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Abstract
In this paper, we investigate the chance-constrained support vector machine (SVM)
problem in which the data points are virtually uncertain although some properties of
distributions are available. Thus the robust joint chance-constrained SVM is applied
to consider the probability of any existing misclassification in the uncertain data.
We transform the chance-constrained SVM into a semidefinite programming problem
and a deterministic problem of second-order cone programming.We present new tech-
niques for handling these problems. By assuming the fact that the rows related to the
separation constraint matrix of the chance-constrained SVM model are dependent, it
is possible to present a new approach for connecting copulas to a stochastic separation
constrained support vector machine. Hence, we can use a marginal distribution of the
archimedean copula functions, instead of the distribution functions. The experimental
results indicate that the stochastic separation constrained support vector machine with
copula theory is able to achieve an efficient performance.
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1 Introduction

In recent years, SVM type algorithms (as one of the supervised learning algorithms)
have been extensively studied. Additionally, an introduced method uses a set of data
to produce input or output mapping functions in which every classification function
such as regression function is accessible. In 1998, SVM was proposed as a maximum
margin classifier and then tutorials on SVM were found [4, 12, 43]. Then, researchers
made use of SVM issues in various problems such as solving the large quadratic pro-
gramming problem of SVM design in data mining [30, 40, 46]. Moreover, certain
well-known methods are found in [2], where authors analyze methods based on stan-
dard benchmarks in order to evaluate their effectiveness. Kernels adaptation through
magnifying the riemannian metric in the boundary vicinity is an example in which
geometricmethods are being used to improve SVMefficiency. SVMs process is able to
approximate each multivariate function to the desired degree like the neural networks.

In the recent decade, a survey on SVMwith uncertainties is presented. Initially, the
basic SVMmodels were used for cases in which exact values of points were available,
and then different models were offered for the support vector machine with uncer-
tainties. One of the models which were presented against the uncertainty was the Bi
and Zhang model [8]. They considered the data points are subject to an additive noise
that is bounded by the norm. Therefore, a robust model is presented in order to ensure
the most optimal yield in the worst-case scenario constraints in case of existence.
Trafalis et al. used the norm to bound the disturbance of uncertainty in the data [41,
47]. Other presented models were expressed when the uncertainty was at intervals
[20, 44]. Khanjani et al. discussed a distributionally robust joint chance constrained
optimization model and applied it for the shortest path problem under resource uncer-
tainty [25]. Another method that has been considered is robust optimization, where
there is a chance-constraint with uncertain data in the problem to ensure a low prob-
ability of misclassifications. Lanckriet et al. controlled misclassification probabilities
in a worst-case setting: that is, under all possible choices of class-conditional densities
with given mean and covariance matrix, they minimize the worst-case (maximum)
probability of misclassification of future data points. Also, they interpreted the prob-
lem by minimizing the maximumMahalanobis distances to the two classes [27]. They
propose a convex optimization based strategy to deal with uncertainty in the obser-
vations of a classification problem. Cao et al. extended the model of fuzzy chance
constrained support vector machine for uncertain classification, and following that,
Han and Cao concentrate on least squares twin support vector machine classification
when data distributions are uncertain statistically [11, 21].

Stochastic and non-stochastic processes are among the factors that create uncertain
data in real life. Therefore, creating machine learning techniques and developing them
to deal with data uncertainty and decision-making in the face of data turbulence is
of great importance. Recent developments in robust optimization have been able to
have a great impact on models with data uncertainty. Bhattacharyya et al. Studied
the existence of uncertainty in observations and proposed a strategy based on convex
optimization to deal with uncertainty in observations of a classification problem [7].

The chance-constrained SVMmodel is reformulated as a Second-Order Cone Pro-
gramming (SOCP) and Semi-definite Programming (SDP) when the information of
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the second-ordermoment is available and you are able to solve them by the conic linear
programming [32, 38, 39, 44]. For this, a direct way is used to reformulate the robust
chance-constrained SVMmodel into SDPmodel [5, 6, 27, 35]. Besides, the stochastic
subgradient descent method is investigated for robust chance-constrained SVM [9, 45,
48]. However, no fully efficient for numerical problem-solving techniques have been
proposed yet.

The relationship between the individual probability distributions of random vari-
ables and their joint probability distribution is called the copula approach which is
offered by Sklar [36]. Also, modeling of multivariate joint distribution and anomalous
multivariate discussions are studied using the copula approach [33]. In this way, some
studies have been presented due to the fact that the constraint’s random coefficient
vectors are considered dependent, and the dependence of the random vectors is han-
dled through copulas [26]. The copula approach is used to describe non-parametric
measures of dependency for every pair of random variables, plus where we man-
age to show that a multivariate joint distribution is completely characterized by its
respective marginal distributions. Consequently, this approach might be helpful to
consider dependency and marginal distribution as two separate but at the same time
related subjects. Sklar’s Theorem which is probably the most fundamental connection
between copulas and statistics helps us replace the joint distribution functions with
copulas. The reason that the marginal distribution functions of random variables are
estimated based on the historical data is that a joint distribution function using a copula
is selected to convert the joint probabilistic constraints into individual probabilistic
constraints. The copula functions collect the dependent structure of a set including
variables. This paper proposes a technique based on copula for solving robust joint
chance-constrained SVM on large-scale data sets that is dependent on the different
designs of the reformulations for SVM.

To summarize, in this paper, first of all, a robust model was considered, then a
robust set was used. Therefore, we were able to provide a robust SVM model, and
we examined the problem in the case where the constraint was the form of joint
chance-constrained. We study reformulation of the robust chance-constrained SVM
into equivalent SOCP and SDPmodel as well as the model with second-order moment
information of the uncertain data provided. For this purpose, Chebyshev inequalities
are used in which the problem can be posed as a SOCP [31]. In the paper, a small
example is provided to compare the problem at different values of the confidence level
for the separation of the robust chance-constrained with the case given in [44]. Some
properties of the distribution such as the first and second moments are available but
the exact probability distribution of the random variables is unknown. The separation
constraint variables of the SVM are assumed to be dependent, normally or not nor-
mally distributed random variables, whereas in [44] the constrained SVM problem is
developed and is not considered dependent. The method used to convert joint chance-
constrained problems into deterministic problems of second-order cone programming
is the marginal distribution of the archimedean copula functions. The uniqueness of
this article is to show the issue jointly and assign it to copula. Moreover, we implement
numerical experiments to display the efficiency of the proposed approaches.

