progressively. Uncontrolled growth of cells caused due to antiapoptotic mutations
results in a lump of mass referred to as a tumor, and tumor buds can spread infections
to other body parts, leading to severe medical conditions. The mortality and morbidity rate
remain high if not detected/cured in due time (World Health Organization, 2018a).

Studies suggest that cervical cancer can be treated successfully if the precancerous
lesions are detected in time during cytological screening and Human Papilloma Virus
(HPV) test (Saslow et al., 2012). HPV vaccination and detection/treatment are prevention
methods in practice. Cervical cancer can be evicted by initiating proactive measures to
prevent, carry out regular screening tests and treatment. The conventional Papanicolaou
test (Papanicolaou & Traut, 1941), also called the Pap smear test, is an important stage for
mitigating the rising challenge of cervical cancer.

A skilled pathologist identifies carcinoma signatures by analyzing morphological
features of the cells in microscopic slides manually. Since the manual analysis is subjective
to the expert’s knowledge of the disease’s etiology and experience, it may lead to many true
negative or false-positive results, leading to incorrect diagnoses and treatments. Also,
screening tests carried out in mass imply a higher turn-around for results and substandard
screening analysis. The non-availability of expert pathologists and suitable infrastructure
restricts cervical cancer screening drives in developing countries.

Deep Learning techniques provide a prodigious prospect for enhanced interpretation
and analysis of the pap smear images during Metamorphic Diagnosis of Neoplastic and
pre-neoplastic lesions. Since the cells’ morphology undergoes distinct changes during
infections, they play a decisive role in identifying carcinoma signatures in pap smear
image. Hence, Deep Learning techniques can extract relevant morphology features and
carry out Whole Slide Image analysis to identify carcinoma conditions. We followed the
Bethesda System (TBS) (Solomon et al., 2002), which explains the cytological classification
based on standard medical terms to describe abnormal findings from CPS and LBC.
Although the Convolution Neural Networks (CNN) can extract, identify, and classify the
carcinoma cells, we elaborate on a novel methodology to improve morphological features’
extraction, thereby increasing accuracy, sensitivity, specificity, and F1 scores. State of
the art implementation of various CNNs with transfer learning and progressive resizing
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techniques present a definitive approach for enhanced learning and effective classifications
of carcinoma cells.

We studied current implementations/methods on the cervical cancer datasets.
We analyzed the datasets and reviewed the recent work, that is, K-Means Clustering,
SBRG algorithm (Isa, 2005). It detects the edges of multiple cells/the region of interest
(ROI). In addition to the edge detection method, we explored different supervised and
unsupervised techniques (Plissiti, Nikou ¢ Charchanti, 2010; Plissiti et al., 2018). In these
approaches, detection of nuclei locations was carried out, followed by a refinement step
which used this nuclei information (circumference of the nuclei) was performed. Few
of them were followed by a classification algorithm to detect the abnormal cells in the
images. Both supervised and unsupervised techniques, that is, Support Vector Machines
and fuzzy logic, were applied. We also studied various classifiers, that is, K-Nearest
Neighbour, Stochastic Gradient Descent, Support Vector Machines (Cortes & Vapnik,
1995), and Random Forest. One of the approaches, that is, DeepPap (Zhang et al., 2017),
was also studied in detail. In DeepPap, classification was performed on cropped images
(single-cell cropping was carried out considering nuclei as the centroid). However, these
methodologies suffer from prominent challenges as follows:-

1. It depends on the localization of nuclei;
2. Detection and classification of images of a single cell only;

3. Comparatively substandard feature extraction for unclear/blurred visual exposure of
overlapping cells;

4. Single-cell classification implies Binary classification.

We propose a methodology to subdue the existing binary classification scores and
propose a multi-class classification for single-cell and Whole Slide Images of cervical
cancer datasets, following the Bethesda System. The proposed approach of superimposing
Progressive Resizing with Transfer Learning on CNN yields promising multi-class
classification scores with improved visual inferences. Deep learning models are known to
have limited interpretability, and it is a challenging and active area of research (Simonyan,
Vedaldi ¢ Zisserman, 2013). To enhance the interpretability, we implemented a
complementary interpretation with intuitive saliency maps (GradCam) Visualisation.
GradCam aids in apprehending the features learned by our model to ensure a high level of
transparency in visual interpretation (Zhang, Nian Wu & Zhu, 2018).

