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Abstract

Purpose Machine learning models are used to develop and improve various disease prediction systems. Ensemble learning
is a machine learning technique that combines many classifiers to increase performance by making more accurate predic-
tions than a single classifier. Although several researchers have employed ensemble techniques for disease prediction, a
comprehensive comparative study of these techniques still needs to be provided.

Methods Using 16 disease datasets from Kaggle and the UCI Machine Learning Repository, this study compares the perfor-
mance of 15 variants of ensemble techniques for disease prediction. The comparison was performed using six performance
measures: accuracy, precision, recall, F1 score, AUC (Area Under the receiver operating characteristics Curve) and AUPRC
(Area Under the Precision-Recall Curve).

Results Stacking variant of Multi-level stacking showed superior disease prediction performance compared with other
bagging and boosting variants, followed by another stacking variant (Classical stacking). Overall, stacking outperformed
bagging and boosting for disease prediction. Logit Boost showed the worst performance.

Conclusion The findings of this study can help researchers select an appropriate ensemble approach for future studies focus-
ing on accurate disease prediction.

Keywords Bagging - Boosting - Stacking - Disease prediction - Subvariants - Performance measure

Highlights: 1 Introduction

e Our research examines 15 variations of ensemble approaches

for disease prediction, providing useful insights into their
performance.

e We evaluate the performance of these approaches using six
commonly accepted performance measures: accuracy, precision,
recall, F1-score, AUC (Area Under the receiver operating
characteristics Curve) and AUPRC (Area Under the Precision-
Recall Curve).

e Our findings show that stacking variants, notably classical and
multi-level stacking, outperform other Bagging and boosting
variations in disease prediction.
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Disease diagnosis is a critical step in treating and man-
aging various medical conditions. However, it can be
challenging due to the complexity and variability of
symptoms and signs. Correct disease diagnosis is essen-
tial for effective intervention and patient care [1]. Many
scientists have developed machine learning algorithms
that accurately identify a broad spectrum of diseases
[2-5]. These algorithms can create disease prediction
models, enabling early detection and intervention, which
are crucial in reducing disease-related mortality [6]. As
a result, most medical scientists are drawn to emerging
machine learning-based predictive model technologies
for disease prediction.

Diabetes, skin disease, kidney disease, liver disease
and heart disease are all major chronic diseases that sub-
stantially impact health and, if left untreated, can lead to
death [7]. Therefore, accurate disease prediction becomes
vital in improving patient care and minimising the bur-
den of these chronic conditions. By identifying hidden
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patterns and relationships in vast healthcare databases,
machine learning techniques can assist healthcare pro-
fessionals in making informed decisions and delivering
timely interventions [8]. Ensemble learning is a machine
learning technique that aims to improve prediction perfor-
mance by combining forecasts from several models [1].
Ensemble models reduce the generalisation error in the
forecast. The ensemble method reduces model predic-
tion error when the fundamental models are diverse and
independent [9].

Bagging, also known as bootstrap aggregating, reduces
overfitting and variance by combining predictions from
multiple models trained on different subsets of the data
[10]. On the other hand, boosting adjusts the weights of
misclassified samples iteratively, focusing on difficult-
to-classify instances and improving the accuracy of the
overall ensemble model. Stacking combines the predic-
tions of multiple models using a meta-learner, which
can outperform individual models and other ensemble
techniques in various applications [11]. While research-
ers have used machine learning algorithms extensively
for disease prediction, there is a lack of comprehensive
studies comparing the performance measures of ensem-
ble learning techniques, such as bagging, boosting, and
stacking and their variants, against different significant
chronic disease datasets.

A comparative analysis of different ensemble tech-
niques and their variants for disease prediction is crucial
in understanding the strengths and limitations of these
ensemble approaches. It can help researchers identify
the most effective methods for disease prediction [12].
Researchers compared supervised [13, 14] and unsuper-
vised [15] machine learning algorithms for disease pre-
diction. Mahajan et al. [16] conducted a literature review
on applying ensemble approaches for disease prediction.
However, no study in the current literature compares
and contrasts ensemble approaches using multiple data-
sets. Therefore, the primary objective of this study is to
uncover critical trends in disease prediction models based
on ensemble learning techniques, specifically bagging,
boosting and stacking, and their variants, using perfor-
mance measures such as accuracy, precision, recall and
F1 score. By comparing and evaluating these approaches
across various chronic disease datasets, this research pro-
vides insights into the effectiveness of different ensemble
learning methods for disease prediction.

