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Testing Mean and Covariance Structures with Reweighted Least Squares
Bang Quan Zheng and Peter M. Bentler

University of California, Los Angeles

ABSTRACT
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly 
over-reject the null hypothesis: � ¼ � θð Þ when the sample size is small. Reweighted least squares (RLS) 
avoids this problem. In some models, the vector of parameter must contain means, variances, and covar
iances, yet whether RLS also works in mean and covariance structures remains unexamined. This research 
extends RLS to mean and covariance structures, evaluating a generalized least squares function with ML 
parameter estimates. A Monte Carlo simulation study was carried out to examine the statistical performance 
of ML vs RLS with multivariate normal data. Based on empirical rejection frequencies and empirical averages 
of test statistics, this study shows that RLS performs much better than ML in mean and covariance structure 
models when sample sizes are small, whereas it does not perform better than ML to reject misspecified 
models.
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Introduction

Structural equation modeling (SEM) statistics such as those 
from maximum likelihood (ML) and generalized least squares 
(GLS) are based on asymptotic properties, in which sample 
sizes are assumed to be very large. Then the associated con
ventional goodness-of-fit test for model adequacy asymptoti
cally follows a standard χ2 distribution. This property holds for 
covariance structures and for joint mean and covariance struc
tures. Unfortunately, in actual applications in social science 
research, particularly in longitudinal data with growth curve 
modeling (GCM), violation of asymptotic sample sizes is typi
cal. As a result, the most widely utilized ML χ2 goodness-of-fit 
test (Jöreskog, 1969) too often incorrectly rejects the null 
hypothesis even when the model specification is correct (e.g., 
Arruda & Bentler, 2017; Hayakawa, 2019; Jalal & Bentler, 
2018). Additional contributors to model over-rejection include 
the number of variables, so that when the size of the covariance 
matrix is large, the correct null hypothesis is excessively 
rejected (Moshagen, 2012; Shi et al., 2018), and when the 
number of free parameters or degrees of freedom of the 
model are large, model over-rejection occurs (Herzog et al., 
2007; Hoogland & Boomsma, 1998; Jackson, 2003). Finally, 
violation of multivariate normality when using normal-theory- 
based tests such as ML also results in excessive model rejection 
(e.g., Hu et al., 1992; Yuan & Bentler, 1997). This paper limits 
its scope to the effects of sample size on GLS, ML, and RLS test 
statistics in correctly and misspecified mean and covariance 
structure models with normal data.

Building on the reweighted least squares (RLS) approach 
introduced by Browne (1974) for covariance structures, and 
reintroduced by Hayakawa (2019), this research extends RLS to 

mean and covariance structures and studies its performance as 
compared to GLS and ML for its null hypothesis performance 
and its power to reject misspecified models.

The method undertaken in this research is quite straightfor
ward. It relies on Monte Carlo Simulation to draw different 
sample sizes from N = 50 to 10,000 to compare the perfor
mance of chi-square model fit statistics from estimators of 
interest for both covariance structures as well as mean and 
covariance structures. Using 1,000 replications at each sample 
size, we find that RLS outperforms GLS and ML on mean and 
covariance structures and offers highly consistent goodness-of- 
fit chi-square model tests across different sample sizes. In 
contrast, RLS does not perform better than ML to reject mis
specified models.

This paper is organized as follows. It first reviews covariance 
structure analysis with its ML, GLS, and RLS test statistics. The 
next section reviews mean and covariance structures and devel
ops RLS in this context. The subsequent section discusses data 
generation and the simulation procedures, followed by evalua
tion criteria and then results, including power analysis of these 
methods. The last section provides a discussion and conclusion.