We carried out experiments on two different datasets obtained from different
Institutes/University. To summarize, our contributions are as follows:

1. To the best of our knowledge, the proposed work is the first implementation to present a
singular multi-class classification methodology for Neo-plastic and Pre-Neoplastic
lesion detection in Whole Slide Images.

2. Our experiments achieved State-of-the-Art performance scores for binary and
multi-class classification on Herlev and SIPaKMeD datasets.
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3. The CNN implementation with Progressive Resizing and Transfer Learning techniques
yields significant improvements and generated benchmark scores for multi-class
classification for whole slide images of the SIPaKMeD dataset, which helps in carrying
out metamorphic analysis even for overlapping cell lesions.

4. The article also brings out the comparative study of the results produced by various
classifiers and advanced CNN models (trained using Transfer Learning and Progressive
resizing techniques) on Herlev and SIPaKMeD datasets.

5. GradCam based feature interpretation extends enhanced assimilation of the generated
results, highlighting the pre-malignant and malignant lesions by visual localization in
the images.

DATASETS

We carried out experiments on Herlev and SIPaKMeD (Plissiti et al., 2018) databases
separately. Herlev database-created at the Herlev University Hospital, Denmark, utilizing a
digital camera microscope and contains 917 images of single cells. Skilled cyto-technicians
and doctors have annotated each cell into one of seven classes (i.e., Superficial squamous
epithelia, Intermediate squamous epithelia, Columnar epithelial, Mild squamous
non-keratinizing dysplasia, Moderate squamous non-keratinizing dysplasia, Severe
squamous non-keratinizing dysplasia, and Squamous cell carcinoma). The morphological
features (i.e., cell shape, nucleus size, nucleus to cytoplasm ratio, nucleus opacities,
nucleus dying intensities, cytoplasm opacities, and cytoplasm dying intensities) help
differentiate the cells. The SIPaKMed database consists of 4,049 annotated images

that have been manually cropped from 966 cluster cell images by the expert
cytopathologists into five categories. The cells are classified as normal cells under two
types (Superficial-intermediate, Parabasal), as abnormal cells are classified into two
categories (Koilocytotic and Dyskeratotic), and as benign categorization (metaplastic)
cells. The dataset distributions for Herlev and SIPaKMeD datasets are shown in Figs. 1
and 2, respectively. The specimen pap smear images of the Herlev dataset and
SIPaKMeD dataset are shown in Figs. 3 and 4.

PROPOSED METHODOLOGY

We have objected our work to carry out experiments on binary classification for Herlev
and SIPakMeD datasets using K-Nearest Neighbour, Stochastic Gradient Descent, Support
Vector Machine, and Random Forest classifiers. Then, Convolution Neural Network
models, that is, VGG-19 (Simonyan & Zisserman, 2014), ResNet-34 (Szegedy et al., 2016),
and EfficientNet-B3 (Tan ¢ Le, 2019) were employed to carry out binary classification
where CNNs have shown considerable improvements in the results compared to other
classifiers. We carried out due customization of the final layers of CNN models for
multi-class classifications for the Herlev and SIPaKMeD datasets. We used pre-trained
weights from the ImageNet dataset (referenced as Transfer Learning (Pan ¢ Yang, 2009))
with superimposition of Progressive Resizing techniques while training the CNN models
to train Cervical Cancer datasets. Finally, the multi-class classification experiments
highlight enhanced results for both datasets. Saliency maps for Whole Slide Images
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Figure 1 The Herlev Cervical Cancer dataset distribution, categorized into seven classes.
Full-size K&l DOT: 10.7717/peerj-cs.348/fig-1
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Figure 2 The SIPaKMeD Cervical Cancer dataset distribution, categorized into five classes. The
distribution of full cell images at (A) and whole slide image in the datasets at (B) are shown.
Full-size E4] DOL: 10.7717/peerj-cs.348/fig-2

(B)

Figure 3 Single cell Images from the Herlev Dataset, categorized into seven classes and shown as (A) superficial squamous epithelia,
(B) intermediate squamous epithelia, (C) columnar epithelial, (D) mild squamous non-keratinizing dysplasia, (E) moderate squamous
non-keratinizing dysplasia, (F) Severe squamous non-keratinizing dysplasia, (G) squamous cell carcinoma in situ.