The datasets used in this study encompass major
chronic diseases, including diabetes, chronic kidney
disease, liver disease, heart disease, and skin cancer.
These diseases were selected due to their prevalence and
impact on health outcomes. This study will conduct a
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comprehensive performance analysis of various ensem-
ble learning techniques by implementing and conducting
experiments on 16 machine learning datasets obtained
from reputable sources, including Kaggle and the UCI
Machine Learning Repository.

For analyses, we considered 15 ensemble algorithms:
classical bagging, decision tree, random forest (RF), extra
trees, dagging, random subspace, classical boosting, Ada-
Boost, CatBoost, XGBoost, LightGBM, Logit Boost, Clas-
sical stacking, Two-level stacking and Multi-level stacking
for disease prediction. Table 1 provides the basic idea, pros
and cons for each of these 15 ensemble variants.

2 Materials and methods
2.1 Data source

This study examines 16 datasets from Kaggle and the
UCI Machine Learning Repository that are associated
with five primary chronic diseases: heart disease, renal
disease, liver disease, diabetes and skin cancer. The
details of all 16 datasets are provided in Table 2. This
table details each dataset’s source, number of attributes,
total instances, and positive and negative instances. Of
these 16 datasets, four are for heart disease, three for
liver disease, four for diabetes, three for chronic kid-
ney disease, and two for skin cancer. Data cleaning and
preprocessing were performed before conducting the
analysis to ensure the quality and integrity of the data.
Normalisation was a critical step followed in this pro-
cedure since it kept all the data on the same scale and
improved the accuracy of the results. While building the
model, hyperparameter tuning was performed for all the
classifiers to attain better performance.

2.2 Relative performance index

The relative performance index (RPI) is an assessor that
collects data results of any performance measure and pro-
duces a comparative result for the final assessment [43].
For a given set of performance values, the RPI value is cal-
culated by summing up the difference between each data
instance and the minimum value of that dataset. A higher
RPI value for an algorithm indicates its superior predictive
power compared with other candidates and vice versa [44].
RPI is useful for researchers and practitioners looking to
optimise their models for specific datasets. By analysing
different variants and calculating their RPI values, it is
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o [t has a longer trained time, memory-intensive nature,

Cons

o This model offers good performance, accuracy,

Pros

This approach gives a scalable gradient-boosting

Basic Idea

Table 1 (continued)

18

Algorithm
XG Boost

Springer

and requires careful tuning.
o Increases complexity and may not perform well with

regularisation and can handle imbalanced datasets

[22].
o [t supports parallel processing for faster training and

framework

small or sparse datasets [21].

is robust against overfitting [19].

o It is more prone to overfitting and memory intensive.
o It requires careful tuning, is less interpretable, and is

o This boosting algorithm offers fast training speed

It is a gradient-boosting framework with efficient tree

Light GBM

and efficient handling of large datasets [22].
e Provides good performance accuracy and handles

growth.

unsuitable for small datasets [22].

missing values.

o It combines strengths from different models and o [t requires training in multiple models and increases

This stacking approach combines predictions from

Two-Level Stacking

computational cost.
o It suffers complexity while modelling, which may

handles high-dimensional datasets [23].
o [t provides flexibility in model selection and

two levels of models

cause potential overfitting [24].

customisation.

e It requires complex implementation, which increases

e Enhance predictive power and flexibility by models

Multi-Level Stacking This stacking approach combines predictions from a

computational cost.
e Training multiple models at different levels increases

[25].
e Can handle complex relationships, capture diverse

combination of models at different levels.

interpretation and analysis complexity [23].

information, and improve performance.

possible to identify which ones are most effective for a
given task or application, improving the overall quality of
the data analysis and decision-making processes. This is
the formula for RPI:

d

RPI=Y <%>

i=1

where, a;* is the minimum value of the list, g; is the value
for the variant under consideration for dataset i, and d is the
number of the datasets in the analyses.

