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Abstract: With the recent advances in Machine Learning (ML), several models have been successfully

applied to financial and accounting data to predict the likelihood of companies’ bankruptcy. However,

time series have received little attention in literature with a lack of studies on the application of Deep

Learning sequence models as Recurrent Neural Networks (RNN) and the recent Attention-based

models in general. In this research work, we investigated the application of Long Short Term

Memory (LSTM) networks to exploit time series of accounting data for bankruptcy prediction. The

main contributions of our work are the following: a) we have proposed a Multi-head LSTM that

models each financial variable in a time window independently and compared it with a single-input

LSTM and other traditional ML models. The Multi-head LSTM outperforms all the other models;

b) We identify the optimal time series length for bankruptcy prediction to be equal to 4 years of

accounting data; c) We made public the dataset we used for the experiments that include data from

8262 different public companies in the American stock market generated in the period between

1999-2018. Furthermore, we prove the efficacy of the Multi-head LSTM models in terms of lower false

positives and better division of the two classes.

Keywords: bankruptcy prediction; Deep Learning; Multi-head; Recurrent Neural Networks; stock

market

1. Introduction

Predicting corporate bankruptcy is one of the most fundamental tasks in credit risk assessment.

Especially after the 2007/2008 financial crisis, it has become a top priority, for most financial institutions,

fund managers, and lenders, due to the substantial financial damage that can result from corporate

default. Indeed, corporate failure may result in high social costs and further propagate recession,

especially when it involves a large number of companies simultaneously and affects the entire economy

as a whole [1]. Since the 2008 financial crisis, researchers and practitioners made several efforts to build

models that can efficiently assess the likelihood of companies default, especially for public companies

in the stock market. Regulators also benefit from accurate bankruptcy forecasting models since they

can monitor the financial health of institutions and curb systemic risks [2].

Since Altman presented his bankruptcy forecasting model in 1968 [3], research has shown that

accounting-based ratios and stock market data can signal whether a firm is likely to face severe

difficulties, such as bankruptcy. Although default prediction models have been studied for decades,

we still lack a definite theory of predicting corporate failure [4]. The lack of a theoretical framework led

to the adoption of a common development methodology where research is more focused on identifying

discriminant features using a trial and error approach [5,6].

The advent of Machine Learning (ML) and its advances offered novel possibilities for bankruptcy

prediction in terms of learning models with several attempts with different ML algorithms and
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techniques such as Support Vector Machine (SVM) [7], boosting techniques [8], discriminant analysis

[9] and Neural Networks. Moreover, different architectures have been evaluated to identify effective

decision boundaries for this binary classification problem, such as the least absolute shrinkage and

selection operator [10], dynamic slacks-based model [11] and two-stage classification [12].

However, a common element of those models is the punctual application of market-based and

accounting-based variables, while time series receive little attention and there is insufficient literature

concerning the application of the most recent Deep Learning models for sequence data such as

Recurrent Neural Networks and Attention-based models. In this paper we compare two different

Recurrent Neural Networks (RNN) architectures based on Long Short Term Memory (LSTM) units to

predict Bankruptcy based on time series of accounting data. In general RNN-based models have been

seldom investigated in recent literature. In particular, we used a single-input RNN and a Multi-head

RNN that models each financial variable within a time window independently exploiting the latent

representation learned only in the last stage of the bankruptcy classification process. The idea of

building a Multi-head architecture aims to investigate whether an attention method pipeline con

outperform a classical RNN setting when learning a latent representation of the company by focusing

on each time series independently.

The main contributions of this paper are the following:

• We propose a Multi-head LSTM for bankruptcy prediction on time series data.
• We investigated the optimal time window of financial variables to predict bankruptcy with a

comparison among the main state-of-the-art approaches in Machine Learning and Deep Learning.

Experiments have been performed on public companies traded in the American stock market

with data available between 2000 and 2018.
• We anonymized our dataset and made public for the scientific community for further

investigations and to provide a benchmark for future studies on this topic.
• We analyzed our models on the test set, using T-SNE [13] to show the ability of our models to

capture patterns. We also performed an in-depth analysis of false positives.