Full-size K&l DOT: 10.7717/peerj-cs.348/fig-3

improve assimilation along with classification scores. Figure 5 illustrates the proposed
methodology to generate classification results with Saliency Map employing Convolution
Neural networks using Transfer Learning and Progressive Resizing techniques. The
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Figure 4 Single-cell images from the SIPaKMeD Dataset, categorized into five classes: (A) Superficial-Intermediate cells, (B) Parabasal cells,
(C) Metaplastic cells, (D) Dyskeratotic cells, and (E) Koilocytotic cells. Full-size a] DOI: 10.7717/peerj-cs.348/fig-4
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Figure 5 The methodology with inference pipeline used to analyze the Pap smear (Whole Slide)
Images using ConvNets (trained using Transfer Learning and Progressive Resizing techniques) to
generate Predictions and Activation Map.

Full-size K&l DOT: 10.7717/peerj-cs.348/fig-5

implementation consists of four stages: (1) Data Preprocessing, (2) Model Implementation,
(3) Training Strategy, (4) Testing.

Data preprocessing

Since data augmentation acts as a regularizer and helps reduce overfitting while

training the machine learning model, we used data augmentation techniques to expand the
training dataset’s size artificially. We created modified versions of the dataset’s images.
We generated skillful models with improved ability to generalize and classify the images
by training the deep learning models on more data variations. We implemented
transformation techniques to generate cell image variations as the cells are invariant to
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the rotations. We carried out these transformation with, value of 6 = —60 to 60 degrees,
a=1.0- 1.1, P, =0.75 and Py = 0.5 while employing the following techniques:-

1. Horizontal flipping of the images with a probability of Pg.
2. We applied rotations to the images due to their rotational invariance.

3. Random scaling of « with a probability of P,.

Model implementation

Herlev and SIPakMeD datasets incorporate single-cell images. Whole Slide Images (WSI)
of the SIPaKMeD dataset which expose varied intensity (average intensity, average
contrast), texture (smoothness, uniformity, third moment, entropy), and shape features
(area, major and minor axis length, eccentricity, orientation, equivalent diameter, solidity,
and extent). The proposed CNN implementation deliberate on effective cell morphology
feature extraction, that is, cell cytoplasm, cell shape, nucleus type, hyperchromicity,
dying exposures of cells, and cell edges. We experimented VGG-19, ResNet-34, ResNet-101,
EfficientNet-B3, EfficientNet-B4, and EfficientNet-B5 models. As EfficientNets (image
classification models) scale more efficiently by balancing the network’s depth, width, and
resolution deliberately over other CNNs, we carried out experiments on EfficientNet models
to enhance performance. We have customized the output layers to suitably perform binary
and multi-class classification (Tan ¢ Le, 2019). The values of the hyperparameters have
been optimized while carrying out experiments. To implement Transfer Learning, we used
pre-trained weights obtained after training the model on a large dataset (i.e., ImageNet)
while re-training the CNNs on the Herlev and SIPaKMeD datasets. We applied the
Progressive Resizing technique by running the iterations repetitively to extract the optimum
weights with precise feature extraction. These optimum weights were carried forward to
the experiments’ subsequent iteration, where we resized the images from 224 to 256, 512,
1024, and 2048 progressively and ran the experiments. Iterations outcomes were analyzed
continuously to achieve the best of the classification scores.

