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Abstract: With the recent advances in Machine Learning (ML), several models have been successfully
applied to financial and accounting data to predict the likelihood of companies” bankruptcy. However,
time series have received little attention in literature with a lack of studies on the application of Deep
Learning sequence models as Recurrent Neural Networks (RNN) and the recent Attention-based
models in general. In this research work, we investigated the application of Long Short Term
Memory (LSTM) networks to exploit time series of accounting data for bankruptcy prediction. The
main contributions of our work are the following: a) we have proposed a Multi-head LSTM that
models each financial variable in a time window independently and compared it with a single-input
LSTM and other traditional ML models. The Multi-head LSTM outperforms all the other models;
b) We identify the optimal time series length for bankruptcy prediction to be equal to 4 years of
accounting data; c) We made public the dataset we used for the experiments that include data from
8262 different public companies in the American stock market generated in the period between
1999-2018. Furthermore, we prove the efficacy of the Multi-head LSTM models in terms of lower false
positives and better division of the two classes.

Keywords: bankruptcy prediction; Deep Learning; Multi-head; Recurrent Neural Networks; stock
market

1. Introduction

Predicting corporate bankruptcy is one of the most fundamental tasks in credit risk assessment.
Especially after the 2007 /2008 financial crisis, it has become a top priority, for most financial institutions,
fund managers, and lenders, due to the substantial financial damage that can result from corporate
default. Indeed, corporate failure may result in high social costs and further propagate recession,
especially when it involves a large number of companies simultaneously and affects the entire economy
as a whole [1]. Since the 2008 financial crisis, researchers and practitioners made several efforts to build
models that can efficiently assess the likelihood of companies default, especially for public companies
in the stock market. Regulators also benefit from accurate bankruptcy forecasting models since they
can monitor the financial health of institutions and curb systemic risks [2].

Since Altman presented his bankruptcy forecasting model in 1968 [3], research has shown that
accounting-based ratios and stock market data can signal whether a firm is likely to face severe
difficulties, such as bankruptcy. Although default prediction models have been studied for decades,
we still lack a definite theory of predicting corporate failure [4]. The lack of a theoretical framework led
to the adoption of a common development methodology where research is more focused on identifying
discriminant features using a trial and error approach [5,6].

The advent of Machine Learning (ML) and its advances offered novel possibilities for bankruptcy
prediction in terms of learning models with several attempts with different ML algorithms and
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techniques such as Support Vector Machine (SVM) [7], boosting techniques [8], discriminant analysis
[9] and Neural Networks. Moreover, different architectures have been evaluated to identify effective
decision boundaries for this binary classification problem, such as the least absolute shrinkage and
selection operator [10], dynamic slacks-based model [11] and two-stage classification [12].

However, a common element of those models is the punctual application of market-based and
accounting-based variables, while time series receive little attention and there is insufficient literature
concerning the application of the most recent Deep Learning models for sequence data such as
Recurrent Neural Networks and Attention-based models. In this paper we compare two different
Recurrent Neural Networks (RNN) architectures based on Long Short Term Memory (LSTM) units to
predict Bankruptcy based on time series of accounting data. In general RNN-based models have been
seldom investigated in recent literature. In particular, we used a single-input RNN and a Multi-head
RNN that models each financial variable within a time window independently exploiting the latent
representation learned only in the last stage of the bankruptcy classification process. The idea of
building a Multi-head architecture aims to investigate whether an attention method pipeline con
outperform a classical RNN setting when learning a latent representation of the company by focusing
on each time series independently.

The main contributions of this paper are the following:

¢ We propose a Multi-head LSTM for bankruptcy prediction on time series data.

*  We investigated the optimal time window of financial variables to predict bankruptcy with a
comparison among the main state-of-the-art approaches in Machine Learning and Deep Learning.
Experiments have been performed on public companies traded in the American stock market
with data available between 2000 and 2018.

¢ We anonymized our dataset and made public for the scientific community for further
investigations and to provide a benchmark for future studies on this topic.

e  We analyzed our models on the test set, using T-SNE [13] to show the ability of our models to
capture patterns. We also performed an in-depth analysis of false positives.

2. Related Works

In traditional methods to forecast bankruptcies, Altman’s Z-score is the most prominent, but
Kralicek quick test, and Taffler’s model also use scoring methodologies to provide ordinal rankings of
default risk. [14,15]. Altman, as well as Beaver and William, used discriminant analysis, which has
been widely used following their works, while Ohlson was the first to introduce a binary response
model using explanatory variables and applying a logistic function [16,17]. The scoring methodologies
have also been used to produce a binary response given a pre-set threshold. For example, Altman
suggested the use of two thresholds, 1.81 and 2.99. According to this, an Altman’s Z-score above the
2.99 threshold means that firms are not predicted to default in the next two years, below 1.81 that they
are predicted to default, while between the two thresholds lies a "zone of ignorance" where no clear
decision can be taken. However, even though many practitioners use these thresholds, in Altman’s
view, this is an unfortunate practice since over the past 50 years, credit-worthiness dynamics and
trends have changed so dramatically that the original zone cutoffs are no longer relevant [18].