2. Related Works

In traditional methods to forecast bankruptcies, Altman’s Z-score is the most prominent, but

Kralicek quick test, and Taffler’s model also use scoring methodologies to provide ordinal rankings of

default risk. [14,15]. Altman, as well as Beaver and William, used discriminant analysis, which has

been widely used following their works, while Ohlson was the first to introduce a binary response

model using explanatory variables and applying a logistic function [16,17]. The scoring methodologies

have also been used to produce a binary response given a pre-set threshold. For example, Altman

suggested the use of two thresholds, 1.81 and 2.99. According to this, an Altman’s Z-score above the

2.99 threshold means that firms are not predicted to default in the next two years, below 1.81 that they

are predicted to default, while between the two thresholds lies a "zone of ignorance" where no clear

decision can be taken. However, even though many practitioners use these thresholds, in Altman’s

view, this is an unfortunate practice since over the past 50 years, credit-worthiness dynamics and

trends have changed so dramatically that the original zone cutoffs are no longer relevant [18].

Even though many authors continue to work on traditional bankruptcy models, the exploration

of machine learning applications on corporate default has been more prevalent in recent years [5,6,12,

19–22]. Barboza et al. show that, on average, machine learning models exhibit 10% higher accuracy

compared to traditional ones. Specifically, in this study, Support Vector Machines (SVM), random

forests (RF) as well as bagging and boosting techniques were tested for predicting bankruptcy events

and compared with results from discriminant analysis, logistic regression, and neural networks. The

authors found that bagging, boosting and RF outperformed all other models [23]. Altman, in his

recent book, however, discusses a trade-off between models’ performance and explainability when

using machine learning models, expressing skepticism whether practitioners would adopt "black-box"

methods nevertheless acknowledging the superiority of the models in assessing corporate distress [18].
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Considering that the results regarding the superiority of models are still inconclusive, new studies

exploring different models, contexts, and datasets are relevant. Machine learning techniques like

ensembles of classifiers had been firstly explored for default prediction by Nanni et al.[24]. Kim et al.

showed that the ensembles greatly outperform standalone classifiers [25]. Wang et al. further analyzed

the performance of ensemble models, finding that bagging outperforms boosting in average accuracy

for all credit databases they used, as well as type I and type II error [26]. In [27] some evidence is

presented about the need of considering time series for the survival probability estimation over the

years and also for bankruptcy prediction with some benchmarks that also prove that neural networks,

when properly designed, can achieve better results with time-dependent accounting variables.

Barboza et al. also argue that a firm’s failure will likely be caused by difficulties over time, not just

the year before bankruptcy. In order to incorporate the dynamic behavior of firms, they added new

variables reflecting changes in financial metrics such as growth measures and changes [23]. Findings

dating back to 1966 show that firms exhibit failure tendencies as much as five years prior to the actual

event [16]. On the other hand, in 1998, Mossman et al. pointed out that the models are only capable

of predicting bankruptcy two years prior to the event, which improves to three years if used for

multiperiod corporate default prediction [28,29]. In most studies, ratios are analyzed backward in time

starting with the bankruptcy event and going back until the model becomes unreliable or inaccurate.

The time threshold for developing good classification models is two or three years, at most five, while

Altman mentions in his book that there are certain characteristics of bonds at birth that can significantly

influence their default likelihood over up to ten years after issuance [16,18,28,29].

However, most of the bankruptcy prediction models in the literature do not take advantage of

the sequential nature of the financial data. This lack of multi-period models is also emphasized in

Kim et al. literature review [30]. One of the few studies that do leverage the sequential nature of

accounting data is that of Vochozka et al., who examined the performance of a long short-term memory

(LSTM) model for bankruptcy prediction in the Czech manufacturing sector [31]. Kim et al. also used

quarterly accounting data for non-financial industry companies and daily market data from January

2007 through December 2019 in both RNN and LSTM models, finding that RNNs made reasonable

predictions in most situations, while both LSTMs and RNNs outperformed logistic regression, support

vector machine, and random forest methodologies [32]. However, to the best of our knowledge, there

are no studies of corporate bankruptcy that examine a similar number of observations or leverage

time series data examining different time windows to predict default. Since it is difficult to make

a fair comparison with the available literature (most of the datasets are either small and not usable

with Deep Learning or, more commonly, they have not been publicly released), we compared our

Deep learning model with all the algorithms presented in this section on our dataset. The dataset has

been publicly released for further investigations and comparisons and it is avaliable on GitHub 1. See

Section 4 for more details.

3. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a Deep Learning architecture that aims to process

sequences of values in the form x(1),x(2).....,x(t). This ability is due to the networks’ parameter sharing

across different parts of a model that makes it possible to extend and apply the model to examples

of different forms. Moreover, parameter sharing also allows to preserve generalization across the

sequence since the same parameters (weights) are used for each value of the time index, while a

traditional fully connected feed-forward network would have separate parameters for each input

feature. The time index refers to the position in the sequence. A Recurrent Neural network is generally

composed of a single unit of processing that produces an output y at each time step and has recurrent

connections in general from the hidden units a<j> and optionally from the output. When an RNN has

1 https://github.com/sowide/bankruptcy_dataset
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only recurrent connections from the hidden units, it processes an entire sequence and then produces

a single output. Figure 1 shows a generic RNN structure that processes a sequence of t elements

with recurrent connections only from the hidden units. Input, output, and recurrent hidden states

are propagated using different weight matrices whose elements are learned during training using the

back-propagation through time algorithm [33]. Equations 1 and 2 describe the internal behavior of an

RNN unit. The initial hidden state a0 is generally equal to zero. In general, for a generic time index

j the hidden state is computed as a weighted sum of the previous state aj−1 and the current input

xj plus a bias term. After that, an activation function σ is applied to the result as in fully-connected

networks. The output at each time step only depends on the current internal state plus a different bias

by. The two activation functions to estimate the hidden state and the output may differ.

RNNUnrolled RNN

Figure 1. (Left) A generic structure of an unrolled Recurrent Neural Network with recurrent connections

from the hidden layer. (Right) The resulting RNN when presented as a single unit with recurrent

connections.

a<j> = σ(Waa · a<j−1> + Wxa · x<j> + ba) (1)

y<j> = σ(Wya · a<j> + by) (2)

In this way, Recurrent Neural Networks can process entire sequences and are able to use contextual

information when mapping inputs into outputs. Unfortunately, for standard RNN architectures, the

range of context that can be in practice accessed is quite limited, especially for long sequences and

for more than one sequence in the input (matrix input). The major issue is that the influence of a

given input on the hidden state, and therefore on the network output, either decays or blows up

exponentially as it cycles around the network’s recurrent connections. This effect is often referred to

in the literature as the vanishing gradient problem [34]. Several approaches have been presented to

solve this issue, like the Long-Short Term Memory (LSTM) architecture [35] and the Gated-Recurrent

Unit (GRU) [36]. In both architectures, several additional components (called gates) are introduced

inside the unit to extend the memory of the network in case of a long sequence so that the first part of

each sequence is not forgotten when producing the output (long-term dependency problem) and to

prevent the gradient from vanishing. We describe the LSTM since it is the one used in this research

work and because the GRU unit can be taken back to a particular case of the LSTM unit. The basic idea

is to employ a unit state sj to retain the information taken from earlier time indexes in the sequence.

The unit is composed of three gates:

1. Forget Gate: It determines the amount of information that should be retrieved from the previous

unit state.
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2. Input Gate: It defines the amount of information from the new input x<j> that should be used to

update the unit’s internal state.
3. Output Gate: It defines the output of the unit as a function of its current unit state.

An example of an LSTM unit is presented in Figure 2. Every connection is weighted by a different

matrix whose elements are estimated using back-propagation through time as in basic RNNs.

σ σ tanh σ

 
x<j>

 

a<j-1>

fj ij x

S<j-1>
 

x + S
<j>

oj

tanh

x

a
<j>

Forget Gate Input Gate Output Gate

LSTM Unit

Figure 2. The internal structure of an LSTM unit with Forget, Input and Output gates and the respective

activation functions.

4. Dataset

In this section, we present the dataset used in the experimental part and that we make available

for the scientific community. The procedure used to build the dataset can be described as follows:

1. We collected data about 8262 different public companies in the American stock market between

1999 and 2018. We selected the same companies used in [37] and [38] since these companies have

been considered a good approximation of the American stock market (NYSE and NASDAQ) in

those time intervals.
2. For such firms, we collected 18 financial variables, often used for bankruptcy prediction, for each

year. In bankruptcy prediction it is common to consider accounting information and up-to-date

market information that may reflect the company’s liability and profitability. We selected the

variables listed in Table 1 as the minimum common set found in the literature [3,10,39] and to

have a dataset for twenty years without missing observations.
3. For all the experiments presented in Section 5, we only considered firms with at least 5 years of

activity since we aim to first identify the time window that optimizes the bankruptcy prediction

accuracy.

Each company has been labeled every year depending on its next year’s status: According to the

Security Exchange Commission (SEC) a company in the American market is considered bankrupted in

two cases:

• If the firm’s management files Chapter 11 of the Bankruptcy Code to "reorganize" its business:

management continues to run the day-to-day business operations, but all significant business

decisions must be approved by a bankruptcy court.
• If the firm’s management files Chapter 7 of the Bankruptcy Code: the company stops all operations

and goes completely out of business.
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In both cases, we labeled the fiscal year before the chapter filling as "Bankruptcy" (1). Otherwise,

the company is considered healthy (0). In light of this, our dataset enables learning how to predict

bankruptcy at least one year before it happens.