Training strategy

Among the family of EfficientNet models, we used EfficientNet-B3, B4, and B5 CNN
models with pre-trained weights obtained from the ImageNet Large Scale Visual
Recognition Challenges dataset with 1,000 classes. Models’ customization at the final
classification layer was applied to classify the cells into the desired output classes. While
training the model for the Herlev dataset and SiPaKMeD dataset, the final classification
layers were customized to classify seven and five classes, respectively. Training and test
data were split into the 80:20 ratio. Transfer Learning and Progressive Resizing techniques
were employed while re-training the CNN models to leverage the ImageNet pre-trained
model’s features. We used Categorical Cross—Entropy as the loss function. The learning
rates were optimized using the 1-cycle policy, which helped achieve Super-Convergence
with faster training, ensuring optimum regularization (Smith ¢» Topin, 2019). We used
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LEARNING RATE LEARNING RATE
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Figure 6 Loss function graphs while training the ResNet-34 CNN model on Herlev Dataset. The
learning rate graphs generated after the first iteration (consisting of 30 epoch) and the third iteration
(consisting of 30 epochs) using LR Finder are shown at (A) and (B), respectively.

Full-size K&l DOI: 10.7717/peerj-cs.348/fig-6

Weight Decay W, and discriminative learning rates since different layers capture different
types of information. It allows us to preserve the filters in the layers closer to input learned
by EfficientNet on the ImageNet dataset. The network was trained with AdamW
Optimizer (Loshchilov & Hutter, 2017). The learning rates were scheduled using a 1-cycle
policy, which enables Super-convergence, allowing faster training of neural networks with
substantial learning rates and regularization, preventing overfitting (Yosinski et al.,

2014; Smith, 2018). The learning rates were determined using the LR Finder (Howard ¢
Gugger, 2020). Learning Rate was optimized after each epoch to identify the optimal
learning rate for the subsequent epoch. Figure 6 illustrates the Learning rate finder’s
employment before the first and the third training iterations of the ResNet-34 model on
the Herlev dataset.

Model customization and experimentation

We carried out binary classification on the Herlev dataset using K-Nearest Neighbour,
Stochastic Gradient Descent, Support Vector Machine, and Random Forest classifiers. We
applied ResNet-34 and EfficientNet-B3 model to improve the binary classification scores.
We used the Transfer Learning technique to train the VGG-19 (baseline), ResNet-34,
ResNet-101, EfficientNet B3, EfficientNet B4, and EfficientNet B5 models for multi-class
classification on the Herlev dataset. We used discriminative learning rates to preserve
the lower level features and regulated the higher-level features for optimum results.

The VGG-19 model was trained on both the datasets to carry out binary and multi-class
classification as part of the first Conv Net implementation. In VGG-19, convolution layers
that analyze the input image features are referred to as “backbone” and balance of the
culminating linear layers—referred to as “head.” “Head” converts the analyzed features
into predictions for two classes in our binary classification. To train the model with
differential learning rates, we split the head from the architecture’s balance. We replaced
it with an AdaptiveConcatPool layer, Flatten Layer, and blocks of Batch Normalization,
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Dropout, Linear, and ReLU layers, respectively. The AdaptiveConcatPool Layer helps
preserve the backbone’s feature representations more effectively than using only the
MaxPool Layer or the AveragePool Layer. Also, we appended a fully-connected layer of
7 and 5 units with softmax activation as Final Classification Layer for Herlev and SIPaKMeD
datasets, respectively. We carried out suitable customization of all the Conv Net for
respective datasets, which attained improved performance scores. Hyperparameters—the
properties that govern the entire training process and determines the network structure were
carefully optimized. Learning Rate was optimized after each epoch to identify the optimal
learning rate for the subsequent epoch. We determined the number of Epochs and
Activations Functions, considering numerous experimental results, and used suitable
optimized values while carrying out experiments.