Even though many authors continue to work on traditional bankruptcy models, the exploration
of machine learning applications on corporate default has been more prevalent in recent years [5,6,12,
19-22]. Barboza et al. show that, on average, machine learning models exhibit 10% higher accuracy
compared to traditional ones. Specifically, in this study, Support Vector Machines (§VM), random
forests (RF) as well as bagging and boosting techniques were tested for predicting bankruptcy events
and compared with results from discriminant analysis, logistic regression, and neural networks. The
authors found that bagging, boosting and RF outperformed all other models [23]. Altman, in his
recent book, however, discusses a trade-off between models’ performance and explainability when
using machine learning models, expressing skepticism whether practitioners would adopt "black-box"
methods nevertheless acknowledging the superiority of the models in assessing corporate distress [18].
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Considering that the results regarding the superiority of models are still inconclusive, new studies
exploring different models, contexts, and datasets are relevant. Machine learning techniques like
ensembles of classifiers had been firstly explored for default prediction by Nanni et al.[24]. Kim et al.
showed that the ensembles greatly outperform standalone classifiers [25]. Wang et al. further analyzed
the performance of ensemble models, finding that bagging outperforms boosting in average accuracy
for all credit databases they used, as well as type I and type 1I error [26]. In [27] some evidence is
presented about the need of considering time series for the survival probability estimation over the
years and also for bankruptcy prediction with some benchmarks that also prove that neural networks,
when properly designed, can achieve better results with time-dependent accounting variables.

Barboza et al. also argue that a firm’s failure will likely be caused by difficulties over time, not just
the year before bankruptcy. In order to incorporate the dynamic behavior of firms, they added new
variables reflecting changes in financial metrics such as growth measures and changes [23]. Findings
dating back to 1966 show that firms exhibit failure tendencies as much as five years prior to the actual
event [16]. On the other hand, in 1998, Mossman et al. pointed out that the models are only capable
of predicting bankruptcy two years prior to the event, which improves to three years if used for
multiperiod corporate default prediction [28,29]. In most studies, ratios are analyzed backward in time
starting with the bankruptcy event and going back until the model becomes unreliable or inaccurate.
The time threshold for developing good classification models is two or three years, at most five, while
Altman mentions in his book that there are certain characteristics of bonds at birth that can significantly
influence their default likelihood over up to ten years after issuance [16,18,28,29].

However, most of the bankruptcy prediction models in the literature do not take advantage of
the sequential nature of the financial data. This lack of multi-period models is also emphasized in
Kim et al. literature review [30]. One of the few studies that do leverage the sequential nature of
accounting data is that of Vochozka et al., who examined the performance of a long short-term memory
(LSTM) model for bankruptcy prediction in the Czech manufacturing sector [31]. Kim et al. also used
quarterly accounting data for non-financial industry companies and daily market data from January
2007 through December 2019 in both RNN and LSTM models, finding that RNNs made reasonable
predictions in most situations, while both LSTMs and RNNs outperformed logistic regression, support
vector machine, and random forest methodologies [32]. However, to the best of our knowledge, there
are no studies of corporate bankruptcy that examine a similar number of observations or leverage
time series data examining different time windows to predict default. Since it is difficult to make
a fair comparison with the available literature (most of the datasets are either small and not usable
with Deep Learning or, more commonly, they have not been publicly released), we compared our
Deep learning model with all the algorithms presented in this section on our dataset. The dataset has
been publicly released for further investigations and comparisons and it is avaliable on GitHub !. See
Section 4 for more details.

3. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a Deep Learning architecture that aims to process
sequences of values in the form x(l),x(z) ..... ,x(t). This ability is due to the networks” parameter sharing
across different parts of a model that makes it possible to extend and apply the model to examples
of different forms. Moreover, parameter sharing also allows to preserve generalization across the
sequence since the same parameters (weights) are used for each value of the time index, while a
traditional fully connected feed-forward network would have separate parameters for each input
feature. The time index refers to the position in the sequence. A Recurrent Neural network is generally
composed of a single unit of processing that produces an output y at each time step and has recurrent
<j>

connections in general from the hidden units 2=/~ and optionally from the output. When an RNN has

1 https:/ /github.com/sowide/bankruptcy_dataset
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only recurrent connections from the hidden units, it processes an entire sequence and then produces
a single output. Figure 1 shows a generic RNN structure that processes a sequence of t elements
with recurrent connections only from the hidden units. Input, output, and recurrent hidden states
are propagated using different weight matrices whose elements are learned during training using the
back-propagation through time algorithm [33]. Equations 1 and 2 describe the internal behavior of an
RNN unit. The initial hidden state a° is generally equal to zero. In general, for a generic time index
j the hidden state is computed as a weighted sum of the previous state @/ ~! and the current input
x/ plus a bias term. After that, an activation function ¢ is applied to the result as in fully-connected
networks. The output at each time step only depends on the current internal state plus a different bias
by. The two activation functions to estimate the hidden state and the output may differ.

y<1> y<2> y<3> y<t> y <j>

Wya T Wya T Wya T Wya T Wya 1‘

<0> <1> <2> <t> P <j>
£ 8 T B e i B
|l .
Waa Waa Waa Waa
Waa

w w T w T w T w T

xa xa xa Xxa xa
x<1 > x<2> x<3> x<t> X<j>

Unrolled RNN RNN

Figure 1. (Left) A generic structure of an unrolled Recurrent Neural Network with recurrent connections
from the hidden layer. (Right) The resulting RNN when presented as a single unit with recurrent
connections.

a7 = (Wag - a7 + Wy - x> 4 by) (1)
Y7 = (W -a” + by) 2)