There is typically a strong imbalance in bankruptcy datasets since the number of firms that declare

default each year is usually a small percentage below 1% of the available firms in the market. However,

in some periods, bankruptcy rates have been higher than usual, for example during the Dot-com

Bubble in the early 2000 and the Great Recession between 2007-2008. Our dataset reflects this condition

as shown in Figure 3. The dataset firm distribution by year is presented in Table 2.

Moreover, each company in the dataset is categorized using the Standard Industrial Classification

(SIC) system, developed by the U.S. government to classify businesses based on their primary economic

activities. The SIC codes not only distinguish firms but also enable more granular categorization by

specifying major groups within each firm [40]. Major groups represent specific subcategories that

define the business-type activities undertaken by these companies. The inclusion of SIC codes and

major groups allows us a deep analysis of bankruptcy trends across a wide range of industries. This

classification system helps researchers and analysts gain insights into the economic factors and market

dynamics affecting various sectors of the American economy, making it a valuable resource for studying

bankruptcy patterns and their implications for different industries and major groups. Additionally,

we generated a frequency distribution chart in Figure 4, to represent companies’ distribution across

different divisions within our dataset. This histogram provides a clear overview of the prevalence

of companies in each different division, highlighting which sectors of the economy are more heavily

represented among the bankrupt firms. It works for evaluating the overall dataset composition and

identifies any potential trends or disparities in bankruptcy occurrences across divisions. In this work,

we performed a comprehensive examination of the dataset, with a particular focus on the division

distribution.

Finally, the resulting dataset of 78682 firm-year observations is divided into three subsets

according to the time period: a training set, a validation set, and a test set. We used data from

1999 to 2011 for training, data from 2012 to 2014 for validation and model comparison, and the

remaining years from 2015 to 2018 as a test set to assess the ability of the models to generalize their

prediction to unseen data.

Figure 3. Rate of Bankruptcy in the dataset (2000-2019) with financial variables in the period (1999-2018).
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Table 1. The 18 numerical bankruptcy features

Variable name Variable name

Current assets Total assets
Cost of good sold Total Long term debt
Depreciation & amortization EBIT
EBITDA Gross profit
Inventory Total Current liabilities
Net income Retained earnings
Total Receivables Total Revenue
Market value Total Liabilities
Net Sales Total Operating expenses

Table 2. Firm distribution by year in the dataset.

Year Total Firms Bankruptcy firms Year Total firms Bankruptcy firms

2000 5308 3 2010 3743 23
2001 5226 7 2011 3625 35
2002 4897 10 2012 3513 25
2003 4651 17 2013 3485 26
2004 4417 29 2014 3484 28
2005 4348 46 2015 3504 33
2006 4205 40 2016 3354 33
2007 4128 51 2017 3191 29
2008 4009 59 2018 3014 21
2009 3857 58 2019 2723 36
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Figure 4. Distribution of Companies by Division

5. Hardware specifications

All the experiments described in this work have been performed using a Linux Ubuntu server

with the following hardware specifications:

• CPU: Intel i9-10900 @2.80 GHZ
• GPU: Nvidia RTX 3090 (24 GB)
• RAM: 32 GB DDR4 - 2667MHz
• Motherboard: Z490-A PRO (MS-7C75)
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6. Temporal window selection

Before considering the use of time series with Deep Learning we investigated a key question: How

many years should be taken into account to maximize bankruptcy prediction performance? When

considering more than one year of accounting variables, different trade-offs should be considered:

• Some firms could only be considered for certain time windows since they have only recently been

made public.
• Some firms could be excluded depending on the time window although they existed in the past

because of an acquisition or merging operation.
• By extending the training and testing window, the number of companies available for training

and testing will inevitably decrease. Moreover, one should consider that a time window above

a certain number of years introduces a statistical bias that limits the analysis to only structured

companies that have been on the market for several years. At the same time, it leads to ignoring the

relatively new companies, which usually have smaller market capitalization and thus are riskier

and with a higher probability of default, especially in an overall adverse economic environment.