2.3 Performance measures
2.3.1 Confusion matrix

A confusion matrix is a method for measuring perfor-
mance used in statistics and machine learning to evaluate
the precision of a classification model [8]. In a confu-
sion matrix, columns correspond to the anticipated class
labels, and rows correspond to the true class labels. A
confusion matrix is made up of four basic parts (Fig. 1):
(a) true positive (TP) is the number of instances that have
been correctly predicted as positive from the positive
class; (b) true negative (TN) is the number of instances
that have been correctly predicted as negative from the
negative class; (c) false positive (FP) is the number of
instances that have been incorrectly predicted as positive
from the negative class; and (d) false negative (FN) is the
number of instances that have been incorrectly predicted
as negative from the positive class.

Four performance measures considered in this study (i.e.,
accuracy, precision, recall, and F1 score) are calculated
using these confusion matrix values [45]. These metrics can
be calculated using the formulas mentioned below:

TP + TN .. TP
Accuracy = Precision = ———
TP+ TN + FP + FN TP + FP
Recall = TP Flscore = 2 X Pre'c'lszon X Recall
TP + FN Precision + Recall

This study also considered two other commonly used
performance measures. They are AUC (Area Under the
receiver operating characteristics Curve) and AUPRC
(Area Under the Precision-Recall Curve). AUC focuses
on the trade-off between the true-positive rate (sensitiv-
ity) and the false-positive rate, making it appropriate for
well-balanced datasets with equally distributed positive
and negative examples [42]. AUPRC, on the other hand,
focuses more on the precision-recall trade-off, making
it appropriate for imbalanced datasets with few positive
cases [43].
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Table 2 Dataset description
Dataset Reference Dataset Type of Dataset No. of No. of instances Positive/
attributes Negative
D1 [26] Heart Disease Dataset (Comprehensive) Kaggle 11 1190 629/561
D2 [27] Health care: Heart attack possibility Kaggle 13 303 165/138
D3 [28] Heart Disease Dataset Kaggle 13 1025 526/499
D4 [29] Heart Failure Prediction Kaggle 12 299 96/203
D5 [30] Liver Disorders UCI 7 345 200/145
D6 [31] Indian liver patient dataset UCI 10 583 167/416
D7 [32] COVID-19 Effect on Liver Cancer Prediction UCI 25 450 310/140
D8 [33] Early-stage diabetes risk prediction dataset UCI 16 520 320/200
D9 [34] Diabetes prediction with the KNN algorithm Kaggle 7 768 268/500
D10 [35] Diabetes Dataset 2019 Kaggle 17 952 267/685
D11 [36] Diabetic Retinopathy Debrecen Data Set UcCI 18 1151 611/540
D12 [37] Chronic Kidney Dataset Kaggle 25 400 1507250
D13 [38] Chronic Kidney Disease Kaggle 13 400 250/150
D14 [39] Kidney Stone Dataset Kaggle 7 90 45/45
D15 [40] Skin Cancer MNIST: HAM 10000 Kaggle 10015 Multiclass
D16 [41] Skin Cancer UCI 35 366 Multiclass

2.4 Experiment setup

The experimental setting for using ensemble approaches
to improve binary classification task performance is
described in this section. We specifically concentrated on
ensemble techniques that use different basic classifiers and
hyperparameter tuning techniques for bagging, boosting, and
stacking. The intention was to show how various ensemble
approaches can be used to increase prediction accuracy.
The bagging ensemble methodology combines predictions

~
Actual values

1 0

~N
J
)
VAN

7p]

2= || TP FP

; - J\L Y,

2 s N\ N

B o

s FN TN
. AN AN Y,

Fig. 1 Confusion matrix

from several base classifiers to increase performance. The
process entails loading a dataset, labelling categorical
features, dividing the dataset into test, validation, and
training sets, and then instantiating a bagging classifier
using a selected base estimator. Libraries must also be
imported. GridSearchCV is used for hyperparameter tuning,
and the model with the highest accuracy is chosen as the
best performer. A thorough classification report is produced
after the model has been trained and assessed. A similar
procedure was followed for boosting and its variants. Fivefold
cross-validation is used to optimise the hyperparameters of
each method, improving model performance and offering
a thorough evaluation of classification abilities. Both two-
level and multi-level stacking are part of the experimental
setting for stacking ensemble approaches. Based on the
number of levels in the stacking classifier, base classifiers
are trained. The predict_proba method is used to produce
first-level predictions. GridSearchCV is used once again
for hyperparameter tuning. The metamodel produces final
predictions, and a classification report is included in the
performance evaluation.