The organization of this paper is as follows:
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Section 2 gives an introduction to the basic SVM models and chance-constrained
support vector machines and presents semidefinite programming and second order
cone programming for SVM. In this section, the SVM with uncertainties, states both
of the robust SVM with bounded uncertainty and chance-constrained SVM through
robust optimization. Section 3 discusses the SVM model when we use marginal dis-
tribution instead of a joint distribution function. Section 4 shows the numerical results
on the equivalence and on the estimation and performance issues, which include two
separate sections for random data and real data. Section 5 concludes this paper.

2 Preliminaries and general definitions

Support vector machine is one of the modern tools in classification techniques. It is
noteworthy that in the beginning, the support vector theory was not acknowledged and
the first articles written by Chervonenkis et al. and others, were ignored till 1992, and
were taken seriously only when excellent results on practical learning benchmarks
were achieved in digit recognition, computer vision and text categorization [17, 28].
One of the issues to consider for the SVMs is that, some nonlinear and unknown
dependency exists in the input vector (e.g., x) which is generated using available
moment information (e.g., x1 ∼ (μ1, (σ1)

2)) and scalar output (e.g., λ). In this case,
we only have some information on the pairs of the training data set D = {(xi , λi ) ∈
X × �, i = 1, . . . k} without having any access to underlying joint probability
functions where k is the size of the training data set. SVMs are often called non-
parametric, however, it does notmean that no parameters exist. Namely, the parameters
are data-driven and their number depends on the training data where you used in the
model.

Below we want to investigate the linear maximal margin classifier for linearly
separable data. Consider the problem of binary classification which training data are
as follows

(x1, λ1), (x2, λ2), . . . , (xk, λk), (1)

where x ∈ R
n and λ ∈ {+1,−1} and data are linearly separable. Besides, there are

some hyperplane that can separate data (Fig. 1) and point separation is done by plane
v1x1 + v2x2 + b = 0. So, the important thing is to find the best plane where we don’t
know the underlying probability distribution.

We now need to define an optimal canonical hyperplane and maximal margin from
limited training data. Consider the margin M as follows [24]

M = 2

‖v‖ . (2)

Equation (2) shows that maximizing of margin M is equivalent to minimization of
‖v‖. So, learning problem is as follows

min
1

2
vT v, (3)
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Fig. 1 Illustration of SVM
optimization of the margin in the
feature space where by
minimizing vT v, the margin
between both classes is
maximized

Table 1 Illustration of SVM optimization for Fig. 1

Optimal value
vT b CPU time

0.562961 (1.021346, -0.287705) 0.219679 0.2423

and constraint are hyperplanes in proper form of avaliable training data as

λi [vT xi + b] ≥ 1, i = 1, . . . , K . (4)

Table 1 is related to the numerical results of Fig. 1 where obtained from the imple-
mentation of Model (3) with constraints (4). In this example, 20 points are considered
for each class in which obtain the maximummargin between both classes as a optimal
value. It is noted that all the points of the two sets are separable.

In data classification, we sometimes have to ignore some points (see Fig. 2), and
these points remain unclassified. The model can now be presented below to evaluate
incorrect classification

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : λi [(vT xi + b)] ≥ 1 − βi , i = 1, . . . , K

βi ≥ 0, i = 1, . . . , K , (5)

where
∑K

i=1 βi shows the sum of distances of the wrong side points and 0 ≤ C ≤ 1

2nk
is a penalty parameter, trading off the margin size for the number of misclassified data
points and k is a small parameter. Model (5) is named as a soft margin SVM model.

Figure 2 and Table 2 are related to classifiers with two inseparable classes and 50
points for each class. As seen, it is not possible to gain the maximum margin from
the linear model due to the interference of the points. Therefore, we have obscured
a number of points in order to obtain a reasonable and acceptable margin. We have
generated class points randomly by normal distribution with mean’s [−1, 2]T and
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Fig. 2 SVM optimization of the
inseparable points

Table 2 Illustration of SVM optimization for Fig. 2

Optimal value vT b CPU time

452.651 (1.415252, −0.565995) 0.00309 0.4164

[−2, 1]T for +1 class and −1 class, respectively and the covariance is the identity
matrix.

2.1 Chance-constrained support vector machines

The robust optimization has been proposed to guaranty optimal performance for
ensuring a small probability of misclassification in uncertain data [3, 6, 41]. Robust
classifiers were used in the last years but, the case study of using this method was
that these classifiers use only limited partial information. As a result, the researchers
tended to be more conservative so that they were to increase the classification margin
as well as enhancing the ability to generalize the classifier. Since the goal is to max-
imize traceable margins by applying support and second-order moment information
from uncertain data to make a decision boundary, then the proposed classifiers of the
partial information yield a better generalization and they use the boundary knowledge
instead of exact moments which are sometimes uncertain and also robust to instan-
taneous estimation errors. Accordingly, one idea is to accomplish a model with the
goal of maximizing margins with chance-constraints on uncertain training datapoints
which guarantees classification with high probability. The chance-constrained SVM
formulation is defined as follows [35]

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : prob[λi (vT xi + b) ≥ 1 − βi ] ≥ α, i = 1, . . . , K ,

βi ≥ 0, i = 1, . . . , K . (6)
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Table 3 Robust SVM classfier for data with different uncertainty sets

α Optimal value vT b CPU time

0.95 0.460005 (0.58410, 0.76082) 0.30434 0.33811

0.9 0.357613 (0.53767, 0.65279) 0.25411 0.31990

0.8 0.303155 (0.51058, 0.58789) 0.22372 0.33591

Original data 0.226818 (0.46838, 0.484) 0.17479 0.19722

Fig. 3 Robust chance-constrained SVM classifier for data with different confidence level

Table 3 shows the numerical results for a robust chance-constrained example with
two inseparable classes and 50 points for each class, which data-points belong to
their corresponding ellipsoid uncertainty sets and the mean is in [1,2] for +1 class
and [−2,−1] for −1 class and covariance is identity matrix. The optimal value of
the last row is based on original data and the rest of the Table rows are obtained for
different confidence levels by considering the same ellipsoid uncertainty sets. Sincewe
consider the worst case in the robust chance-constrained, the optimal value is higher
than the case in which the data is original, and it results that the margin has decreased
as confidence levels have increased. The lower the confidence level, the better the
margin obtained.