In order to answer these questions, we experimented with different machine-learning models to

identify the most promising time window length. In particular, we used the same ML models that have

been considered most effective in literature for bankruptcy prediction [18]: Support Vector Machine

(SVM), Logistic Regression (LR), Random Forest (RF), AdaBoost (AB), Gradient Boosting (GB), Extreme

Gradient Boosting (XGB) as well as two other tree-based boosting ML models, LightGBM (LGBM) [41]

and CatBoost (CB) [42]. Although they have not been used previously for Bankruptcy prediction these

models recently achieved outstanding performances in other tasks when compared with AB,GB and

XGB.

All the models were trained on the same training set (1999-2011) and compared using the

validation set (2012-2014). The training set has been balanced because, otherwise, a bias would

occur that would cause the less representative class in the bankruptcy to be wrongly classified and

learned. For this reason, every model is evaluated over 100 independent and different runs: For every

run, the training set is balanced with exactly all the bankruptcy examples and a random choice of

healthy examples from the same period.

We compared all the models using the average Area Under the Curve (AUC) on the 100 runs.

AUC is the measure of the ability of a classifier to distinguish between classes and is used as a summary

of the Receiver Operating Characteristic (ROC) curve. Every model implements a binary classification

task where the positive class (1) represents bankruptcy, and the negative class (0) represents the healthy

status.

In order to deal with the constraints previously listed, we evaluated all the companies using a

time window of accounting variables spanning 1-5 years. For RF, AB, GB, XGB, LGBM and CB we used

the same number of estimators (equal to 500) for a fair comparison, while the other specific parameters

were taken equal to the defaults provided in the Scikit-Learn implementations.

In Table 3 we report the average results obtained on the validation set for every model depending

on the number of years considered (Window length WL). Figure 5 summarizes the comparison. As

expected and according to previous literature, the ensemble models usually reach better results. In

particular, we found that for WL = 4, the Random Forest with 500 estimators obtains, on average, a

greater AUC on the validation set. On the other hand, for the WL = 5 case the best model found has

been the CatBoost. In both cases, the two ML algorithms achieve better performance if compared with

the others baselines. For this reason, we considered both CB and RF for the subsequent analysis.

It is important to note that all the ML models considered are not designed to work on time series

data, and thus they consider all the variables as independent features. As expected, increasing the

window length led to longer training time on average for all the models (Table 4). However, all the

models require just a few seconds of training with our hardware settings. However, ensemble models

perform better than SVM and LR with more variables with a larger window length. Moreover, using
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the 18 accounting variables for 4 or 5 consecutive years yields a better result in terms of AUC in

particular with Random Forest (0.759 for WL = 4) and CatBoost (0.771 for WL = 5). A possible

consideration is that although RF and CB show similar overall performance, the computation time

required to train CB is almost six time the one required for RF. However, the computation time is not

relevant in our experiments since the dataset is not particularly large. In light of this, we selected

WL = 4 and WL = 5 to further study time series data with Recurrent Neural Networks.

Table 3. Average AUC on the validation-set depending on the number of years considered (Window

Length-WL). Best results for WL = 4 and WL = 5 are highlighted in boldface.

Average AUC
ML models WL=1 WL=2 WL=3 WL=4 WL=5

Support Vector Machine 0.635 0.641 0.594 0.589 0.587

Logistic Regression 0.731 0.648 0.676 0.705 0.702

AdaBoost 0.647 0.655 0.664 0.642 0.719

Random Forest 0.745 0.733 0.731 0.759 0.760

Gradient Boosting 0.716 0.702 0.729 0.685 0.742

XGBoost 0.678 0.730 0.695 0.699 0.726

CatBoost 0.724 0.729 0.686 0.749 0.771

LightGBM 0.751 0.699 0.671 0.741 0.736

WL = 1 WL = 2 WL = 3 WL = 4 WL = 5
Window Length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

AU
C

SVM
Logistic Regression
Adaboost
Random Forest

Gradient boosting
Xgboost
LightGBM
CatBoost

Figure 5. Average AUC on the validation set over 100 runs for each model for different the window

lengths in years (WL). The training set is randomly balanced for every run while the validation set is

imbalanced.

Table 4. Average training time [seconds] on the validation set depending on the Window Length (WL).

Times in seconds refer to the average training time for a single run.