3 Results
3.1 Accuracy comparison
The accuracy outcomes of the ensemble algorithms and

their variants are shown in Table 3 against all datasets
considered in this study. A bold number in a cell indicates

@ Springer
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Table 4 Best accuracy frequency and accuracy score against different datasets

Ensemble approach Datasets Best count
DI D2 D3 D4 D5 D6 D7 D8 D9 DI0O DIl DI2 DI3 DI4 DI5 DI6

Bagging X X X X X X

Boosting X X X X X X X 8

Stacking X X X X X X X X X X X X X 14

Best Score 96% 89% 100% 99% 82% 80% 100% 99% 80% 97% 72% 100% 100% 100% 100% 97%

that the corresponding algorithm (column title) showed
the best accuracy performance against the given dataset
(row title). Interestingly, datasets D7 and D12 revealed
100% accuracy for all classification algorithms. The last
row shows the number of times each algorithm revealed
the best performance. Classical stacking (9) has been
found to offer the best performance at most times, fol-
lowed by multi-level stacking (8). Classical boosting and
Logit boost performed worst against the same criteria,
each revealing the best performance only three times.

Table 4 summarises the outcomes from Table 3 for the
three basic ensemble approaches. In doing so, we consid-
ered all variants for a basic ensemble technique. For exam-
ple, we considered all six variants while checking whether
bagging produces the best result. If any of them has the
best accuracy, we increase the count for the bagging tech-
nique. An “x” in a cell designates the ensemble technique
that produced the best results for that dataset. For data-
sets D7, D11, D12, D14, and D135, all three approaches or
their variants have shown the best accuracy performance.
Again, stacking (14) was the best-performing method, as
revealed in the last column.

Apart from the datasets showing the best accuracy for
each ensemble technique (i.e., D7, D11, D12, D14 and
D15), bagging showed the best accuracy only once (D13),
and boosting showed three times (D1, D6 and DS). On the
other hand, stacking performed the best nine times (D2-DS5,
D8-D10, D13 and D16). From this data analysis perspec-
tive, it is again stacking that performed best for disease
prediction.

3.2 Precision comparison

Table 5 displays the results of precision scores for different
ensemble techniques and their variants across disease datasets.
All 15 ensemble classifiers considered in this study showed a
100% precision score for datasets D7 and D12. Datasets D12,
D13, D15, and D16 consistently performed, giving a preci-
sion score of >90% against each classifier. Regarding how
many times a variant reveals the best precision performance
(last row of Table 5), Classical Stacking (9) ranked first, fol-
lowed by Two-level and Multi-level Stacking, each showing
the best performance eight times. Classical boosting and logit

boost were positioned the lowest in this regard, delivering the
best performance four times each. Like the accuracy measure,
Classical Boosting and Logit Boosting showed the worst out-
come regarding the number of times revealing the best per-
formance. They showed the best performance only four times,
much lower than that of classical stacking, which showed the
best performance the most times (9).

When variants converged to their corresponding
parent ensemble approaches in terms of the number of
times revealing the best precision performance, stack-
ing appeared to be the best. The results are presented in
Table 6. Stacking showed the best performance 14 times
out of 16 datasets, followed by boosting (9) and bagging
(8). All variants showed the best precision performance
for datasets D7, D8, D12 and D14-D16. For the remaining
ten datasets (D1-D6, D9-D11 and D13), stacking achieved
the best precision eight times, followed by boosting (3)
and bagging (2).

3.3 Recall comparison

For accuracy and precision, the variants of the stacking
technique showed the best and second-best performance.
Recall outcomes make an exception in this regard — there
is a tie for the second-best recall score between random
subspace and classical stacking. Each showed the best per-
formance seven times, according to the last row of Table 7.
Dataset D12 revealed 100% recall against all ensemble
variants. Logit Boost led to the best performance mini-
mum number of times (3) among all variants.

For the three parent ensemble approaches, there is a three-
way tie for the best-performing score against datasets D7, D12,
D14 and D15, according to Table 8. Stacking scored the best 12
times, followed by boosting (9) and bagging (7). For datasets
D3, D7 and D12-D15, stacking showed a 100% recall score.