Covariance structures

In this section, we review parameter estimates and model fit 
tests with covariance structures. Let x1; . . . :; xNf g be a random 
sample of x, with the xi identically and independently distrib
uted according to a multivariate normal distribution N ½0; Σ�. 
We assume that Σ (p� pÞ is a matrix function of an unknown 
vector of population parameters θ(q� 1Þ, with Σ ¼ Σ θð Þ. The 
unstructured sample covariance matrix is 
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S ¼
1

N � 1
∑N

i¼1 xi � �xð Þ xi � �xð Þ
0

(1) 

where �x ¼ 1
N Σ

N

i¼1
ðx1; . . . :; xNÞ is the sample mean. When the 

sample size N is large, the difference between 1
N and 1

N� 1 can 
be neglected. According to the Multivariate Central Limit 
Theorem (Anderson, 1984), the unbiased sample covariance 
matrix S is positive definite with probability 1 and converges to 
Σ in probability. The asymptotic distribution of s ¼ vech Sð Þ is 

N1=2ðs � σ θð ÞÞ!
L n½0; 2K

0

pðΣ� ΣÞKp� (2) 

where “ !L ” denotes convergence in distribution, vech(S) p pþ1ð Þ

2 
� 1 may be expressed in terms of the p2 � 1 vech Sð Þ, and 
similarly for σ θð Þ and Σ θð Þ, with Kp of order p2 � p pþ 1ð Þ=2.

The specific covariance structure to be studied herein is the 
confirmatory factor analysis (CFA) model in deviation score form 

xi ¼ Λξi þ εi; i ¼ 1; . . . ;N 

where xi is a random sample, Λ p�mð Þ is a matrix of factor 
loadings, ξi (p� 1Þ is a vector of latent common factors, and 
εi p� 1ð Þ is a vector of unique factors. With the usual CFA 
assumptions, Σ ¼ ΛΦΛ

0

þΨ, where Φ is the m�m covariance 
matrix of the common factors and Ψ is the p� p diagonal covar
iance matrix of unique factors. The unknown parameters in Λ, 
Φ; and Ψ are elements of θ.

To estimate the unknown parameters in θ, we minimize an 
objective function F Σ θð Þ; S½ � that measures the discrepancy between 
Σ θð Þ and S. Functions relevant to this paper are ML (Jöreskog, 1969) 
and GLS (Browne, 1974). The ML function to be minimized is 

FML θð Þ ¼ log Σ θð Þ � logj jSj þ tr SΣ θð Þ� 1� �
� p (3) 

leading to optimal parameter estimates 

bθML ¼ argmin FML θð Þ: (4) 

The associated goodness-of-fit test statistic is 

TML ¼ N � 1ð ÞFML bθ
� �

; (5) 

which asymptotically follows a chi-square distribution with 
degrees of freedom df ¼ p� � q, where p� ¼ p pþ 1ð Þ=2 and 
q is the number of free parameters.

The GLS function was proposed by Browne (1974) 

FGLS ¼ 2� 1 s � σ θð Þð Þ
0

V � Vð Þvecðs � σ θð ÞÞ

¼ 2� 1tr S � Σ θð Þð ÞVf g
2� � (6) 

where � is a Kronecker product and V is a constant or stochastic 
matrix that converges to a consistent positive definite estimator of 
Σ� 1 (Lee, 2007). Typically in GLS, V ¼ S� 1, and at the minimum 
of F̂GLS, one obtains parameter estimates bθGLS and the GLS test 
statistic TGLS ¼ N � 1ð ÞFGLS bθ

� �
with p� � q df .

Reweighted least squares

The RLS function (Browne, 1974, Prop. 7) is a special case 
of (6). The parameter estimates are taken as bθML, with bΣML 
used in (6) to yield the test statistic 

TRLS ¼
N
2

tr S � bΣML

� �
bΣ
� 1
ML

n o2
: (7) 

TRLS asymptotically follows a chi-square distribution, that is, 

TRLS!
L χ2

df as N !1. The relationship between TML and TRLS 

was shown by Browne (1974) to be 

TML ¼ TRLS þ B 

B ¼ N ∑1k¼3
1
k

tr Ip � SbΣ
� 1n ok

: (8) 

While the term B vanishes asymptotically, Hayakawa (2019) 
points out that although B can be positive or negative, B is mostly 
positive with large p. Also, as p increases, the relative magnitude 
of B to degrees of freedom also increases. Then if the test statistic 
TRLS is close to its expected value, TML will tend to be too large. 
When sample size is sufficiently large, B will vanish, and the RLS 
and ML tests become equivalent. Equation (8) explains simula
tion results showing TRLS can remain highly consistent across 
sample sizes while TML is too large in small samples (e.g., 
Hayakawa, 2019).