In this way, Recurrent Neural Networks can process entire sequences and are able to use contextual
information when mapping inputs into outputs. Unfortunately, for standard RNN architectures, the
range of context that can be in practice accessed is quite limited, especially for long sequences and
for more than one sequence in the input (matrix input). The major issue is that the influence of a
given input on the hidden state, and therefore on the network output, either decays or blows up
exponentially as it cycles around the network’s recurrent connections. This effect is often referred to
in the literature as the vanishing gradient problem [34]. Several approaches have been presented to
solve this issue, like the Long-Short Term Memory (LSTM) architecture [35] and the Gated-Recurrent
Unit (GRU) [36]. In both architectures, several additional components (called gates) are introduced
inside the unit to extend the memory of the network in case of a long sequence so that the first part of
each sequence is not forgotten when producing the output (long-term dependency problem) and to
prevent the gradient from vanishing. We describe the LSTM since it is the one used in this research
work and because the GRU unit can be taken back to a particular case of the LSTM unit. The basic idea
is to employ a unit state s; to retain the information taken from earlier time indexes in the sequence.
The unit is composed of three gates:

1. Forget Gate: It determines the amount of information that should be retrieved from the previous
unit state.
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2. Input Gate: It defines the amount of information from the new input x</> that should be used to
update the unit’s internal state.
3. Output Gate: It defines the output of the unit as a function of its current unit state.

An example of an LSTM unit is presented in Figure 2. Every connection is weighted by a different
matrix whose elements are estimated using back-propagation through time as in basic RNNS.

 Forget Gate ' Input Gate | Output Gate E
- 1
O |
5 !
2<i-1> L

Figure 2. The internal structure of an LSTM unit with Forget, Input and Output gates and the respective
activation functions.

4. Dataset

In this section, we present the dataset used in the experimental part and that we make available
for the scientific community. The procedure used to build the dataset can be described as follows:

1.  We collected data about 8262 different public companies in the American stock market between
1999 and 2018. We selected the same companies used in [37] and [38] since these companies have
been considered a good approximation of the American stock market (NYSE and NASDAQ) in
those time intervals.

2. For such firms, we collected 18 financial variables, often used for bankruptcy prediction, for each
year. In bankruptcy prediction it is common to consider accounting information and up-to-date
market information that may reflect the company’s liability and profitability. We selected the
variables listed in Table 1 as the minimum common set found in the literature [3,10,39] and to
have a dataset for twenty years without missing observations.

3. For all the experiments presented in Section 5, we only considered firms with at least 5 years of
activity since we aim to first identify the time window that optimizes the bankruptcy prediction
accuracy.

Each company has been labeled every year depending on its next year’s status: According to the
Security Exchange Commission (SEC) a company in the American market is considered bankrupted in
two cases:

¢  If the firm’s management files Chapter 11 of the Bankruptcy Code to "reorganize” its business:
management continues to run the day-to-day business operations, but all significant business
decisions must be approved by a bankruptcy court.

e  Ifthe firm’s management files Chapter 7 of the Bankruptcy Code: the company stops all operations
and goes completely out of business.
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In both cases, we labeled the fiscal year before the chapter filling as "Bankruptcy” (1). Otherwise,
the company is considered healthy (0). In light of this, our dataset enables learning how to predict
bankruptcy at least one year before it happens.

There is typically a strong imbalance in bankruptcy datasets since the number of firms that declare
default each year is usually a small percentage below 1% of the available firms in the market. However,
in some periods, bankruptcy rates have been higher than usual, for example during the Dot-com
Bubble in the early 2000 and the Great Recession between 2007-2008. Our dataset reflects this condition
as shown in Figure 3. The dataset firm distribution by year is presented in Table 2.

Moreover, each company in the dataset is categorized using the Standard Industrial Classification
(SIC) system, developed by the U.S. government to classify businesses based on their primary economic
activities. The SIC codes not only distinguish firms but also enable more granular categorization by
specifying major groups within each firm [40]. Major groups represent specific subcategories that
define the business-type activities undertaken by these companies. The inclusion of SIC codes and
major groups allows us a deep analysis of bankruptcy trends across a wide range of industries. This
classification system helps researchers and analysts gain insights into the economic factors and market
dynamics affecting various sectors of the American economy, making it a valuable resource for studying
bankruptcy patterns and their implications for different industries and major groups. Additionally,
we generated a frequency distribution chart in Figure 4, to represent companies’ distribution across
different divisions within our dataset. This histogram provides a clear overview of the prevalence
of companies in each different division, highlighting which sectors of the economy are more heavily
represented among the bankrupt firms. It works for evaluating the overall dataset composition and
identifies any potential trends or disparities in bankruptcy occurrences across divisions. In this work,
we performed a comprehensive examination of the dataset, with a particular focus on the division
distribution.

Finally, the resulting dataset of 78682 firm-year observations is divided into three subsets
according to the time period: a training set, a validation set, and a test set. We used data from
1999 to 2011 for training, data from 2012 to 2014 for validation and model comparison, and the
remaining years from 2015 to 2018 as a test set to assess the ability of the models to generalize their
prediction to unseen data.

[ =
N >

=
o

o
o

Percentage of Bankruptcy firms
° °

°
N

0.0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 3. Rate of Bankruptcy in the dataset (2000-2019) with financial variables in the period (1999-2018).
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Table 1. The 18 numerical bankruptcy features

Variable name Variable name

Current assets Total assets

Cost of good sold Total Long term debt
Depreciation & amortization EBIT

EBITDA Gross profit

Inventory Total Current liabilities
Net income Retained earnings

Total Receivables Total Revenue

Market value Total Liabilities

Net Sales Total Operating expenses

Table 2. Firm distribution by year in the dataset.