Average training time[s]
ML models WL=1 WL=2 WL=3 WL=4 WL=5

Support Vector Machine 0.032 0.036 0.036 0.034 0.033

Logistic Regression 0.018 0.022 0.023 0.024 0.026

AdaBoost 0.826 1.246 1.560 1.769 1.994

Random Forest 0.799 0.973 1.033 1.034 1.059

Gradient Boosting 1.022 1.833 2.545 3.097 3.555

XGBoost 0.421 0.422 0.493 0.478 0.483

CatBoost 6.670 7.059 7.088 7.383 7.398

LightGBM 0.187 0.195 0.191 0.184 0.179
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7. LSTM architectures for Bankruptcy prediction

According to [43], LSTM performs better than GRU when the sequence is short although with

a matrix input. For this reason, we chose the LSTM approach for our experiments since we are

considering eighteen different time series as input, each with a short sequence length, as determined in

the first experiments in Section 6. In order to study the application of RNNs to bankruptcy prediction,

we evaluated two different architectures:

• A single-input LSTM: This is the most common approach with RNNs. The input is a matrix with

18 rows (number of accounting variables) and a number of columns equal to the time window

selected for the experiment. Moreover, the LSTM is composed of a sequence of units as long as

the time window. Finally, a dense layer with a Softmax function is used as an output layer for the

final prediction.
• A Multi-head LSTM: This is one of the main contributions of our research with respect to the

current state of the art. In order to deal with a smaller training set due to the temporal window

selection and the class imbalance, we developed several smaller LSTMs, one for each accounting

variable to be analyzed by the model, named LSTM heads. Each network includes a short

sequence of units equal to the input sequence length and contributes to the latent representation

of the company learned by utilizing the accounting variables. Indeed, the output of the Multi-head

layer is then concatenated and exploited by a two-layer feed-forward network with a Softmax

function in the output layer. This architecture aims to test whether an attention method based

on a latent representation of the company that focuses on each time series independently can

outperform a classical RNN setting.

Figure 6 summarizes the main differences between the two architectures. The source code for the

Multi-head LSTM is publicly available on GitHub 2

LSTM Unit LSTM Unit LSTM Unit

LSTM Unit LSTM Unit LSTM Unit

LSTM Unit LSTM Unit LSTM Unit

C 
o 
n 
c 
a 
t 
e 
n 
a 
t 
e

Feed forward network

Sequence length j

Representation learning

Current assets
t0 t1 ... tj

511.26 485.85 ... 645.72

Net Sales
t0 t1 ... tj

304.8 218.7 ... 183.4

EBITDA
t0 t1 ... tj

21.34 19.78 ... 12.46

Independent time series input

 t0 t1 ... tj

Current assets 511.26 485.85 ... 645.72

Net Sales 304.8 218.7 ... 183.4

Gross Profit 201.3 199.4 ... 123.21

...

...

EBITDA 21.34 19.78 ... 12.46

LSTM Unit LSTM Unit LSTM Unit

Matrix input

Sequence length j

Figure 6. (Top image): The Multi-head LSTM setting where each financial time-series serves as the input

to a different shorter and smaller LSTM. The representation learned by each head is then concatenated

and exploited as the input to a subsequent feed-forward network. (Bottom image): The classical RNN

setting where the input for our bankruptcy task is a single matrix with 18 rows and j columns.

2 https://github.com/sowide/Multi-head_LSTM_for_bankruptcy-prediction
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8. Results

In this section, we present the results we achieved on bankruptcy prediction using the two RNN

architectures presented in Section 7. Firstly, we compare the RNNs with the best model found in the

preliminary experiments presented in Section 5 using the validation set (2012-2014), and, finally, we

show the results obtained on the previously unseen test set (2015-2018) to assess the generalization

ability of our models.

8.1. Metrics

We implemented the bankruptcy prediction as a binary prediction task where the positive class

(1) indicates bankruptcy in the next year while the negative class (0) means that a company has been

classified as healthy in the next year. In order to compare our models and prove their effectiveness, we

used different metrics that take into account the imbalanced condition of the validation and test sets.

Consider the following quantities for the default prediction:

• True Positive (TP): The number of actually defaulted companies that have been correctly predicted

as bankrupted
• False Negative (FN): The number of actually defaulted companies that have been wrongly

predicted as healthy firms.
• True Negative (TN): The number of actually healthy companies that have been correctly predicted

as healthy
• False Positive (FP): The number of actually healthy companies that have been wrongly predicted

as bankrupted by the model.

Since the validation and test set are both imbalanced with a prevalence of healthy companies, we

did not compare the models in terms of model accuracy. Indeed, the proportion of correct matches

would be ineffective in assessing the model performance. Instead, we computed each class’s Precision,

Recall, and F1 scores. This is highlighted because, in predicting bankruptcy, an error has a different

cost depending on the class that has been incorrectly predicted. The cost of predicting a company

going into default as healthy is much higher than the cost of predicting a company that will default

as healthy. In light of this, the precision achieved for a class is the accuracy of that class’ predictions.