EfficientNets—image classification models scale more efficiently by deliberate balancing
the network’s depth, width, and resolution. Hence, the models have demonstrated
enhanced performance. We have customized the output layers suitably for binary and
multi-class classification (Tan ¢ Le, 2019) on both the datasets. We carried out
experiments on EfficientNet BO, B1, B2, B3, B4, and B5. Though the EfficientNet higher
variants, that is, B4-B7, have larger width, depth, or resolution, the accuracy gain was
saturating/stable compared to the B3 model, which demonstrated the limitation of a single
dimension scaling. Hence, experiments were carried out on EfficientNet B1, EfficientNet B2,
and EfficientNet B3. We used the baseline EfficientNet-B3 model for binary and multi-class
classification on our Cervical cancer datasets. For WSI Image analysis, we used the
Progressive resizing technique (Howard ¢ Gugger, 2020) on these convolutions Neural
Network models. We trained the model with Imaging, sized 224 x 224, to obtain the weights.
Then using these weights, we trained the model with resized the WSI images and iterated
the model’s training repetitively by gradually increasing Imaging sizes to 256 x 256, 512 x
512, 1024 x 1024, followed by unfreezing saved weights (from the previous iteration)
every time as each larger-scale model incorporates the previous smaller-scale model layers
and weights. We observed significant results by following the Strategy. Figure 7 shows the
implementation methodology of Progressive resizing on the Whole Slide Images by applying
the obtained weights from one to the next training model by scaled-up image resizing.

Testing

During the testing, we resized the input image to (H x W) size and gave the resized images
as input to the networks to predict the output class. For all the tasks on the SIPaKMeD
dataset, we used 3-fold and 5-fold cross-validations with the data split released along with
the dataset.

RESULTS AND DISCUSSION

Evaluation parameters

As the accuracy in isolation does not prove the model’s efficacy, we have evaluated the
model based on the performance metrics. The performance of the model is ascertained
post-study of the scores, that is, Accuracy (Acc), Precision, Sensitivity (Sens), Specificity
(Spec), H-Mean, F1-score, or F-Beta, and Kappa Score followed by an independent manual
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Figure 7 The implementation methodology for the Progressive Resizing Technique with Transfer Learning using the EfficientNet CNN
model. Pre-trained weights obtained by training the model on large datasets are taken as initializing weights on the model (A) (ie., Imaging
input size of 224 x 224 pixels initially), and then carry forward the obtained weights to subsequent models (B) and (C), (i.e., Imaging input size to
256 x 256 pixels and 512 x 512 pixels respectively) to extract optimum features and enhanced efficiency progressively.

Full-size K&l DOTI: 10.7717/peerj-cs.348/fig-7

analysis by the Pathologists. Sensitivity or recall measures the proportion of actual
abnormal cells that are predicted correctly in the same class. Specificity measures the
proportion of actual negatives and correctly identified as such. Accuracy is the overall
percentage of correctly identifying the cells belonging to the respective classes correctly. F1
score is a classifier metric that calculates a mean of precision and recall.

R TP + TF
ccuracy =
Y T TP TE+FP+EN

TP

Precision = ——
TP + FP
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TP
Recall = ————
TP + FN
Fl— 2 * Precision * Recall 2 x TP

Precision + Recall 2% TP + FP + FN

We used Cohen’s Kappa Score (Cohen, 1960, 1968), which is a statistical measure for
measuring “Intra-rater Reliability” and is a more robust measure than simple percent
agreement calculation. It is a measure of agreement between observations and can be
defined for two observers and where disagreement was weighted without taking into
account the distance between categories. The weighted kappa statistic kw for two observers
and ensures that there is no weighted kappa statistic for more than two observers. We have
used the following notation is used:

o N the number of cases/observations.
e 1 the numbers of raters/observers.

o k the number of categories in which a case can be rated.