Year | Total Firms | Bankruptcy firms | Year | Total firms | Bankruptcy firms
2000 5308 3 2010 3743 23
2001 5226 7 2011 3625 35
2002 4897 10 2012 3513 25
2003 4651 17 2013 3485 26
2004 4417 29 2014 3484 28
2005 4348 46 2015 3504 33
2006 4205 40 2016 3354 33
2007 4128 51 2017 3191 29
2008 4009 59 2018 3014 21
2009 3857 58 2019 2723 36

Divisions Distribution
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Figure 4. Distribution of Companies by Division

5. Hardware specifications

All the experiments described in this work have been performed using a Linux Ubuntu server
with the following hardware specifications:

e  CPU: Intel i9-10900 @2.80 GHZ
e  GPU: Nvidia RTX 3090 (24 GB)
e RAM: 32 GB DDR4 - 2667MHz
e Motherboard: Z490-A PRO (MS-7C75)
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6. Temporal window selection

Before considering the use of time series with Deep Learning we investigated a key question: How
many years should be taken into account to maximize bankruptcy prediction performance? When
considering more than one year of accounting variables, different trade-offs should be considered:

¢  Some firms could only be considered for certain time windows since they have only recently been
made public.

®  Some firms could be excluded depending on the time window although they existed in the past
because of an acquisition or merging operation.

* By extending the training and testing window, the number of companies available for training
and testing will inevitably decrease. Moreover, one should consider that a time window above
a certain number of years introduces a statistical bias that limits the analysis to only structured
companies that have been on the market for several years. At the same time, it leads to ignoring the
relatively new companies, which usually have smaller market capitalization and thus are riskier
and with a higher probability of default, especially in an overall adverse economic environment.

In order to answer these questions, we experimented with different machine-learning models to
identify the most promising time window length. In particular, we used the same ML models that have
been considered most effective in literature for bankruptcy prediction [18]: Support Vector Machine
(SVM), Logistic Regression (LR), Random Forest (RF), AdaBoost (AB), Gradient Boosting (GB), Extreme
Gradient Boosting (XGB) as well as two other tree-based boosting ML models, LightGBM (LGBM) [41]
and CatBoost (CB) [42]. Although they have not been used previously for Bankruptcy prediction these
models recently achieved outstanding performances in other tasks when compared with AB,GB and
XGB.

All the models were trained on the same training set (1999-2011) and compared using the
validation set (2012-2014). The training set has been balanced because, otherwise, a bias would
occur that would cause the less representative class in the bankruptcy to be wrongly classified and
learned. For this reason, every model is evaluated over 100 independent and different runs: For every
run, the training set is balanced with exactly all the bankruptcy examples and a random choice of
healthy examples from the same period.

We compared all the models using the average Area Under the Curve (AUC) on the 100 runs.
AUC is the measure of the ability of a classifier to distinguish between classes and is used as a summary
of the Receiver Operating Characteristic (ROC) curve. Every model implements a binary classification
task where the positive class (1) represents bankruptcy, and the negative class (0) represents the healthy
status.

In order to deal with the constraints previously listed, we evaluated all the companies using a
time window of accounting variables spanning 1-5 years. For RF, AB, GB, XGB, LGBM and CB we used
the same number of estimators (equal to 500) for a fair comparison, while the other specific parameters
were taken equal to the defaults provided in the Scikit-Learn implementations.

In Table 3 we report the average results obtained on the validation set for every model depending
on the number of years considered (Window length WL). Figure 5 summarizes the comparison. As
expected and according to previous literature, the ensemble models usually reach better results. In
particular, we found that for WL = 4, the Random Forest with 500 estimators obtains, on average, a
greater AUC on the validation set. On the other hand, for the WL = 5 case the best model found has
been the CatBoost. In both cases, the two ML algorithms achieve better performance if compared with
the others baselines. For this reason, we considered both CB and RF for the subsequent analysis.

It is important to note that all the ML models considered are not designed to work on time series
data, and thus they consider all the variables as independent features. As expected, increasing the
window length led to longer training time on average for all the models (Table 4). However, all the
models require just a few seconds of training with our hardware settings. However, ensemble models
perform better than SVM and LR with more variables with a larger window length. Moreover, using
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the 18 accounting variables for 4 or 5 consecutive years yields a better result in terms of AUC in
particular with Random Forest (0.759 for WL = 4) and CatBoost (0.771 for WL = 5). A possible
consideration is that although RF and CB show similar overall performance, the computation time
required to train CB is almost six time the one required for RF. However, the computation time is not
relevant in our experiments since the dataset is not particularly large. In light of this, we selected
WL = 4 and WL = 5 to further study time series data with Recurrent Neural Networks.

Table 3. Average AUC on the validation-set depending on the number of years considered (Window
Length-WL). Best results for WL = 4 and WL = 5 are highlighted in boldface.