The Recall (Sensitivity) is the ratio of the class instances that are correctly detected as such by the

classifier. The F1 score is the harmonic mean of precision and recall: whereas the regular mean treats

all values equally, the harmonic one gives much weight to low values. Consequently, we obtain a high

F1 score for a certain class only if its precision and recall are high. Equations 3,4, and 5 report how

these quantities are computed for the positive class. The definition for the negative class is exactly the

same by inverting positives with negatives.

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

F1score =
2

1
Precision + 1

Recall

(5)

Moreover, we reported three global metrics for the classifier that have been selected because they

enable an overall evaluation of the classifier on both classes without being influenced by the dataset

imbalance:

• The Area Under the Curve (AUC) measures the ability of a classifier to distinguish between

classes and is used as a summary of the Receiver Operating Characteristic (ROC) Curve. The

ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR)

at various threshold settings.
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• The macro F1 score is computed as the arithmetic mean of the F1 score of all the classes.
• The micro F1 score is used to assess the quality of multi-label binary problems. It measures the F1

score of the aggregated contributions of all classes giving the same importance to each sample.

Finally, we used two other metrics that are often evaluated in Bankruptcy prediction models. Because

bankruptcy is a rare event, using the classification accuracy to measure a model’s performance can be

misleading since it assumes that type I error (Eq 6) and type II error (Eq 7) is equally costly. Actually,

the cost of false negatives is much greater than the cost of false positives for a financial institution. In

light of this, we explicitly computed and reported type I and type II errors and compared the models

focusing in particular on type II and Recall of the positive class.

Type I error =
FP

TN + FP
(6)

Type I I error =
FN

TP + FN
(7)

8.2. LSTMs training and validation

The two LSTM architectures have been trained with exactly the same parameters for a fair

comparison. The main hyper-parameters are the following:

• Epochs = 1000
• Learning rate =10−4

• Batch size = 32 (Default Keras value)

Moreover, we used the Early-stopping technique to prevent the network from overfitting, and we

used the validation set to select the hyper-parameters. In particular, to deal with the imbalance of the

training set, we performed 500 runs for each LSTM by considering a randomly balanced training set

every time.

After that, we first compared the single-input LSTM, the Multi-head LSTM, and the previous

results achieved with Random Forest and CatBoost on the same validation set. Figure 8 shows the

model comparison for the temporal windows 4 and 5. Table 5 summarizes this result in terms of the

average AUC achieved in the 500 runs. For each run, the models’ weights are randomly initialized. In

light of this result, it is clear that, at least in terms of AUC, the recurrent network-based deep-learning

models outperform traditional classifiers.

Table 5. Average and max AUC achieved on the validation set (2012-2014) by Random Forest, CatBoost,

Single LSTM and the Multi-head LSTM. The average training time for each model is also reported for

WL=4 and WL=5.

Avg AUC Max AUC Avg Training time [s] Avg AUC Max AUC Avg Training time [s]
Multi-head LSTM 0.813356 0.837 103.86 0.79 0.828 82.60
LSTM 0.8026 0.8415 51.80 0,7928 0,864 42.86
Random Forest 0.75 0.777 1.035 0.762 0.794 1.062
CatBoost 0.731 0.767 7.388 0.750 0.797 7.432

WL=4 WL =5

8.3. Statistical analysis

The experiments described in the previous section and presented in Table 5 have been computed

as an average over 500 different runs and show that our model achieves much better AUCs with

respect to the other models (LSTM, Random Forest and CatBoost). We further analyzed these results

to prove our model’s performance is statistically significant. According to [44], a common way to test

whether the difference between two classifiers’ results over different datasets or runs is non-random

is to compute a paired t-test which checks whether the difference of their average performance is

significantly different from zero.
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However, one of the t-test’s requirements is that the differences between the two random variables

compared are distributed normally. As we show in Figure 7 all the performance differences between

each model and our Multi-head LSTM are not normally distributed, for this reason, according to [45]

we used the Wilcoxon Signed-Rank test (WSR)([46]), a non-parametric alternative to the paired t-test

which ranks the differences in performances of two classifiers for each run, ignoring the signs, and

compares the ranks for the positive and negative differences. We set to 0.05 the p-value under which

we reject the null hypothesis (the two distributions have the same median, and thus, the performance

difference can be considered random).

In our case, we achieved a p − value equal to 0 for each comparison with the Multi-head LSTM

over the same 500 runs where models have been trained using the same balanced training set, and the

AUC has been evaluated over the same unbalanced validation set. In light of these results, we can

conclude that our model shows better performance in the period between 2012-2014. Finally, since

the main goal of this analysis is to build a model that is able to generalize on unseen samples that

have never been used during the design phase, we report, in the next section, our final analysis of the

performances of the best models on the test-set to better prove the benefit of our approach.