Mean and covariance structures

In their discussion of latent curve or GCM models, Bollen and 
Curran (2005) note that the methodology involves a simulta
neous null hypothesis for means and covariances as functions of 
the more basic parameters θ

Ho : μ ¼ μ θð Þ and Σ ¼ Σ θð Þ.                      

Specifically, we again consider the CFA model xi ¼ Λξi þ εi, 
but now to its covariance structure, we add the expectations 
EðxiÞ ¼ μ, EðξiÞ ¼ μξ , and EðεiÞ ¼ 0. This results in the 
mean structure (MS) 

μ ¼ Λμξ; (9) 

implying that observed variable means are a linear combina
tion of latent factor means with weights given by Λ. While this 
structure could be evaluated against sample data using a type of 
GLS function (e.g., Yuan et al., 2019) 

x � Λμξ
� �0

bΣ
� 1

x � Λμξ
� �

;

this would ignore the simultaneous null hypothesis Σ ¼ Σ θð Þ. 
Thus, for ML estimation, we use the compound covariance and 
MS discrepancy function 

TML MS ¼ TML þ N � 1ð Þ x � Λμξ
� �0

Σ� 1
ML x � Λμξ
� �

; (10) 

where TML was given in (5) and now θ also contains the 
unknown factor mean parameters μξ . At the minimum of 
(10), we obtain bθML and the test statistics TML MS, which is 
referred to χ2

df , where df ¼ p� � q, where now p� ¼
pþ p pþ 1ð Þ=2 and the number of free parameters q now 
also contains the number of unknown factor means. The com
parable covariance-mean structure GLS function to be mini
mized is 

TGLS MS ¼ TGLS þ N � 1ð Þ x � Λμξ
� �0

S� 1 x � Λμξ
� �

; (11) 
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where TGLS was defined in association with (6). As was (10), at 
the minimum of (11), TGLS MS is referred to χ2

df .
RLS extended to mean and covariance structures is parallel 

to (11) but involves no function minimization. Rather, the 
estimates bθML obtained by minimizing (10) now include ML 
estimates bΛ and μ̂ξ that are used along with bΣML and Σ̂� 1

ML in 
the combined covariance/mean test statistic 

TRLSMS ¼ TRLS þ N � 1ð Þ x � bΛμ̂ξ

� �0
bΣ
� 1
ML x � bΛμ̂ξ

� �
; (12) 

where TRLS was previously given in (7).

Data generation and simulation

The data generation scheme for the simulation follows the 
structured means CFA model described previously, where xi ¼

Λξi þ εi with mutually uncorrelated multivariate normally dis
tributed ξi and εi. Each latent factor ξi has a mean and 
a variance and may correlate with other latent factors ξi so 
that μ ¼ Λμξ and Σ ¼ ΛΦΛ

0

þ Ψ. Two sets of simulations 
were done, one dealing with both means and covariance struc
tures as just noted. The other simulation did covariance struc
ture only simulation, estimation, and testing, in which μξ , and 
hence μ, were set at fixed zero vectors.

In both simulations, p = 15 and m = 3, with each factor 
having five observed indicators. The population parameters are 
given by 

and 

Φ ¼
1

0:3 1
0:4 0:5 1

2

4

3

5;

with diagðΣÞ ¼ I, and thus the unique variances are 
Ψ ¼ I � diag ΛΦΛ

0� �
. In the structured means model, the fac

tor means are set as μξ ¼ ð1; 2; 3Þ0.

Data generation was accomplished with “lavaan” pack
age (Rosseel, 2012) in R. The data-generating process 
consists of two steps. We draw common factors ξi from 
a multivariate normal distribution with mean μξ and cov
ariance matrix Φ. Unique factors εi are drawn from 
a multivariate normal distribution with mean 0 and cov
ariance matrix Ψ. These are combined to give observed 
variables xi ¼ Λξi þ εi. This process is repeated N times to 
obtain one random sample. The simulation studies include 
sample sizes ranging from 50 to 10,000, which should be 

enough to examine the performance of the different esti
mators. The parameter estimates and test statistics from 
R programming were verified with the EQS software ver
sion 6.4 (Bentler, 2006).