Figure 3 shows the results of Table 3 intuitively. As you see, the higher the con-
fidence level, leads to a larger uncertainty set. Figure (3) demonstrates the robust
chance-constrained SVM with a different confidence level. The black line is the sep-
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arating line vT x + b = 0 and the red and blue dashed line are the lines determining
the margin, i.e., the lines vT x + b = ±1. Figure 3d is obtained based on original data
with the method given in [44]. In Fig. 3a–c, we set the confidence level α = 0.95,
α = 0.9, and α = 0.8 respectively and the data are into ellipsoid uncertainty sets.
Then, instead of the dashes which are separating all the points, we make a selection of
ellipsoid uncertainty sets so that the dashes do not cross the ellipsoids and the dashed
lines are forced to be tangent to the ellipsoids or having a distance from the inner side
but still obtaining the maximum margin classifier. As shown in all plots of Fig. 3, the
optimal value between these two dash lines are maximized. Besides, the size of the
uncertainty set would affect the classifier.

Now, consider that the datapoints xi are uncertain. The joint chance-constrained
program (JCCP) SVM formulation is

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : prob[λi (vT xi + b) ≥ 1 − βi , i = 1, . . . , K ] ≥ α,

βi ≥ 0, i = 1, . . . , K . (7)

Assume xi ∼ (μi , �i ), so we have vT xi ∼ (vTμi , v
T�iv). Notice, in the assumtions

of the robust problem, no kind of distribution is considered and only the distribu-
tion is assumed to be elliptical. Robust JCCP with independent raw case and normal
distribution is as follows

min
1

2
vT v + C

K∑

i=1

βi , (8)

s.t : inf
xi∼(μi ,�i )

prob[λi (vT xi + b) ≥ 1 − βi , i = 1, . . . , K ] ≥ α,

βi ≥ 0, i = 1, . . . , K . (9)

Then model (8) can be reduce to

min
1

2
vT v + C

K∑

i=1

βi ,

s.t :
K∏

i=1

inf
xi∼(μi ,�i )

prob[λi (vT xi + b) ≥ 1 − βi ] ≥ α,

βi ≥ 0, i = 1, . . . , K , (10)

where for the robust JCCP of SVM we can write α
∑K

i=1 zi = α s.t.
∑K

i=1 zi = 1 [22].
On the other hand the joint chance-constrained of model can be written as K individual
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chance-constrained

K∏

i=1

inf
xi∼(μi ,�i )

prob{λi (vT xi + b) ≥ 1 − βi } ≥
K∏

i=1

αzi . (11)

Thus, by some logarithmic manipulations, (11) reduces to

inf
xi∼(μi ,�i )

prob{λi (vT xi + b) ≥ 1 − βi } ≥ αzi , i = 1, . . . , K ,

K∑

i=1

zi = 1,

zi ≥ 0, i = 1, . . . , K , (12)

constraint (12) can be obtained as follows

inf
xi∼(μi ,�i )

{prob[λi (vT xi + b) ≥ 1 − βi ]} ≥ αzi ,

or equivalently

sup
xi∼(μi ,�i )

{prob[λi (vT xi + b) < 1 − βi ]} ≤ 1 − αzi .

Now we can use the multivariate Chebyshev inequality (see, e.g., [27])

sup
xi∼(μi ,�i )

{prob[λi (vT xi + b) < 1 − βi ]} = 1

1 + t2
, (13)

where t2 = infλi (vT xi+b)<1−βi
‖ (xi −μi )

T�
−1
2 ‖2. Now assuming that if λi (v

T xi +
b) ≥ 1 − βi , so t2 can be obtained as

t2 = (λi (v
Tμi + b) − 1 + βi )

2

vT�iv
, (14)

furthermore, since (13) is established, it can be concluded that

1

1 + t2
≤ 1 − αzi ⇒ t2 ≥ 1

1 − αzi
− 1. (15)

Put (14) in (15)

(λi (v
Tμi + b) − 1 + βi )

2

vT�iv
≥ 1

1 − αzi
− 1. (16)
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Finally, we come to the following inequality as the constraint of Model (10)

√
αzi

1 − αzi

√
vT�iv ≤ λi (v

Tμi + b) − 1 + βi , (17)

thus, model (10) reduces to

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : − λi (v
Tμi + b) +

√
αzi

1 − αzi

√
vT�iv ≤ βi − 1, i = 1, . . . , K ,

K∑

i=1

zi = 1,

βi ≥ 0, i = 1, . . . , K ,

zi ≥ 0, i = 1, . . . , K . (18)

The next theorem shows the convexity of

√
αz

1 − αz
. So, by approximating the func-

tion

√
αz

1 − αz
and applying it to the problem, the convex approximation is obtained

from the nonlinear constraint.

Theorem 2.1 For z ∈ (0, 1],
√

αz

1 − αz
is convex and decreasing when α ∈ (0, 1). So,

by given any set of values zs ∈ (0, 1], s = 1, . . . , S, we can have

f (z) ≥ max
s=1,...,S

{asz + bs}, (19)

where

as = ∂( f (z))

∂(z)

∣∣∣∣
z=zs

and bs =
√

αzs

1 − αzs
− aszs .

Proof [14]. �	

2.2 Approximation of upper and lower bounds for robust joint
chance-constrained SVM

In this section, we discuss the upper and lower bounds for chance constraints. In
General, considering the two cases below, it is required to use the approximation and
in truth, in this case, the linear approximation. First of all, reliable and relevant risk
measurement is required to be processed for the chance constraint. The second case
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is bounding below the true optimal value. In the following case, we can process a
robust best approximation from an ellipsoidal set involving interpolation constraints
and uncertain inequality constraints in a measurable space that is immunized against
the data uncertainty using a nonsmooth piecewise method. We assumed the input
data of the inequality constraints are not exactly known. In this part, we illustrate
that finding the best robust approximation is equivalent to solving a complementarity
second-order cone problem. That is, following Cheng and Lisser’s [14, 22] idea, we
find the upper and lower bounds of the objective function of Model (18) by replacing
(17) in it through the piecewise linear approximation procedure and the piecewise
tangent approximation procedure, respectively.