Average AUC

ML models WL=1 WL=2 WL=3 WL=4 WL=5
Support Vector Machine | 0.635  0.641 0594 0589  0.587
Logistic Regression 0.731 0.648 0.676 0.705 0.702
AdaBoost 0.647 0.655 0.664 0.642 0.719
Random Forest 0.745 0.733 0.731 0.759 0.760
Gradient Boosting 0.716 0.702 0.729 0.685 0.742
XGBoost 0.678  0.730  0.695 0.699 0.726
CatBoost 0.724 0.729 0.686 0.749 0.771
LightGBM 0.751 0.699 0.671 0.741 0.736

[ SVM [ Gradient boosting
0.80 [ Logistic Regression [ Xgboost

[ Adaboost [T LightGBM

[ Random Forest [ CatBoost |
0.75 ™ = ]

0.70 ( F

AUC

0.60

0.55

0.50 — — —
WL=1 WL =2 WL=3 WL =4 WL=5

Window Length

Figure 5. Average AUC on the validation set over 100 runs for each model for different the window
lengths in years (WL). The training set is randomly balanced for every run while the validation set is
imbalanced.

Table 4. Average training time [seconds] on the validation set depending on the Window Length (WL).
Times in seconds refer to the average training time for a single run.

Average training time|[s]
ML models WL=1 WL=2 WL=3 WL=4 WL=5
Support Vector Machine | 0.032  0.036  0.036  0.034  0.033
Logistic Regression 0.018 0.022 0.023 0.024 0.026
AdaBoost 0826 1246 1560 1.769  1.994
Random Forest 0799 0973 1.033 1.034 1.059
Gradient Boosting 1.022 1833 2545 3.097  3.555
XGBoost 0421 0422 0493 0478 0483
CatBoost 6.670 7.059 7.088 7.383  7.398
LightGBM 0187 0195 0191 0184 0.179
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7. LSTM architectures for Bankruptcy prediction

According to [43], LSTM performs better than GRU when the sequence is short although with
a matrix input. For this reason, we chose the LSTM approach for our experiments since we are
considering eighteen different time series as input, each with a short sequence length, as determined in
the first experiments in Section 6. In order to study the application of RNNs to bankruptcy prediction,
we evaluated two different architectures:

*  Asingle-input LETM: This is the most common approach with RNNs. The input is a matrix with
18 rows (number of accounting variables) and a number of columns equal to the time window
selected for the experiment. Moreover, the LSTM is composed of a sequence of units as long as
the time window. Finally, a dense layer with a Softmax function is used as an output layer for the
final prediction.

* A Multi-head LSTM: This is one of the main contributions of our research with respect to the
current state of the art. In order to deal with a smaller training set due to the temporal window
selection and the class imbalance, we developed several smaller LSTMs, one for each accounting
variable to be analyzed by the model, named LSTM heads. Each network includes a short
sequence of units equal to the input sequence length and contributes to the latent representation
of the company learned by utilizing the accounting variables. Indeed, the output of the Multi-head
layer is then concatenated and exploited by a two-layer feed-forward network with a Softmax
function in the output layer. This architecture aims to test whether an attention method based
on a latent representation of the company that focuses on each time series independently can
outperform a classical RNN setting.

Figure 6 summarizes the main differences between the two architectures. The source code for the
Multi-head LSTM is publicly available on GitHub 2
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Figure 6. (Top image): The Multi-head LSTM setting where each financial time-series serves as the input
to a different shorter and smaller LSTM. The representation learned by each head is then concatenated
and exploited as the input to a subsequent feed-forward network. (Bottom image): The classical RNN
setting where the input for our bankruptcy task is a single matrix with 18 rows and j columns.

2 https://github.com/sowide/Multi-head_LSTM_for_bankruptcy-prediction
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8. Results

In this section, we present the results we achieved on bankruptcy prediction using the two RNN
architectures presented in Section 7. Firstly, we compare the RNNs with the best model found in the
preliminary experiments presented in Section 5 using the validation set (2012-2014), and, finally, we
show the results obtained on the previously unseen test set (2015-2018) to assess the generalization
ability of our models.

8.1. Metrics

We implemented the bankruptcy prediction as a binary prediction task where the positive class
(1) indicates bankruptcy in the next year while the negative class (0) means that a company has been
classified as healthy in the next year. In order to compare our models and prove their effectiveness, we
used different metrics that take into account the imbalanced condition of the validation and test sets.
Consider the following quantities for the default prediction:

*  True Positive (TP): The number of actually defaulted companies that have been correctly predicted
as bankrupted

¢  False Negative (FN): The number of actually defaulted companies that have been wrongly
predicted as healthy firms.

¢  True Negative (TN): The number of actually healthy companies that have been correctly predicted
as healthy

e  False Positive (FP): The number of actually healthy companies that have been wrongly predicted
as bankrupted by the model.

Since the validation and test set are both imbalanced with a prevalence of healthy companies, we
did not compare the models in terms of model accuracy. Indeed, the proportion of correct matches
would be ineffective in assessing the model performance. Instead, we computed each class’s Precision,
Recall, and F; scores. This is highlighted because, in predicting bankruptcy, an error has a different
cost depending on the class that has been incorrectly predicted. The cost of predicting a company
going into default as healthy is much higher than the cost of predicting a company that will default
as healthy. In light of this, the precision achieved for a class is the accuracy of that class” predictions.
The Recall (Sensitivity) is the ratio of the class instances that are correctly detected as such by the
classifier. The F; score is the harmonic mean of precision and recall: whereas the regular mean treats
all values equally, the harmonic one gives much weight to low values. Consequently, we obtain a high
Fy score for a certain class only if its precision and recall are high. Equations 3,4, and 5 report how
these quantities are computed for the positive class. The definition for the negative class is exactly the
same by inverting positives with negatives.