In the covariance structure simulation, there are 15 
observed variables (p = 15) and 3 latent factors. Thus, p� ¼
15 15þ1ð Þ

2 ¼ 120; with q = 33 free parameters to estimate. The 
models thus have 87 df. For the structured means, there are 15 
sample means derived from 15 observed variables and 3 factor 
means. Altogether, the mean and covariance structure thus has 
135 data points and 36 free parameters, yielding 99 df. Under 
the asymptotic properties and multivariate normality, the 
expected value of the CFA test statistic should be about 87, 
while its expected value in the mean and covariance structure 
model should be around 99.

Evaluation criteria

We will focus on two key simulation summaries at different 
sample sizes: The GLS, ML, and RLS test statistics and their 
empirical rejection frequencies. Although “lavaan” and EQS 
can estimate GLS and ML mean and covariance structures, 
existing R packages cannot compute RLS statistics. Therefore, 
specialized R code for computing RLS test statistics was written 
for this study.

The covariance structure tests of interest are TML, TGLS, and 
TRLS. Computed in each of 1,000 replications, the empirical 

means of each of these statistics should be about 87, with an 
expected standard deviation of 

ffiffiffiffiffiffiffi
2df

p
� 13:19. The mean/ 

covariance structure tests are TML MS, TGLS MS, and TRLS MS, 
whose empirical mean should be about 99 with an expected 
standard deviation 

ffiffiffiffiffiffiffi
2df

p
� 14:07.

Moreover, p values are the criteria by which the null 
hypothesis is evaluated with α = 0.05. Each replication 
will generate a corresponding p value for the fitted model. 
The average p values of all tests will be calculated. We 
also use empirical rejection frequencies as one of the 
benchmarks for evaluating the performance of the test 
statistics, i.e., the ratio of the number of p values less 
than 0.05 to the total number of replication (1,000). If the 
models perform correctly and follow asymptotic proper
ties, their mean rejection rates should be around 0.05 
when the sample sizes are sufficiently large. Any deviation 
far from the α level of 0.05 indicates that the chi-square 
distribution is not an adequate reference distribution for 
evaluating model fit.

Λ
0

¼

0:7 0:7 0:75
0 0 0
0 0 0

0:8 0:8 0
0 0 0:7
0 0 0

0 0 0
0:7 0:75 0:8
0 0 0

0 0 0
0:8 0 0
0 0:7 0:7

0 0 0
0 0 0

0:75 0:8 0:8

2

4

3

5
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Results

Test statistics

The left part of Table 1 shows that TML tends to follow two 
asymptotic properties when the samples are greater than about 
400. First, the test statistics converge to the expected value of 87 
as the sample size becomes large, but when N < 400, they 
deviate from the expected value. With N < 100, the means 
are substantially above their expected value. TGLS also follows 
asymptotic behavior when sample sizes are large; however, 
when sample sizes are smaller than 500, they are increasingly 
negatively biased, i.e., behavior opposite to that of TML. In 
sharp contrast, the means of TRLS test statistics are highly 
consistent across all sample sizes – as the sample size varies 
from 50 to 10,000, the corresponding mean test statistics 
remain very close to the expected value of 87. These findings 
are consistent with those of Hayakawa (2019).

The mean and covariance structure test statistics follow simi
lar patterns. The mean of the test statistics TML MS and TML GLS 
are near their expected value of 99 with large sample sizes. When 
sample sizes are smaller, the mean estimates of both TML MS and 
TML GLS become increasingly inaccurate, with TML MS being 
excessively large and TML GLS excessively small. In contrast, the 
mean test statistics of TRLS MS are highly stable across all sample 
sizes and very close to the expected value of 99.

Figure 1 contrast mean the test statistics of ML and RLS 
across sample sizes for covariance structures (bottom two 
lines) and mean/covariance structures (top two lines).