Now, by Theorem (2.1) we approximate the convex function

√
αz

1 − αz
with the

piecewise linear approximation function. Hence, the final model reduces to

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : − λi (v
Tμi + b) + max

s=1,...,S
{aszi + bs}

√
vT�iv ≤ βi − 1, i = 1, . . . , K ,

K∑

i=1

zi = 1,

βi ≥ 0, i = 1, . . . , K ,

zi ≥ 0, i = 1, . . . , K . (20)

We can write (20) as

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : − λi (v
Tμi + b) +

√
h2i v

T�iv ≤ βi − 1, i = 1, . . . , K ,

hi ≥ aszi + bs, i = 1, . . . , K , s = 1, . . . , S,

K∑

i=1

zi = 1,

βi ≥ 0, i = 1, . . . , K ,

zi ≥ 0, i = 1, . . . , K . (21)

Since v is free, then we can write it as the difference of two non-negative variables vp

and vn . Finally upper bound model is as follows
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min
1

2
‖ vp − vn ‖22 +C

K∑

i=1

βi ,

s.t : − λi

(
(vp − vn)

Tμi + b
)
+ ‖ �

1
2
i (τ ip − τ in) ‖2≤ βi − 1, i = 1, . . . , K ,

τ ip ≥ asη
i
p + bsvp, i = 1, . . . , K , s = 1, . . . , S,

τ in ≥ asη
i
n + bsvn, i = 1, . . . , K , s = 1, . . . , S,

K∑

i=1

ηip = vp,

K∑

i=1

ηin = vn,

β, ηp, ηn, τp, τn, vp, vn ≥ 0, (22)

where ηip = zivp and τ ip = hivp. Since
∑K

i=1 zi = 1, so equation
∑K

i=1 ηip = vp is
established. Then model (21) will be calculated with the new values as and bs as

as =

√
αzs

1 − αzs
−

√
αzs−1

1 − αzs−1

zs − zs−1
,

and

bs =
zs−1

(√
αzs

1 − αzs

)
− zs

(√
αzs−1

1 − αzs−1

)

zs−1 − zs
.

2.3 Semidefinite programming and second order cone programming for SVM

It has been shown in some references that some of the distributionally robust opti-
mization models might be solved in polynomial times, while the distribution’s mean
and covariance matrix are constrained along with being modeled as a SDP reformu-
lation [18]. This process is applied to cases where the chance constraint is present
in the model and the distribution is known and the chance constraint is used as an
impervious structure. In addition, researches have been conducted on cases where the
chance constraints were joint, so that, the uncertainty set is able to be tested with a
SDP [10, 13, 49]. SDP model is used to obtain an approximation model where the
polynomial convergence rate is known. This application is based on the relaxation
scheme for binary constraints. Thus the chance-constrained problem where is solved
in the polynomial time becomes SOCP [1].

Now, by [31, 44] we present a formulation we use to solve the above discussed
classification problem. Thus SDP and SOCP reformulation of SVM program are as
follows respectively
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min
1

2
vT v + C

K∑

i=1

βi ,

s.t : δi − 1

1 − α
tr(�iMi ) ≥ 0, i = 1, . . . , K ,

Mi +
[

0 1
2λi v

1
2λi vT λi b + βi − 1 − δi

]

 0, i = 1, . . . , K ,

Mi 
 0, i = 1, . . . , K ,

βi ≥ 0, i = 1, . . . , K , (23)

where �i =
[
�i + μiμ

T
i μi

μT
i 1

]
, i = 1, . . . , K and SOCP model is as follows

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : − λi (v
Tμi + b) ≤ βi − 1 −

√
α

1 − α
‖�

1
2
i v‖2, i = 1, . . . , K ,

βi ≥ 0, i = 1, . . . , K . (24)

3 SVMmodel based on dependent structure

One of the important problems inmathematical analysis is the relationship between the
individual probability distributions of random variables and their joint probability dis-
tribution. In the context of non-normal multivariate discussions, the copula method is
suggested to model multivariate joint distributions. This approach can be used to illus-
trate that a multivariate joint distribution is entirely defined by its respective marginal
distributions and the linking function of copula, along with the individual of the set
of individual marginal distributions. The copula approach is often used to describe
non-parametric dependency measures for each pair of random variables and given
the marginal distributions, is a helpful tool for deducting joint distributions. It is very
helpful to model joint distributions using copulas as marginal distributions and depen-
dence can be considered as two distinct but related topics.In fact, based on historical
evidence, the marginal distribution functions of random variables are approximate,
so they have appointed a common distribution function using a copula, and then the
joint use it to transform the joint probabilistic constraints into individual probabilistic
constraints. The dependant configuration of a set of variables derived from the cop-
ula functions. Therefore, when researchers are faced with the cumulative distribution
function, copulas are a typical tool in designing the dependency among time series.
An important characteristic of the copula function is that the multivariate structure
and multivariate structure of joint distribution function are alike. In conclusion, the
researchers job is becomes easier by using copula models to combine marginal dis-
tribution for modeling the dependence structure [34]. Consequently, now copula is
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briefly used in models with joint chance-constrained random data in order to deter-
mine the dependence between rows of constraints. In this section we mention only
some basic facts about copulas needed for our following investigation.

Definition 3.1 [29] The copula is the distribution function C : [0, 1]k → [0, 1] of
some k− dimensional random vector where its marginal is uniformly distributed on
[0, 1].
Definition 3.2 [15, 23] A copula C is called archimedean if there exists a continuous
strictly decreasing function 
 : [0, 1] → [0,+∞], called generator of C , such that

(1) = 0 and

C(u) = 
−1

(
n∑

i=1


(ui )

)
.

If limu→0 
(ui ) = +∞ then C is called a strict archimedean copula and 
 is called
a strict generator.

In general, the distribution information of random variables can be derived from his-
torical data. The process of obtaining a joint probability distribution from historical
data is very complex, especially when the random variables follow different marginal
probability distributions.

Theorem 3.3 (Sklar’s theorem [29]) For any k−dimensional distribution function F :
R
k → [0, 1] with marginal F1 × . . . × Fk there exists a copula C such that

∀z ∈ R
k F(z) = C(F1(z1), . . . , Fk(zk)).

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F(F (−1)
1 (u1), . . . , F

(−1)
k (uk)),

otherwise, C is uniquely determined on rangF1 × . . . × rangFk.