TP

Precision = (TP + FP) (3)
TP
Recall = ———_ 4
ecall = b TN @)
2
Fiscore = —————— (G))

Precision + Recall

Moreover, we reported three global metrics for the classifier that have been selected because they
enable an overall evaluation of the classifier on both classes without being influenced by the dataset
imbalance:

¢  The Area Under the Curve (AUC) measures the ability of a classifier to distinguish between
classes and is used as a summary of the Receiver Operating Characteristic (ROC) Curve. The
ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings.
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e  The macro F; score is computed as the arithmetic mean of the F; score of all the classes.
¢  The micro F; score is used to assess the quality of multi-label binary problems. It measures the F;
score of the aggregated contributions of all classes giving the same importance to each sample.

Finally, we used two other metrics that are often evaluated in Bankruptcy prediction models. Because
bankruptcy is a rare event, using the classification accuracy to measure a model’s performance can be
misleading since it assumes that type I error (Eq 6) and type II error (Eq 7) is equally costly. Actually,
the cost of false negatives is much greater than the cost of false positives for a financial institution. In
light of this, we explicitly computed and reported type I and type II errors and compared the models
focusing in particular on type II and Recall of the positive class.

FP

Type I error = TN+ FD (6)
FN

Type 1I error = TP+ EN (7)

8.2. LSTM:s training and validation

The two LSTM architectures have been trained with exactly the same parameters for a fair
comparison. The main hyper-parameters are the following:

e  Epochs =1000
*  Learning rate =107
e  Batch size = 32 (Default Keras value)

Moreover, we used the Early-stopping technique to prevent the network from overfitting, and we
used the validation set to select the hyper-parameters. In particular, to deal with the imbalance of the
training set, we performed 500 runs for each LSTM by considering a randomly balanced training set
every time.

After that, we first compared the single-input LSTM, the Multi-head LSTM, and the previous
results achieved with Random Forest and CatBoost on the same validation set. Figure 8 shows the
model comparison for the temporal windows 4 and 5. Table 5 summarizes this result in terms of the
average AUC achieved in the 500 runs. For each run, the models” weights are randomly initialized. In
light of this result, it is clear that, at least in terms of AUC, the recurrent network-based deep-learning
models outperform traditional classifiers.

Table 5. Average and max AUC achieved on the validation set (2012-2014) by Random Forest, CatBoost,
Single LSTM and the Multi-head LSTM. The average training time for each model is also reported for
WL=4 and WL=5.

Avg AUC | Max AUC | Avg Training time [s] Avg AUC | Max AUC | Avg Training time [s]
Multi-head LSTM | 0.813356 | 0.837 103.86 0.79 0.828 82.60
LSTM 0.8026 0.8415 51.80 0,7928 0,864 42.86
Random Forest 0.75 0.777 1.035 0.762 0.794 1.062
CatBoost 0.731 0.767 7.388 0.750 0.797 7.432
WL=4 WL =5

8.3. Statistical analysis

The experiments described in the previous section and presented in Table 5 have been computed
as an average over 500 different runs and show that our model achieves much better AUCs with
respect to the other models (LSTM, Random Forest and CatBoost). We further analyzed these results
to prove our model’s performance is statistically significant. According to [44], a common way to test
whether the difference between two classifiers’ results over different datasets or runs is non-random
is to compute a paired t-test which checks whether the difference of their average performance is
significantly different from zero.
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However, one of the t-test’s requirements is that the differences between the two random variables
compared are distributed normally. As we show in Figure 7 all the performance differences between
each model and our Multi-head LSTM are not normally distributed, for this reason, according to [45]
we used the Wilcoxon Signed-Rank test (WSR)([46]), a non-parametric alternative to the paired t-test
which ranks the differences in performances of two classifiers for each run, ignoring the signs, and
compares the ranks for the positive and negative differences. We set to 0.05 the p-value under which
we reject the null hypothesis (the two distributions have the same median, and thus, the performance
difference can be considered random).

In our case, we achieved a p — value equal to 0 for each comparison with the Multi-head LSTM
over the same 500 runs where models have been trained using the same balanced training set, and the
AUC has been evaluated over the same unbalanced validation set. In light of these results, we can
conclude that our model shows better performance in the period between 2012-2014. Finally, since
the main goal of this analysis is to build a model that is able to generalize on unseen samples that
have never been used during the design phase, we report, in the next section, our final analysis of the
performances of the best models on the test-set to better prove the benefit of our approach.

Multi-LSTM VS Random Forest Multi-LSTM VS LSTM Multi-LSTM VS CatBoost
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Figure 7. Performance score distributions with respect to our Multi-LSTM model on the 500 runs over
the validation set. Since none of the random variables is normally distributed, we decided to use the
WSR test (See Section 7.3).
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Figure 8. The box-plot shows the locality, spread, and skewness groups of AUC values through their
quartiles achieved for each model in 500 different runs with a different balance training set. The lines
(whiskers) extending from the boxes indicate the variability outside the upper and lower quartiles. The
orange line represents the median between the first and third quartiles. The circular points (Fliers) are
those past the end of the whiskers.
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9. Final analysis on the test set

In light of the results achieved on the validation set, we selected the optimal single-input LSTM,
the optimal Multi-head LSTM and the optimal Random Forest. We defined the optimal model as the
one that offers these three conditions:

¢  Lowest difference between training and validation loss to ensure that the highest AUC is not
achieved as a consequence of overfitting.