Cohens weighted kappa «,, is derived from the normal kappa by including a weight
function w. If w is chosen the identity matrix I, then Cohens «,, is identical to Cohens x. A
linear weight is commonly chosen, which is calculated as:

il
k—1"
Alternatively, a quadratic weight could be used: w; = 1 — (i — j)*/(k — 1)*. Then:

(1)

k
1
Po(w) = N Wijﬁja (2)
=1 =1
1
P,y = ﬁz ) WilliGj, (3)

i=1 j=1

with r; and ¢; again the row and column sums. The weighted kappa statistic is now
given by:
Po(w) = Pe(w

v 1— P,

Quantitative results

Results obtained for binary classification using K-Nearest Neighbour, Stochastic
Gradient Descent, Support Vector Machine, Random Forest classifier, ResNet-34, and
EfficientNet-B3 models on Herlev and SiPaKMeD datasets are presented in this section.
For the Herlev dataset, the ResNet-34 and EfficientNet-B3 models produced benchmark
binary classification scores with 98.91% accuracy, 99.29% precision, 98.92% recall,
98.91% specificity, and 99.10%F1-Score and 99.01% accuracy, 99.15% precision, 98.89%
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Figure 8 The Binary classification predictions generated using Resnet-101 (trained on Herlev dataset) and Resnet-34 (trained on SIPaKMeD
dataset) for a single-cell image. The Resnet-101 and Resnet-34 CNN generated predictions with 99.92% and 98.94% for an abnormal single-cell
image input (shown at (A)). The GradCam visualization and CNN feature interpretation, obtained using Resnet-101, are shown at (B) and (C), and
Resnet-34 are shown at (D) and (E), respectively. Full-size ] DOI: 10.7717/peerj-cs.348/fig-8
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Figure 9 The confusion matrices for binary classification predictions at (A) Support Vector Machines, (B) Stochastic Gradient Descent,
(C) K-Nearest Neighbour, and (D) Random Forest Confusion Matrices on the Herlev dataset.  Full-size &l DOI: 10.7717/peerj-cs.348/fig-9

recall, 99.02% specificity, and 98.87% F-Beta score. Table 1 illustrates the quantitative
comparisons of binary classification results (Herlev dataset) obtained by experimenting
with K-Nearest Neighbour, Stochastic Gradient Descent, Support Vector Machine, and
Random Forest classifier, ResNet-34, and EfficientNet-B3 models. Figure 8 shows the
binary classification of an abnormal single-cell image using Resnet-101 (trained on Herlev
dataset) and Resnet-34 (trained on SIPaKMeD dataset) CNNs. The results of the
SiPaKMeD dataset are also shown in the table. Figure 9 shows the confusion matrices
generated using K-Nearest Neighbour, Support Vector Machine, Stochastic Gradient
Descent, Random Forest for binary classification on the Herlev dataset.

Table 2 illustrates the quantitative comparison of multi-class classification results
(Herlev dataset) obtained by experimenting with VGG-19, ResNet-34, ResNet-101,
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Table 1 The binary classification prediction scores for Herlev and SiPaKMeD Cervical Cancer
datasets under evaluation criteria, that is, Accuracy, Precision, Recall, F1-Score, and Kappa Score.
The table demonstrates the scores for various binary classifiers and CNN models, that is, K-Nearest
Neighbour, Support Vector Machine, Stochastic Gradient Descent, Random Forest, ResNet-34 (Base-
line), and EfficientNet-B3 (Baseline).

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) K-Score (%)
Herlev Dataset

K-Nearest Neighbour 78.142 79.268 95.588 86.666 -

Support Vector Machine 76.502 76.271 99.264 86.261 -

Stochastic Gradient Descent 71.584 78.378 85.294 81.690 -

Random Forest 74.863 75.568 97.794 85.256 -
SIPaKMeD Dataset

ResNet-34 98.919 99.291 98.925 98.918 99.103
EfficientNet-B3 99.011 99.157 98.896 99.026 98.879

Table 2 The multi-class prediction scores for the Herlev and SIPaKMeD Cervical Cancer datasets under evaluation criteria, that is, Accuracy,
Precision, Recall, F-Beta, and Kappa Score. Multi-class classification Convolution Neural Network used the K-fold cross-validation techniques,
which showed a substantial increase in scores. The EfficientNet-B3 in consultation with Transfer Learning and Progressive resizing generated
Benchmark scores for Whole-Slide images of the SIPakMeD dataset.