Also another generator of archimedean copula explained as follows [42]
Joe’s copula: Cθ (u) = − ln(1 − (1 − u)θ ), θ ≥ 1,

Frank’s copula: Cθ (u) = − ln(
e−θu − 1

e−θ − 1
), θ ∈ R\{0},

Ali-Mikhail-Haqas copula: Cθ (u) = − ln(
1 − θ

u
+ θ), θ ∈ [−1, 1),

Gumbel copula: Cθ (u1, u2) := exp(−((− ln u1)θ + (− ln u2)θ )

1

θ ),

Clayton copula: Cθ (u) = 1

θ
(u−θ − 1), θ ∈ [−1,∞)\{0}.

Sklar’s theorem provides a direct relationship between a copula and the joint distri-
bution function of a randomvector.According toSklar’s theorem, the copula represents
a practical tool for describing the dependency structure of the considered random vec-
tor. In addition, Sklar’s theorem guarantees the existence and uniqueness of a copula
for any distribution function and all its marginals.
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Theorem 3.4 [16, 29] For the matrix ã in feasibility set {x ∈ R
n|prob{ãT x ≤ d} ≥

p}, we assume that ãTi ∼ �(μi , �i ,�i ) (� is multivariate elliptically symmetric dis-
tribution 1) with �i � 02, and the “row dependence3” is depicted by an Archimedean
copula which is independent of x. Note that this assumption holds if the rows of the
matrix are normally distributed and independent. Thus the feasible set of the problem
(7) can be equivalently recorded as

X(p) =
{x |∃ yi ≥ 0 :

∑
yi = 1, μT

i x + �−1(
−1(yi
(p)))
√
xT�x ≤ di , i = 1, . . . , k},

where �i is the distribution function of the i-th constraints’ random parameters
(ãTi ), and 
 is the generator of an archimedean copula describing the dependence
properties of the rows of the matrix ã.

We extend this idea to the multi-row case by introducing archimedean copula to
describe the dependency structure of the optimization problem. According to the
linear model of chance-constrained, for nonlinear chance-constrained problems the
following model is established as

prob{x ∈ X |hi (x) ≤ κi , i = 1, . . . , K } ≥ α, (25)

where hi is deterministic continuous function and κ = (κ1, . . . , κK ) is a random
variable. IfC is archimedean copula, then, we can have this chance-constrained equiv-
alently as [22]

M�i =
{
x ∈ X |∃τi ≥ 0 : 
[�i (hi (x))] ≥ 
(α)τi , ∀i = 1, . . . , K ,

K∑

i=1

τi = 1

}
.

(26)

Given what has been said in the introduction to copula, we intend to re-model the
chance constraint where the rows of the problem are dependent normally distributed
random variables. For this let

C[λi (vT xi + b) ≥ 1 − βi , i = 1, . . . , K ] ≥ α, (27)

and let

U = [λ vT λ b − 1 − β]T and x̂ = [xT 1]T .

1 The second-order distributions with probability densities whose contours of equal height are ellipses.
2 A positive definite matrix is a symmetric matrix where every eigenvalue is positive.
3 Given matrix A, determine whether the row vectors are linearly dependent.
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Assume τi = λi (v
T xi + b) − 1 + βi ≥ 0. Thus, by implementing the mean and the

variance of the normal distribution,

τi − E(xi )

στi

≥ −E(xi )

στi

, (28)

and let κi = τi − E(xi )

στi

and hi (x) = −E(xi )

στi

. The coeficients corresponding to the

deterministic reformulation is obtained by adding the values of κi and hi in the relation
(27), as follows

C(κi ≥ hi (x), i = 1, . . . , K ),

Therefore, from (25) and (26), we get the equivalent description of distribution func-
tions


(�i (hi (x))) ≥ τi
(α)

�i (hi (x)) ≥ 
−1(τi
(α)) ⇒ hi (x) ≥ �−1
i (
−1(τi
(α))). (29)

By substituting (29) in (30), we have

E(xi ) + στi �
−1
i (
−1(τi
(α))) ≤ 0, i = 1, . . . , K ,

K∑

i=1

τi = 1. (30)

Now, we can model the SVM model by chance constraints, taking into account the
dependence between random variables and copula’s approach as follows

min
1

2
vT v + C

K∑

i=1

βi ,

s.t : λi (v
T xi + b) + λi�

−1
i (
−1(
(α)τi ))

√
xT�i x ≤ 1 − βi , i = 1, . . . , K

K∑

i=1

τi = 1

βi ≥ 0, i = 1, . . . , K ,

τi ≥ 0, i = 1, . . . , K . (31)

By using Theorem (3.4) and Gamble Capula, the constraint of model (31) is written
as follows:

λi (v
T xi + b) + λi�

−1
i (α(τi )

1

θ
)
√
xT�i x ≤ 1 − βi , i = 1, . . . , K ,

where approximations upper and lower bounds are obtained for �−1
i (α(τi )

1

θ
) as well

[22].
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3.1 Approximation upper and lower bounds for copula approach

Piecewise linear approximation is a useful tool allowing researchers to tackle opti-
mization problems from another perspective. Piecewise linear approximation use an
infinite number of linear parts until it matches the function’s curve. The goal is to
find the most accurate approximation with the least linear parts. So in this section, for
finding the best approximate let

g(τi ) = �−1
i (
−1(
(α)τi )),

assume s = 1, . . . , S be approximated points from (0, 1], thus
ĝ(τi ) = g(τs) + τi − τs

τs+1 − τs
(g(τs+1) − g(τs))

= (g(τs+1) − g(τs))

τs+1 − τs
τi + τs+1(g(τs+1)) − τs(g(τs))

τs+1 − τs
,

now by replacing g(τi ) = �−1
i (
−1(
(α)τi )) we have

ĝ(τi ) = �−1
i (
−1(
(α)τs+1)) − �−1

i (
−1(
(α)τs))

τs+1 − τs
τi

+ τs+1�
−1
i (
−1(
(α)τs)) − τs�

−1
i (
−1(
(α)τs+1))

τs+1 − τs

= asτi + bs, (32)

thus in SVM model with copula approach we should use as and bs as picewise
linear approximate where

as = τs+1�
−1
s (
−1(
(α)τs)) − τs�

−1
s+1(


−1(
(α)τs+1))

τs+1 − τs

bs = �−1
s+1(


−1(
(α)τs+1)) − �−1
s (
−1(
(α)τ))

τs+1 − τs
.

Now by replacing �−1
i (
−1(
(α)τi )) by max{asτi + bs} we can achive the model

same as model (22) but with different as and bs . By using first-order Taylor series
expansion around τ = τs, s = 1, . . . , S we earn the tangent approximation of
�−1

i (
−1(
(α)τi ))

ĝ(τi ) = �−1
i (
−1(
(α)τi )) + (τ − τs)(�

−1
i )′(
−1(
(α)τi )).