¢  Lowest validation loss

e  Highest AUC on the validation set

We experimented with these best models on the previously unseen test set (companies between
2015 - 2018). We again compared the single-input LSTM, the Multi-head, and the Random Forest
classifier. Figure 9 shows the models’ comparison in terms of AUC. In Table 6, we report detailed
results for each model in terms of Recall on the bankruptcy class, type I and II error as well as the micro
and macro F; scores. As expected from the previous results obtained for the AUC on the validation set,
the best model is still the Multi-head LSTM which achieves the best result on the test set. In addition,
to gain a deeper insight into our model’s performance on the test set, we leveraged the BAC (balanced
accuracy) metric, which is the arithmetic mean of sensitivity and specificity.

Since the model shows a really high precision over the healthy class 6, which is also the majority
class in the validation and test sets, the slope differences are probably due to the higher number of
correct predictions in the validation set during learning. However, it is possible to observe that no
overfitting or underfitting phenomena affect our model, as also shown by the good results over the
unseen test set (Figure 9).

Therefore, we can conclude that RNNs have an impact on bankruptcy prediction performance.
However, the attention model induced by the Multi-head LSTM seems to achieve better results for
all the metrics (AUC, micro, and macro F; scores) with a temporal window equal to 4 years. On the
other hand, considering the minimization of the False Negative rate, the models with WL=5 reach, in
general, the lowest Type II error.

[ Random Forest [l Multi-head LSTM
[ LST™
0.85

0.80

0.75
[S]
20.70
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0.50
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Figure 9. AUC values on the test-set (2015-2018) for Random Forest, Single-input LSTM and the
Multi-head LSTM by varying the temporal window (WL).
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Table 6. Overall results on the test set (2015-2018) with the Single-input LSTM and the Multi-head LSTM.
Rec means Recall and Pr means Precision. Best results are achieved on WL=4 with the Multi-head

LSTM.
LSTM | Multi-head LSTM LSTM | Multi-head LSTM

TP 88 75 89 71

TN 1233 2158 1071 2085
FN 8 21 2 20

FP 1591 666 1573 559

AUC score 0.832 0.847 0.802 0.825
BAC 0.677 0.773 0.692 0.784
micro-f1 0.772 0.797 0.777 0.793
macro-f1 0.53 0.55 0.528 0.542
I Error 21.74 18.45 22.65 20.5
IT Error 23.95 28.125 21.97 21.97
RecBankruptcy 0.76 0.71 0.78 0.78
Pr Bankruptcy 0.106 0.117 0.106 0.115
Rec Healthy 0.782 0.815 0.773 0.795
Pr Healthy 0.989 0.988 0.99 0.99

WL =4 WL =5

9.1. Further Analysis on the Test Set

Understanding the distribution and the relationships within the feature space is crucial for
gaining insights into the behavior of a model. Among the methodologies employed for representing
high-dimensional data, one of the most powerful approaches is the t-distributed stochastic neighbor
embedding (T-SNE)[13]. T-SNE preserves the non-linearity structure of data points and tends to
maintain the relative distances between neighboring points, which can reveal clusters and patterns.
This analysis reported in this subsection aims to study the distribution of both healthy and bankrupt
firms in a reduced dimensional space, focusing on the capabilities of Multi and single LSTMs of
identifying an optimal decision boundary.

We first leveraged T-SNE on the original input to visualize the data in a two-dimensional space
while preserving the pairwise similarities between data points. Each data point represents a firm,
allowing us to gain an intuitive understanding of its inherent structures. The results are shown in
Figure 10.(a). We performed an analysis using the best window lengths identified on the validation set
(WL=4 and WL=5). We can infer that bankruptcy-prone firms usually do not cluster in a specific space
region of the feature space of the input. This observation highlights how challenging is to classify
bankrupt companies because there is some degree of overlap with healthy ones.

Following the outcomes achieved from the T-SNE analysis of the original test set, we focused on
how the LSTM networks represent each firm in their latent space before classifying them, depicted
in Figure 10. These snapshots offer some insights into the decision boundaries identified by the two
recurrent architectures. Decision boundaries for LSTM are depicted in Figure 10.b and for Multi-head
networks in Figure 10.c.

Our analysis reveals that these embeddings effectively distribute firms, with bankrupt firms
forming distinct clusters. This demonstrates the models’ ability to capture meaningful patterns in
the data, particularly concerning bankruptcies. The models consistently demonstrated the ability,
whether the window length is equal to 4 or 5, to discriminate between healthy and bankrupt firms in a
two-dimensional environment. The models’ constant ability to identify significant patterns linked to
financial distress shows the models’ robustness. By comparing the latent representations achieved
with the single LSTM with the ones with the Multi-head, it is evident that the Multi-head achieved a
more scattered representation that led to smaller overlaps between healthy and bankrupt firms. This
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result is also in line with the results presented in Table 6 by checking the number of False positives (FP)
achieved by the two models. Thanks to this, the Multi-head LSTM outperforms the single LSTM, in
terms of AUC, BAC, and FP for both window lengths.

For this reason, we decided to further study the false positives with an additional analysis in the
following section.
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Figure 10. Two-dimensional t-distributed stochastic neighbor embedding (T-SNE) visualization of
the test set. Each data point represents a firm. Subfigure (a) represents plain test data for WL 4 e 5,
(b) displays embeddings from a single-input LSTM, and (c) shows embeddings from a Multi-head
LSTM. These snapshots offer insights into the data’s intrinsic structure and the modeling impact on
representation.