At a glance, the means of TML and TML MS are highly parallel 
to each other across all samples, as are TRLS and TRLS MS, 
although TRLS MS varies a bit more around its expected value 
than does TRLS:

The mean standard deviations derived from the 1,000 repli
cations are given in the right part of Table 1. We expect these to 
be about 13.19 and 14.07 for covariance and mean/covariance 
structures, respectively, and this is generally found when 
N > 400. However, when sample sizes are smaller, the mean 
standard deviations of TML and TML MS tend to be larger than 
those of TGLS, TRLS, and TRLS MS. The mean standard deviations 
of TRLS and TRLS MS tend to be relatively consistent across all 
sample sizes, that is, these test statistics produce quite stable 
estimates.

Average p values and empirical rejection rates
The distribution of p values should be uniform under the null 
hypothesis; hence, the mean p values should be near 0.5. As 
seen in the left part of Table 2, all methods approximate this at 
N = 10,000. TML tends to have large variation in average p values 
across different sample sizes, with smaller p values at the 
smaller sample sizes; the same pattern occurs for TML MS. 
TGLS and TGLS MS show the opposite pattern, exhibiting average 
p values that are too high at the smaller sample sizes. In 
contrast, TRLS and TRLS MS have mean p values remarkably 
near 0.5 across all sample sizes.

A more important perspective on the performance of test 
statistics is given by the p values near the tail of the distribution 
where accept/reject decisions about models are often made. As 
the right part of Table 2 shows, when N = 10,000 the mean 
empirical rejection rates of all models are near 0.05, so all 
methods perform well asymptotically. In terms of mean 
empirical rejection frequency, TML and TML MS share identical 
patterns. When N is large, they both have about 5% mean 
rejection rates, but with N < 400, the true model is rejected 
far too frequently (e.g., at N = 50, the mean rejection rate is 
0.31). TGLS, and TGLS MS to a lesser extent, has the opposite 
problem: rejecting the true model too infrequently. In contrast, 
both TRLS and TRLS MS have very consistent rejection rates 
almost across all sample sizes, close to the desired 0.05 level. 
However, when N < 200 TRLS MS tends to slightly under-reject 
the true model.

Figure 2 visualizes the rejection rates of ML and RLS statis
tics across various sample sizes. When N > 400 or so, these 
methods perform similarly, while at smaller Ns, RLS and 
RLS_MS clearly outperform ML and ML_MS.

Power analysis
In this section, we describe the ability of TML MS, TRLS MS, and 
TGLS MS to reject false models, i.e., those that do not correspond 
to the population that generated the data. If a test statistic 
requires smaller sample size to reject models with misspecifica
tion, then the power of that test is higher. Power analysis is 
done using three conditions of misspecification.

In condition 1, two extra factor loading parameters are 
added to the data-generating population model. We connect 
the second factor with the first manifest variable and third 

Table 1. Mean test statistics and standard deviations by sample size.
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factor with the sixth manifest variable and set the factor load
ings at the values of 0.2 and 0.3, respectively. Thus, the new 
factor loading matrix is defined as: 
.

The misspecified model is the one that was defined earlier.
In condition 2, we use original population that omits the 

two extra parameters, in which the factor means of the popula
tion model are 1, 2, and 3. Nonetheless, in the analysis, we fix 
the factor means at the values of 1, 2, and 2, while holding the 

intercepts of all other manifest variables at the values of 0. 
Therefore, there is a misspecification in only one parameter, 
a latent mean parameter.

Condition 3 is simply a combination of conditions 1 and 2. 
That is, we analyze the data generated based on the population 
model specified in condition 1. At the same time, we fix the 
factor means at the values of 1, 2, and 2. Hence, we expect 
condition 3 to have a larger misspecification.

Figure 1. The effect of sample size on mean test statistics.

Figure 2. The effect of sample size on empirical rejection frequency.