So as and bs are as follows

as = τ(�−1
i )′(
−1(
(α)τi ))

bs = �−1
i (
−1(
(α)τi )) − τs(�

−1
i )′(
−1(
(α)τi )).
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4 Numerical examples

4.1 Stochastic data

In this section, we present experiments performed on datasets. All the experiments
were carried out in MATLAB using CVX by SeDuMi solver and a PC with windows
system and Intel (R) Core (TM) i7-7700K CPU@ 4.20 GHz and 8 GB of RAM.

Many real-world problems took account of the factor of uncertainty or perturbation
in the input data and were solved at these conditions and as the level of uncertainty
decreases we get closer to the solution of the precise data. Furthermore, there are
other cases where, the distribution properties are often so unknown that need to be
estimated from data points. In this part, our experiments were performed on data sets
which produced randomly, which contain high- and low-noise problems. We used a
random partition to separate points with the same property, and finally, we tried to
put the state of this partition in the best condition. In Sect. 4.1.1, we compare the two
cases of robust joint chance-constrained SVM and robust dis-joint chance-constrained
SVM problem. Note that, we selected the same factors, and also the confidence level
is the same for both models so that we can have a fair comparison. The first test is
implemented to certify the better performance of the robust joint chance-constrained
SVM than the robust chance-constrained SVM. Section 4.1.2 contains the robust joint
chance-constrained SVM results for the larger data set. It is thus important to note that
our implementation is based on the second-order cone programming model (22). In
Sect. 4.1.3, we examine the joint chance-constrained SVM with the copula approach.
The Tables and Figures presented provide significant results.

During this part, assume that the first and second-order moment information of the
random variable xi are known. Let mean and covariance matrix of a random variable
as follows:

μi = E[xi ] and �i = E[(xi − μi )(xi − μi )
T ], i = 1, . . . , K ,

where xi = [xi1, . . . , xik]T .

4.1.1 Robust chance-constrained support vector machine

In this part, we present an example with 12 inseparable points in which data points
belong to their corresponding ellipsoid uncertainty sets. The example is presented in
such away that it compares the twomodes of robust joint chance-constrained SVMand
robust disjoint chance-constrained SVM with the same information and conditions.
There are four different confidence levels for this example. The information obtained
by testing the uniformly random generated data is as follows:

Similar to the experiments in data, the penalty parameters C = 10, The mean
μi , i = 1, . . . , K related to robust joint chance-constrained SVM is in the interval
[0,5] for class +1 and in the interval [−5, 0] for class −1 where obtained by normal
distribution. Moreover, interval [−1, 4] for class +1 and the interval [−3, 2] for class
−1 are related to robust chance-constrained SVM, and variance-covariance matrix is
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Table 4 Computational results for robust joint chance-constrained SVM

α Calculated values vT b CPU time Gap

0.95 UB 0.5965212825 (0.857986346, 0.675945251) −0.114675591 0.7073148 1.8189E − 06

LB 0.59652127165 (0.857986342, 0.675945248 ) −0.114675589 0.7681027

0.9 UB 0.59652127448 (0.857986344, 0.675945249) −0.11467559 0.712278 6.0015E − 07

LB 0.59652127090 (0.857986342, 0.675945248) −0.114675589 0.8088554

0.85 UB 0.59652127483 (0.857986346, 0.675945249) −0.114675591 0.6938122 1.2741E − 07

LB 0.59652127407 (0.857986345, 0.675945249) −0.11467559 0.7398756

0.8 UB 0.59652127234 (0.857986342,0.675945250) −0.11467559 0.7050473 6.5379E − 08

LB 0.59652127195 (0.857986343, 0.675945249) −0.114675589 0.752736

Table 5 Computational results for robust chance-constrained SVM

α Optimal values v b CPU time

α = 0.95 2.23393 (1.801277, 1.106013) 0.028357 0.362455

α = 0.9 1.33209 (1.362273, 0.899107) −0.03413 0.369685

α = 0.85 1.09459 (1.221661, 0.834703) −0.0553 0.366938

α = 0.8 0.97934 (1.147453, 0.801265) −0.06681 0.369083

identity matrix. For this example, confidence levels α = 0.95, 0.9, 0.85, and 0.8 are
selected.

In this section, we present the experimental results which extensively compare
the proposed (see Table 4) and existing methodologies (see Table 5) for classifying
uncertain data. Table 4 presents the results for robust joint chance-constrained SVM
model (22). The first column of the Table is different values of the confidence level (α).
The second column contains the upper bound (UB) and the lower bound (LB) obtained.
Columns 3 and 4 show the vectors obtained for v and the value b, respectively. Column
5 shows the run time of the program for each boundary, and finally, column 6 shows
the gap obtained as

Gap = upper bound − lower bound

upper bound
× 100.

Table 5 presents the results for robust chance-constrained SVM. The first column
of the Table is different values of the confidence level. The second column contains
the optimal values. Columns 3 and 4 show the vectors obtained for v and the value b,
respectively. Column 5 shows the run time.
Note the results obtained in Tables 4 and 5, if we want to compare the two models, we
will clearly see the improvement of the optimal value in model provided it is a joint.
For example, if α = 0.9, both the upper and lower bounds offer better values than the
dis-joint model with the optimal value of 1.33209. As the confidence level decreases,
we see better results in Table 4, and the upper and lower boundaries are closer together
and near to 0. In addition, look at the ratio of changes in each Table. Optimal value
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changes in Table 5 from α = 0.95 to α = 0.9 are almost one unit, while the changes in
Table 4 are imperceptibly seen. The changes in the values of b are also clearly shown
in Table 5 (0.028357 → −0.03413).

Figure 4 illustrates the results of Table 4 and Table 5. In other words, this Figure
shows a comparison between robust joint chance-constrained SVMand robust chance-
constrained SVMwith different confidence levels and 7 interpolation points. The first
column of the Figure, including α = 0.95, 0.9, and 0.85, shows the results in the
case where the problem is of the joint type and the second column is related to dis
joint one. Although Tables 4 and 5 show the efficiency of the joint method compared
to dis-joint, Fig. 4 provides other information. In the points that are closest to the
dashed line, the uncertainty set is almost the point itself, and the uncertainty extends
to farther points, while the uncertainty in the dis-joint model is uniformly distributed
to the points. In other words, the farther we go from the margin, the set of uncertainties
gets bigger. In addition, as the confidence level decreases, we see better results and
the set of uncertainties gets smaller.