9.2. False Positive Analysis

In bankruptcy prediction, an error has a different cost depending on the class that has been
incorrectly predicted. The cost of predicting a company going into default as healthy (FN) is much
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higher than the cost of predicting a healthy one as bankrupt (FP). However, both networks achieved
a small number of false negatives, but a considerable number of false positives that affect the
performance. Moreover, in light of the evidence presented in the previous section about the different
levels of overlap among bankrupt and healthy firms achieved by the multi and single LSTMs, we
decided to further analyze the latent representation (embedding) of the false positives achieved with
both networks, to better prove the benefits introduced by the multi-head LSTM.

For this analysis, we leveraged again the T-SNE dimensionality reduction to display the
distribution of false positives. The results are depicted in Figure 11 for window lengths 4 and 5.

Examining the embedding obtained from both models, one may observe how the false positives
are close to the bankruptcy clusters presented in the previous section with a considerably smaller
overlap ratio with healthy firms in the case of the Multi-head.

Furthermore, to complete our analysis, we considered how the false positives are distributed
across to the financial industries since the economic conditions and market dynamics can significantly
impact the behavior of businesses within a particular industry. With this aim, we leveraged
the SIC codes presented in Section 4 to understand if industry-specific factors can contribute to
misclassification.
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Figure 11. Visualization of False Positives Using T-SNE: false positive distribution in a high-dimensional
feature space visualized using T-SNE. Subfigure (a) represents the embeddings from a single-input
LSTM, and (b) shows the embeddings from a Multi-head LSTM.

Table 7 presents the false positive, for both models, across different SIC divisions under different
test set conditions (WL =4 and WL = 5), as well as the respective percentage. We can infer the following
observations:

*  Across all divisions, the Multi-head model outperforms LSTM, for both window lengths, in the
number of false positives. This shows how much better the Multi-head LSTM is in classifying
and identifying between alive and bankrupt firms.
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¢  Examining the variance of false positives with an emphasis on window length reveals an
interesting pattern. When considering the Multi-head LSTM, the more the window length
grows, the lower the percentage of false positives. This can be explained by the Multi-head
LSTM’s capacity to identify structures and patterns that can be missed when the window is set
to 4. On the opposite, since the single LSTM’s performance has more variance, no definitive
conclusions can be made about it, making it difficult to understand how false positives change
across various time windows. This is because there are equal amounts of positive and negative
variations.

These observations regarding the sectors and spatial distribution of false positives provide
important guidance for improving model parameters, maximizing predictive precision, and eventually
improving our models’ applicability in bankruptcy prediction tasks.

Table 7. Divisions’ Distribution in the Test Set for each Model - This table provides an overview of
the distribution of companies across various divisions within the test set, including the total number
of companies belonging to each category. However, for LSTM and Multi-head LSTM models, only
instances of false positives are reported, along with their distribution among different divisions.
Additionally, percentages are presented to express the ratio of false positives in relation to the total
data present in the test set.

doi:10.20944/preprints202401.1290.v1

Division Test set LSTM (False Positive) | Multi-head LSTM (False Positive)
WL=4 | WL=5 WL =4 WL =5 WL =4 WL =5
A 17 15 12 (70%) 9 (60 %) 4 (23 %) 3 (20 %)
B 152 142 84 (55%) 79 (52 %) 34 (22 %) 29 (20 %)
C 30 28 13 (43%) 14 (50 %) 5 (17 %) 6 (21 %)
D 1476 1382 824 (55%) | 790 (57 %) | 326 (22 %) 284 (21 %)
E 254 248 107 (42 %) | 139 (56 %) | 77 (30 %) 44 (18 %)
F 106 99 73 (69 %) 71 (72 %) 34 (32 %) 28 (28 %)
G 213 202 134 (62 %) | 131 (65 %) | 104 (49 %) 95 (47 %)
H 66 63 34 (52 %) 32 (51 %) 12 (6%) 5 (8 %)
I 606 556 310 (51 %) | 308 (55 %) | 70 (11 %) 65 (12 %)

10. Conclusions

In this paper, we have proposed a Multi-head LSTM neural network to assess corporate
bankruptcy. According to the experimental analysis on the test-set, this model outperforms a
single-input LSTM with the same hyper-parameters and architecture as well as the other traditional
ML models. The better forecasting performance of the Multi-head LSTM also proves that modelling
each accounting time-series independently with an attention-head contributes to better-identifying
companies that are likely to face default events (Highest Recall and lowest type II error). This is also
evident in the analysis of false positives presented in the experimental part. Moreover, we can finally
argue that using accounting data for the four most recent fiscal years leads to better performance
when predicting the likelihood of corporate distress. Experiments have been conducted on a dataset
composed of accounting variables from 8262 different American companies over the period 1999-2018
for a total of 78682 firm-year observations. This dataset has been made public so that it can be used as
a benchmark for future studies. Future developments will involve exploiting textual disclosures from
financial reports in conjunction with this model. Moreover, it should be possible to predict defaults only
in specific sectors by adding macroeconomic variables such as sustainability, interest rates, sovereign
risk, and credit spread. Furthermore, our models provide predictions over a single period, not the
survival probabilities over time. In future work, multi-period models can be incorporated to also reach
that goal.
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