Model K-Fold CV Accuracy (%) Precision (%) Recall (%) F-Beta (%) Kappa Score (%)
Herlev

VGGI19 5-Fold 85.18 £ 6.90 88.22 + 4.66 87.24 + 7.00 87.20 £ 6.76 91.26 £ 5.40
ResNet-34 5-Fold 91.94 + 8.73 93.36 + 7.41 92.81 + 8.43 92.86 + 8.28 95.31 £ 5.05
ResNet-101 5-Fold 93.14 + 8.78 94.56 £ 7.01 93.98 + 8.08 94.05 £ 7.93 95.57 £ 5.55
EfficientNetB3 5-Fold 91.40 £ 10.25 92.74 + 8.63 92.20 £ 9.36 92.19 £ 9.36 92.99 £ 8.04
EfficientNetB4 5-Fold 93.03 + 8.95 94.31 + 7.31 94.27 + 7.62 94.25 + 7.58 96.40 + 4.51
EfficientNetB5 5-Fold 92.16 £ 9.25 93.19 £ 9.13 93.21 + 8.23 93.12 + 8.28 95.29 + 4.63
SIPaKMeD

VGG19 5-Fold 98.65 £ 0.57 98.79 £ 0.64 98.44 + 0.48 98.90 £ 0.48 99.09 £ 0.41
ResNet-34 3-Fold 96.56 + 0.13 97.19 £ 0.29 97.27 £ 0.17 97.22 £ 0.14 98.19 £ 0.13
ResNet-101 5-Fold 98.55 £ 1.11 98.57 + 1.26 98.70 + 0.88 98.65 + 0.97 98.07 + 1.47
EfficientNetB3 3-Fold 97.81 £ 0.10 98.09 + 0.10 98.23 + 0.23 98.24 £ 0.21 98.58 £ 0.15
EfficientNetB3 5-Fold 99.27 £ 0.74 99.36 + 0.69 99.43 + 0.61 99.41 + 0.63 99.54 £ 0.60
EfficientNetB3 5-Fold 96.39 + 1.85 96.49 + 1.42 97.02 + 1.59 96.88 + 1.56 97.37 £ 1.12
EfficientNetB3 5-Fold 99.70 + 1.07 99.70 + 1.03 99.72 + 0.87 99.63 + 0.88 99.31 £ 0.78

EfficientNet B2, EfficientNet B3, EfficientNet B4, and EfficientNet B5 models. Multi-class
classification scores on SiPaKMeD dataset obtained by implementing VGG-19, ResNet-34,
ResNet-101, and EfficientNet-B3 (baseline) using transfer learning viz-a-viz of

EfficientNet-B3 using transfer learning, and Progressive resizing technique are also shown
in the Table 2. The ResNet-101 (Baseline) and EfficientNetB3 (512 x 512) with progressive
image resizing attained the highest scores. Implementations with the proposed technique
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Figure 10 The confusion matrices at (A) and generalized score at (B) for multi-class classification
results (for SiPaKMeD dataset) obtained with the EfficientNet-B3 model. The benchmark classifi-
cation score highlights the optimum results achieved by employing Transfer Learning in consultation
with Progressive Resizing. Full-size &) DOT: 10.7717/peerj-cs.348/fig-10

have attained perfect scores in Sensitivity, Specificity, and the best Kappa Scores. F1-scores
of these models indicate the robustness in multi-class classification. EfficientNet B3 models
have been evaluated against all possibilities of overfitting. The multi-class classification
results demonstrated improved feature extraction and computation efficiency with
progressive resizing. Figure 10 shows the confusion matrices of the multi-class
classification generated using EfficientNet-B3 CNN on the SIPaKMeD dataset. We did
experiments on EfficientNet B3 with pre-trained weights and training them on 224 x 224,
256 x 256, 512 x 512, and 1024 x 1024 progressively. The 5-fold cross-validation indicates
that the model did not overfit.