3.4 F1score comparison

We observed a similar trend in the F1 score as what we
observed for accuracy and precision. Stacking variants out-
performed other candidate variants, as detailed in Table 9.
Multi-level stacking appeared nine times as the best per-
former, followed by classical stacking (8) and two-level
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stacking (8). Datasets D7 and D12 showed a 100% F1 score
for all variants. D16 showed the same F1 score (94%) for all
variants. Classical boosting appeared minimum times (3) as
the best performer.

At the meta-level (i.e., basic ensemble approaches),
stacking showed the best F1 score performance 13 times,
followed by boosting (10) and bagging (7), according to
Table 10. For datasets D7, D12 and D14-D16, all the clas-
sifiers have shown the same F1 score.

3.5 AUC comparison

Like in accuracy, precision and F1 score, stacking vari-
ants outperformed other candidate variants for AUC, as
detailed in Table 11. Multi-level stacking appeared nine
times as the best performer, followed by classical stack-
ing (7) and two-level stacking (7). Dataset D15 showed a
100% AUC value for all variants. D16 showed the same
AUC score (89%) for all variants. Logit Boost appeared
minimum times (3) as the best performer.

According to Table 12, at the meta-level (i.e., basic
ensemble approaches), stacking showed the best AUC per-
formance 13 times, followed by boosting (11) and bagging
(7). For datasets D2, D7, D12 and D15-D16, all the clas-
sifiers showed the same AUC value.

3.6 AUPRC comparison

Multi-level stacking and classical stacking tied in the
number of their appearance as the best peformer (8),
according to Table 13. Decision tree, XGBoost and
two-level stacking appeared six times each as the best
performer. Like in AUC, dataset D15 showed a 100%
AUPRC score for all variants. Dataset D12 showed the
same AUPRC score (98%) for all variants. Classical
Boosting and Logit Boost appeared minimum times (3)
as the best performer.

According to Table 14, at the meta-level (i.e., basic
ensemble approaches), stacking showed the best AUPRC
performance 14 times, followed by boosting (9) and bag-
ging (7). For datasets D7-D§, D12-D13 and D15-D16, all
the classifiers showed the same AUPRC value.

3.7 Comparing RPI score

Using the results from Table 3, 5, 7,9, 11 and 13 for 16
datasets, we calculated the RPI score for all performance
measures against each variant. Table 15 presents the cor-
responding RPI score results. Classical stacking showed
the highest RPI score for accuracy (11.31%), precision
(16.81%) and recall (21.50%) measures. Multi-level

stacking showed the highest RPI scores for AUC (9.56%)
and AUPRC (12.69%). For the F1 score, Classical Boost-
ing had the highest RPI score (7.06%).

3.8 Comparison of best count statistics

The last rows of Table 3, 5,7, 9, 11 and 13 show the num-
ber of times each variant performed best against accuracy,
precision, recall, F1 score, AUC and AUPRC, respectively.
Table 16 summarises these six rows to reveal the number
of times each variant performed best against all six meas-
ures. Stacking variants of multi-level stacking topped the list
by appearing 50 times as the best-performing variant. This
value is significantly higher than other list values (p < 0.02)
according to the ‘inverse normal distribution’ test for a sin-
gle value. The second highest value was revealed by another
stacking variant of classical stacking (48), which is also sig-
nificantly higher than other remaining values (p < 0.04). The
Logit Boost variant appeared the minimum times (20) as the
best performer in this table.

4 Discussion

The ensemble approach, which combines multiple prediction
models, proves effective in disease prediction by reducing
errors and improving the quality of forecasts. In this study,
we evaluated the performance of 15 ensemble techniques,
including bagging, boosting, and stacking, using 16 datasets
containing information about various diseases. To ensure
the reliability of our findings, we rigorously examined how
well these ensemble methods performed based on different
measures, such as accuracy, precision, recall, and F1 score.
We also proceeded to preprocess the data, ensuring it was
clean and standardised for accurate predictions.