4.1.2 Robust joint chance-constrained support vector machine

This example supports for the stability of the proposed models. The following infor-
mation were used in the experiments.

The penalty parameters C = 1,000,000, the mean μi , i = 1, . . . , K related
to robust joint chance-constrained SVM is in the interval [2,1] for class +1 and
in the interval [−2,−1] for class −1 where obtained by normal distribution and
variance-covariance matrix is identity matrix. For this example, confidence levels
α = 0.95, 0.9, 0.85, and 0.8 are selected.

Table 6 shows the results of a random example with 100 points for Model (22).
In this model, we have considered four different confidence levels as well as three
different interpolation points. The structure of this Table is as follows

The confidence level and the number of interpolation points (IP) are in columns one
and two, respectively. Columns 3–6 are the values obtained for the lower bound and
columns 7–10 are for the upper bound. Finally, the last column shows the amount of
gap between the lower and upper bounds.We tested themodel to evaluate the efficiency
for a larger number of points. Note that the gap of classified testing decreases as the
confidence level decreases in all data. Moreover, there was no significant change in
the classified testing points since the changes in optimal values were very close to
each other. Consider confidence level 0.8 with the number of interpolation points 3,
4, and 7. We see that as the number of interpolation points increases, the gap created
has decreased significantly (0.0123 → 8.9883E − 04 → 6.5374E − 04). The results
show that although we examine the worst case by considering robust, the results are
acceptable and close to the answers of the deterministic model. Besides, Fig. 5 shows
the accuracy of the results based on the sample size in the graph form.

In the following, we want to examine the superiority of the joint over the dis-joint
in terms of the loss of some points during the calculations. If we consider Table 6,
the values obtained for the beta at the upper and lower bounds indicate that we do
not lose any points and the points are completely separable. The margins themselves
are separated by points, but the set of uncertainties is not disturbed by the margins,
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Fig. 4 Comparison between robust joint chance-constrained SVM and robust chance-constrained SVM
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Fig. 5 Changes related to robust joint chance-constrained support vector machine with different confidence
level and interpolation points

and we have been able to find a margin that gives the best result considering the set
of uncertainties. However, in the case of dis-joint, we have to ignore some points
where the point or set of uncertainty itself penetrates into the margin. In Table 7 for
confidence level greater than 0.8,

∑K
i=1 βi values indicate that a number of points are

missing and are located inside the dashed lines. However, the points have become
inseparable for us, but lowering the confidence level reduces the risk of losing points,
so that at confidence level 0.8 no point is lost, but it offers a worse optimal value than
the corresponding joint state. In addition, Fig. 6 clearly shows all the results. In Fig. 6,
we used the zoom of the shapes for greater clarity so that the missing points could be
seen. Note, the first column of the Figure, including = 0.95,0.9, and 0.8, shows the
results in the case where the problem is of the joint type and the second column is
related to dis-joint one.

4.1.3 Chance-constrained support vector machine based on dependency

In this part, we use copulas as a useful tool to design the dependency of chance-
constrained random variables. As said, an important characteristic of the copula
function is that the multivariate structure of the joint distribution function is alike.
Here, we use copula models to combine marginal distribution for modeling the depen-
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Table 7 Computational results for robust chance-constrained SVM with 100 points

α Optimal values v b CPU time
∑K

i=1 βi

α = 0.95 6.52E + 06 (2.5488, 0.4628 ) 0.0390 1.4803 6.516748

α = 0.9 4.37E + 06 (2.7772, 1.4507 ) 0.3748 1.4632 4.369038

α = 0.85 2.13E + 06 (9.3089, 7.3867) 1.1749 1.4667 2.130911

α = 0.8 4.33E + 02 (23.0508, 18.2839) 0.30352 1.5154 1.40E − 08

α = 0.75 1.31E + 02 (12.6779, 10.0535) 0.1982 1.4600 7.00E − 09

α = 0.7 72.5220 (9.4370, 7.4819) 0.15904 1.4579 2.83E − 09

dence structure. For this purpose, Table 8 based on the copula approach is presented
for the example which we tested in the previous section.

In this part, to make the results easier to interpret, firstly, synthetic data is generated
using a 2-dimensional normal distribution with the +1 class and −1 class generated
by a normal distribution with the same information of the previous example in which
each class has 50 points. The structure of Table 8 is the same as in Table 4, but
the results have been significantly improved. We use Gumbel copula with parameter
θ ≥ 1 to handle the dependency of random variables. In this part, our goal is to find
the maximum margin by randomly considering some parameters. As the number of
interpolation points and the amount of θ increases, the Gap decreases in the problem.
Note that, the problem is a cone model and exist of complexity in the solving process,
thus by considering the complexity of the problem it seems cpu time is acceptable.
The results show that by increasing the value of θ and α, we need fewer interpolation
points to achieve convergence. An increase in the θ is fully visible in the process of
improving the Table. In addition, the number of interpolation points and the confidence
level have had a significant impact on the improvement of this process. The gaps from
the upper and lower bounds are better at each step and close to 0.

To compare how the copula approach can be controller the optimal value and
would affect the performance of the models, we presented Table 9. Table 9 presents
joint chance-constrained SVM results for example with 100 data points which we
use �−1(αzi ) instead of �−1

i (
−1(
(α)zi )). In the calculations of Table 9, we used
normal distribution and 6-point interpolation for all confidence levels. The numerical
results show that the optimal value obtained for copula is closer to the actual distri-
bution, and we can use copula to obtain an acceptable approximation in cases where
another distribution is used instead of the normal distribution. For example, if α = 0.9
upper bound of joint chance-constrained SVM is 8.566132, this is while, for both
θ = 2, and 4 the optimal value with copula is better than joint chance-constrained
SVM (8.566099 for θ = 2, and 8.565992 for θ = 4 ). Thus, we can rely on the copula
functions to obtain results close to the actual distribution.