Results validation

We used the annotated Herlev and SIPaKMeD datasets. However, the data were analyzed
and reviewed by an expert pathologist in a secondary care hospital. An extensive set of
Whole Slide Images were shown to the experts for manual analysis and inspection to
acquaint the dataset. We carried out validation tests to ascertain the results generated by
the system. The validation was carried out by manual Kappa Score tally. 35 x Whole Slide
Images were segregated for the validation test, which was not part of training/testing
datasets. Independent pathologists and the trained model were given 35 x WSI images
one by one for analysis. The system prediction scores were tallied with expert analysis.
Out of 35 x WSI images, 34 x WSI results matched. The expert could not interpret one
WSI image due to low image quality. Observer bias was ruled out for each diagnosis, under
the same microscopic setup and view by taking in the review of two more pathologists
to authenticate diagnosis by the system.
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Figure 11 The model generated Gradient-weighted Class Activation Maps for the input Pap smear
images, respectively. Input Pap smear and generated Gradient-weighted Class Activation Maps show
results for (A) Abnormal Koilocytotic,” (B) Benign ‘Metaplastic, and (C) Abnormal ‘Dyskeratotic’
classes. Full-size K&l DOT: 10.7717/peerj-cs.348/fig-11

Saliency maps

We generated Grad-CAM heat-maps using the final Layer of a Convolution Neural
Network. To assimilate the results generated by the system and enhanced manual
validation, Saliency Maps, that is, Gradient-weighted Class Activation Map (GradCAM)
was implemented (Selvaraju et al., 2017). In Adaptive Average Pooling, we took the
average of all the 1 x 1 x 512 channels. We converted them to a tensor of 512, followed by
multiplying the tensor with size (512 x no. of classes) to get the final output. While
validating multi-class experiments for whole slide Pap smear images, we took five classes.
The 512 values represented the features extracted by the convolutions layers, which are
matrices. We took the first cell’s average across every channel to show activated areas
when the model predicted a specific class. To generate the heatmaps, we used “hooks.”
Figure 11 shows the Grad-CAM for various class inputs by highlighting the feature
extraction and predictions for abnormal and benign WSI classes.

CONCLUSIONS

In this research, we proposed a binary and multi-class classification pipeline for identifying
carcinoma in Pap smear images to carry out metamorphic diagnosis of neoplastic and
pre-neoplastic lesions. We are inspired by the emerging role of CNNs to aid medical
imaging-based diagnostics, which can play as a digital second opinion to improve palliative
care. The proposed pipeline starts with a cervical cell recognition stage. To begin with,
we carried out experiments with binary classifiers and obtained performance scores.
Towards the further enhancements, we improved ResNet-34, ResNet-101, and
EfficientNet B3 models’ performance with Transfer Learning. The ResNet-34 and
EfficientNet B3 trained with the Transfer Learning technique showed a significant increase
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in performance, achieving 98.91% accuracy, 99.29% precision, 98.92% recall, 98.91%
specificity, 99.10% F1-Score, and 99.01% accuracy, 99.15% precision, 98.89% recall, 99.02%
specificity, the 98.87% F-Beta score for SIPaKMeD Dataset, respectively. In a later stage,
we carried out multi-class classification experiments on both datasets. We addressed a
problem that has not been addressed effectively by any literature, that is, Whole Slide
Image analysis with multi-class classification. We proposed a novel approach of
implementing Progressive Resizing and Transfer Learning on Deep Neural Network
models, which attained State-of-the-Art computational efficiency and best of the scores for
accurate classifications. Convolution Neural Network model- EfficientNet-B3 trained
using Transfer Learning, and Progressive Resizing showed promising multi-class
classification results. We achieved benchmark scores on WSI by effectively analyzing
multi-layer cervical cells with, that is, 99.70% Accuracy, 99.70% Precision, 99.72% Recall,
99.63% Specificity, and 99.31% F-Beta score. We outperformed other techniques cited in
recent literature, consistently in both types of classification problems. We ascertained
the system generated predictions by a validation test where an expert’s manual analysis was
tallied with prediction. We also showed the model’s transparency by visualizing the
features learned by saliency maps, which enabled us to visualize the CNN generated
predictions.
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