Our analysis uncovered some interesting trends. For
instance, we observed that decision trees performed less effec-
tively in recall and F1 score than other ensemble methods,
but bagging demonstrated substantial accuracy and precision.
Classical boosting and logit boost performed relatively poorly
among the boosting algorithms. However, stacking outper-
formed other methods, with classical and multi-level stacking
exhibiting remarkable results. The repeated success of stacking
indicates its reliability and effectiveness as an ensemble method
for disease prediction, consistently surpassing other strategies.
These findings suggest that stacking could have a meaningful
impact on global healthcare by improving disease prediction
and management. In addition to these results, our evaluation
provides insights into the advantages and limitations of ensem-
ble methods. We observed that ensemble approaches, especially
stacking, improve accuracy by reducing outliers. The consistent
performance of stacking across diverse datasets highlights its
potential as a reliable approach for disease prediction.
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Although this research considered 16 benchmark research
datasets from two highly regarded open-access data reposito-
ries, these datasets may not capture the full complexity and
variability of other real-world health data, such as the data
from clinical settings. Moreover, most of these datasets are
highly balanced. Clinical settings often encounter imbalanced
data [44]. This limitation of our study opens a new research
scope for the future, establishing research collaborations with
healthcare providers that have access to such data to vali-
date the findings of this study. Integrating any computation
models, including the best one this study observed (i.e., clas-
sical and multi-level stacking), with the present healthcare
environments is challenging, primarily due to computational
complexity [45] and cost-effectiveness [46]. While this study
focused on the robustness of the theoretical findings, it is
crucial to research the potentiality of their real-world appli-
cations. Numerous studies [e.g., 47] highlighted the impor-
tance of adopting advanced technologies and computational
models appropriately in healthcare settings. Our research
echoed this importance once again. Overfitting could be
another limitation of this study. Despite their effectiveness,
ensemble approaches are sometimes prone to overfitting [48],
especially when working with intricate models like stacking
or boosting. Our consideration of GridSearchCV for hyperpa-
rameter tuning that maximises performance while minimis-
ing overfitting and cross-validation helps reduce the negative
impact of this overfitting issue.

Our findings could potentially add new thoughts to
improving ensemble model performance. These findings
offer several directions for future research. Comparative
analyses can help determine which ensemble strategy is
most suitable for healthcare scenarios. Fine-tuning the
methods and optimising individual algorithms can fur-
ther enhance prediction accuracy. Furthermore, explor-
ing specialised feature engineering techniques for specific
domains may improve the predictive power of ensemble
models. Real-world validation is essential to test their
performance in healthcare settings to ensure the practi-
cal application of ensemble models. When using ensem-
ble models for illness prediction, ethical considerations
are critical. Future studies should focus on protecting
privacy, minimising discrimination based on projected
health effects, and ensuring responsible and equitable use.
Integrating ensemble models with existing medical tech-
nologies holds promise for improving disease prediction
accuracy and usefulness, ultimately benefiting patients
and healthcare providers. Finally, our study highlights the
strengths and potential of ensemble methods in disease pre-
diction, with stacking emerging as a standout performer.
Our recommendations for future research encompass com-
parative analysis, algorithm refinement, interpretability,

validation, ethical considerations, and seamless integration
with other healthcare technologies. These research avenues
promise to advance ensemble approaches for disease pre-
diction, leading to more accurate predictions and improved
healthcare outcomes.

5 Conclusion

In this research, we evaluated the performance of various
algorithms and their variations in the context of disease pre-
diction through ensemble techniques. The findings consist-
ently favoured the stacking technique over other ensemble
strategies, revealing its effectiveness in accurately predicting
diseases across diverse datasets. Notably, stacking achieved
100% accuracy on some datasets, highlighting its potential
as a robust and reliable ensemble method. While bagging
classifiers such as Dagging, Random Forest, Extra Trees,
and Random Subspace demonstrated strong performance
within the bagging ensemble models, stacking outper-
formed individual techniques such as CatBoost, XGBoost,
and LightGBM in the boosting category. Classical boosting
and LogitBoost emerged as the weakest classifiers among
the various ensemble approaches assessed.

These results provide valuable guidance for select-
ing the most suitable algorithm for disease prediction.
Notably, stacking, particularly the classical stacking and
multi-level stacking algorithms, emerged as the most reli-
able and precise ensemble methods, outperforming other
approaches across all performance metrics, showing the
advantage of combining the strengths of multiple models
and reducing bias and variance in predictions. The impli-
cations of these findings are significant for the field of
disease prediction, as they enable healthcare profession-
als to enhance the accuracy of disease prediction models,
potentially leading to earlier diagnosis, expedited treat-
ment, and improved patient outcomes. Further research
is warranted to explore aspects such as interpretability,
optimisation, ethical considerations, and the integration
of ensemble models with other medical technologies.
Addressing these aspects can advance the field, result-
ing in more accurate and reliable predictive models for
disease prediction.
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