Λ
0

¼

0:7 0:7 0:75
0:2 0 0
0 0 0

0:8 0:8 0
0 0 0:7
0 0 0:3

0 0 0
0:7 0:75 0:8
0 0 0

0 0 0
0:8 0 0
0 0:7 0:7

0 0 0
0 0 0

0:75 0:8 0:8

2

4

3

5
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As before, for each condition, 1,000 replicated samples 
were drawn from a population with mean and covariance 
structure at the previously specified sample sizes. Because 
the hypothesized models are incorrect, we expect to reject 
them, and the rejection percentage is an indicator of the 
power of the test.

The p values for each replicated sample were computed, and 
the mean p values and percent of p values that are less than α = 
0.05 are reported in Table 3. This table shows results only for 
sample sizes between 50 and 1,000 because with N > 1,000, all 
rejection percentages were 100.

In all 3 conditions, at all sample sizes, the p values for 
TML MS are consistently smaller than those of TRLS MS and 
TGLS MS. With regard to model rejections, in all conditions 
and at all sample sizes, TML MS has the greatest percent 
rejection as compared to TRLS MS and TGLS MS. ML has the 
most power, showing most clearly that these models are 
incorrect.

As expected, in all conditions, all tests show increased power 
to reject the null hypothesis as N increases. Condition 1 pro
vides the most challenge to reject the incorrect model, with 
N of about 800 needed for TML MS and TRLS MS to reject the 
false model 95% or more of the time (TGLS MS needs a slightly 
larger N). This rejection percent already is achieved at N = 200 
in conditions 2 and 3 with all methods.

Discussion and conclusion

Scholars in the field of SEM have documented that sample 
covariance matrix S can be ill-conditioned when sample 
sizes are small. This has an effect on TML, specifically, its 
behavior with the true model is not χ2 when the sample 
size is small. Two main solutions have been proposed to 
remedy this problem: Regularized GLS (RGLS, Arruda & 
Bentler, 2017) and RLS (Hayakawa, 2019). RGLS is based 
on Chi and Lange’s (2014) MAP covariance matrix estima
tor, whose basic idea is to replace eigenvalues from a poorly 
conditioned covariance matrix with shrunken eigenvalues. 

Arruda and Bentler (2017) have shown that RGLS can 
produce well-performing test statistics in small samples. 
This method can be easily extended to estimate mean and 
covariance structure models. However, the methodology 
and programming of RGLS is relatively complicated. In 
contrast, TRLS is much easier to implement and requires 
less computational power.

Years ago, Harlow (1985) had found that the covariance 
structure TRLS and TML perform similarly well when sample 
sizes are large, but only recently Hayakawa (2019) found that 
when sample sizes are small, TRLS substantially outperforms 
TML in a confirmatory factor model, a panel autoregressive 
model, and a cross-lagged panel model. The current study 
affirms this finding. It also shows that, in contrast, the statis
tical power of TRLS is not as high as that of TML. We also find 
that similar patterns hold with mean and covariance structure 
models. That is, TRLS MS and TML MS perform equally well 
when the samples are large enough, i.e., both of these methods 
follow expected asymptotic properties, whereas in the context 
of small samples, under the true model, TRLS MS performs 
better than TML MS in terms of chi-square test statistics as 
shown by empirical rejection frequencies. However, the near- 
ideal performance of RLS in covariance structures is not fully 
maintained in mean and covariance structures. That is, with 
N < 200, we found a slight under-rejection in TRLS MS, i.e., 
some over-acceptance of the mean/covariance structure. At 
this time, we do not have a proposal on how to avoid this 
problem.

With regard to power to reject false models, we found 
that ML consistently outperforms RLS in both covariance 
structures and those with structured means. Our conjecture 
is that this has to do with Equation (8), where greater 
misspecification would have the effect that the product of 
S and bΣ

� 1 
does not produce an identity matrix. Hence, the 

B term and hence TML are larger, increasing power to reject 
the incorrect model. Of course, with large N and/or large 
misspecification, TML MS and TRLS MS will deliver similar 
power to reject the incorrect models.

Table 2. Simulation results on model p values and rejection rates.
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To keep the scope of this paper manageable, its simulations 
focused on multivariate normal data only. Further research is 
certainly needed to evaluate the additional complication of test 
statistics from non-normal distributions using mean and covar
iance structure models under null and misspecification conditions.
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