4.2 Real data analysis

In this section, besides the synthetic random data, we also tested on real data, the
Breast CancerWisconsin (Original) data fromUCI dataset [44]. There are 699 samples
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Fig. 6 Compare of robust joint chance-constrained SVM and robust chance-constrained SVM based on
losing points
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Table 9 Comparing robust joint chance-constrained SVMwith copula approach and joint chance-constraint
SVM

α Calculated values vT b CPU time Gap

0.95 UB 8.566229 (3.245417, 2.568993) 0.084227 3.2488 0.0030

LB 8.565973 (3.245371, 2.568952) 0.084223 3.6288

0.9 UB 8.566169 (3.245436, 2.568947) 0.084228 3.2708 0.00210

LB 8.565989 (3.245355, 2.568978) 0.084222 3.6084

0.85 UB 8.566172 (3.245441, 2.568942) 0.084228 3.2305 0.00208

LB 8.565993 (3.245354, 2.568981) 0.084222 3.6280

0.8 UB 8.566190 (3.245450, 2.568937) 0.084228 3.2455 0.0014

LB 8.566070 (3.245447, 2.568894) 0.084230 3.6265

in this info, while 16 samples have missing values so that we do not use them in
the calculation process, resulting in 683 samples. 444 samples are benign and 239
are malignant, and we record them as class +1 and −1, respectively. Each of these
samples has 10 attributes, but the first one is Id number so we do not use it into the
experiments. Therefore, d = 9 dimensions are considered. Besides, Ionosphere data
with 351 samples is also used in the experiments and we record them in two classes of
225 and 126 as good class (+1) and bad class (−1), respectively. Also, for Ionosphere
data d is equals 34. These samples are deterministic real and there is no probability in
them, but our model is chance-constrained so we need random samples. Therefore, we
generate random data from real samples. For this purpose, we consider real samples
as means and the covariance matrix is 0.01In when In is the n × n identity matrix.

Table 10 shows the results obtained for theWisconsin breast cancer and Ionosphere
data from UCI dataset. We tested the model to evaluate the efficiency for a larger
number of points. This table contains two sections for Breast Cancer Wisconsin and
Ionosphere data at the α = 0.95 and 0.9 confidence levels. For both data types,
numerical results are reported for the SVM-SOCP model [44], Robust Joint chance-
constrained (R − JCC), and Capula models. Because the samples are not linearly
separable, some of the samples are lost and are not classified. Also, Table 10 shows
that k=40 samples are lost in R − JCC and 48 samples are lost in SVM-SOCP. This
indicates that our model has fewer missing samples. In addition, according to the
minimization model, the optimal value of R − JCC had better results than SVM-
SOCP. The results show that although we examine the worst case by considering
robust, the results are acceptable and close to the answers of the deterministic model.
In addition, v and b are reported in “Appendix”.

Figure 7 shows the data overlap. In order to be able to provide a two-dimensional
diagram of how the data is distributed, we have used PCA to extract the first two prin-
ciple components. In addition, we used PCA to reduce the Ionosphere data dimension
from 34 to 10. Figures 7a, b show the overlap of Wisconsin breast cancer and Iono-
sphere data, respectively. As you can see, benign data are greater than malignant data,
but malignant data are more spread than benign data.
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Fig. 7 First two principal components of Wisconsin breast cancer and Ionosphere data

Table 11 Accuracy, sensitivity, and specificity for Wisconsin breast cancer data (α=0.95)

Used data (%) tp tn f p fn Accuracy Sensitivity Specificity Correctly classi-
fied data(%)

25 Joint 426 197 18 43 0.91081 0.90831 0.91627 91.21

Disjoint 406 195 38 45 0.87865 0.90022 0.83690 87.99

75 Joint 416 215 28 25 0.92251 0.94331 0.88477 92.38

Disjoint 414 204 30 36 0.90350 0.92000 0.87179 90.48

100 Joint 424 219 20 20 0.94143 0.95495 0.91631 94.14

Disjoint 418 216 26 24 0.92690 0.94570 0.89256 92.82

4.3 Numerical results in terms of training point and accuracy

In the previous section we compared our approaches with respect to the optimal
value and CPU time. Nevertheless, in order to compare methods, we want to apply
a measure that shows how well the method classifies some test data. One measure to
compare machine learning methods is the accuracy. So, we now validate the effec-
tiveness of robust joint chance-constrained SVM on Wisconsin breast cancer data.
In our experiments, we conduct empirical comparisons on the classification accuracy
between robust joint chance-constrained SVM and disjoint chance-constrained SVM
considering that robust joint chance-constrained SVM is more justifiable than disjoint
chance-constrained SVM.

The subset of data used to guide the selection of hyperparameters is called the
validation set. To compare how the chance constraint probability controller α would
affect the performance of the models, we change the training and test point. Thus, the
classification accuracy on the test set and results in terms of training point are reported
in Table 11.

Table 11 ensures that for robust joint chance-constrained SVM and disjoint one the
proposed method has acceptable accuracy given the percentage of data used. Also, the
table shows that with this level of confidence, the data is placed at the top and bottom
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of the separator hyperplane. The first column show the percentage of data used. A
value of 100 indicates that all data was used in the implementation of the method, and
a value of 25 means that only 25% of the data was used in the conclusion where this
percentage of data is randomly selected using function ’randi()’ . The third to sixth
columns show tp, tn, f p, and fn values in reference [37], where tp are true positive,
tn are true negative, f p are false positive, and fn are false negative counts (see [37]
section 2 relationships 1 and 2, respectively). The last column is the percentage of data
that is correctly classified. Note that for joint chance constraint case the upper bound
values are reported for the minimization problem with five interpolation points.

5 Conclusion

In this paper, a novel methodology for constructing robust classifiers by employing
partial information on the support and moments of the uncertain training datapoints
is presented. The main idea was to investigate the chance-constrained SVM problem.
Thus the robust joint chance-constrained SVM is applied to consider the probabil-
ity of any existing misclassification in the uncertain data. We transformed the joint
chance-constrained SVM model into a deterministic problem of second-order cone
programming to handle these types of problems. During this paper, the rows related to
the separation constraint matrix of chance-constrained the SVM model were consid-
ered to be dependent. The type of problem allowed us to present a new approach for
connecting copulas to a stochastic separation constrained support vector machine. The
numerical results showed improvement of the optimal value in the model provided it
is a joint chance-constrained problem. This is a key feature of the proposed model that
provides acceptable results and higher margins without knowing the probability dis-
tribution of the random variables. In addition, in the last section, the copula approach
was able to achieve an efficient performance. To emphasize the veracity of our claims,
the robust joint chance-constrained SVM problem examined in terms of accuracy.
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