Figure 7. Performance score distributions with respect to our Multi-LSTM model on the 500 runs over

the validation set. Since none of the random variables is normally distributed, we decided to use the

WSR test (See Section 7.3).

Multi-head LSTM LSTM Random Forest CatBoost
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Figure 8. The box-plot shows the locality, spread, and skewness groups of AUC values through their

quartiles achieved for each model in 500 different runs with a different balance training set. The lines

(whiskers) extending from the boxes indicate the variability outside the upper and lower quartiles. The

orange line represents the median between the first and third quartiles. The circular points (Fliers) are

those past the end of the whiskers.
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9. Final analysis on the test set

In light of the results achieved on the validation set, we selected the optimal single-input LSTM,

the optimal Multi-head LSTM and the optimal Random Forest. We defined the optimal model as the

one that offers these three conditions:

• Lowest difference between training and validation loss to ensure that the highest AUC is not

achieved as a consequence of overfitting.
• Lowest validation loss
• Highest AUC on the validation set

We experimented with these best models on the previously unseen test set (companies between

2015 - 2018). We again compared the single-input LSTM, the Multi-head, and the Random Forest

classifier. Figure 9 shows the models’ comparison in terms of AUC. In Table 6, we report detailed

results for each model in terms of Recall on the bankruptcy class, type I and II error as well as the micro

and macro F1 scores. As expected from the previous results obtained for the AUC on the validation set,

the best model is still the Multi-head LSTM which achieves the best result on the test set. In addition,

to gain a deeper insight into our model’s performance on the test set, we leveraged the BAC (balanced

accuracy) metric, which is the arithmetic mean of sensitivity and specificity.

Since the model shows a really high precision over the healthy class 6, which is also the majority

class in the validation and test sets, the slope differences are probably due to the higher number of

correct predictions in the validation set during learning. However, it is possible to observe that no

overfitting or underfitting phenomena affect our model, as also shown by the good results over the

unseen test set (Figure 9).

Therefore, we can conclude that RNNs have an impact on bankruptcy prediction performance.

However, the attention model induced by the Multi-head LSTM seems to achieve better results for

all the metrics (AUC, micro, and macro F1 scores) with a temporal window equal to 4 years. On the

other hand, considering the minimization of the False Negative rate, the models with WL=5 reach, in

general, the lowest Type II error.

WL = 4 WL = 5
Window Length

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

Random Forest
LSTM

Multi-head LSTM

Figure 9. AUC values on the test-set (2015-2018) for Random Forest, Single-input LSTM and the

Multi-head LSTM by varying the temporal window (WL).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1290.v1

https://doi.org/10.20944/preprints202401.1290.v1


15 of 20

Table 6. Overall results on the test set (2015-2018) with the Single-input LSTM and the Multi-head LSTM.

Rec means Recall and Pr means Precision. Best results are achieved on WL=4 with the Multi-head

LSTM.

LSTM Multi-head LSTM LSTM Multi-head LSTM
TP 88 75 89 71
TN 1233 2158 1071 2085
FN 8 21 2 20
FP 1591 666 1573 559
AUC score 0.832 0.847 0.802 0.825
BAC 0.677 0.773 0.692 0.784
micro-f1 0.772 0.797 0.777 0.793
macro-f1 0.53 0.55 0.528 0.542
I Error 21.74 18.45 22.65 20.5
II Error 23.95 28.125 21.97 21.97
RecBankruptcy 0.76 0.71 0.78 0.78
Pr Bankruptcy 0.106 0.117 0.106 0.115
Rec Healthy 0.782 0.815 0.773 0.795
Pr Healthy 0.989 0.988 0.99 0.99

WL = 4 WL = 5

9.1. Further Analysis on the Test Set

Understanding the distribution and the relationships within the feature space is crucial for

gaining insights into the behavior of a model. Among the methodologies employed for representing

high-dimensional data, one of the most powerful approaches is the t-distributed stochastic neighbor

embedding (T-SNE)[13]. T-SNE preserves the non-linearity structure of data points and tends to

maintain the relative distances between neighboring points, which can reveal clusters and patterns.

This analysis reported in this subsection aims to study the distribution of both healthy and bankrupt

firms in a reduced dimensional space, focusing on the capabilities of Multi and single LSTMs of

identifying an optimal decision boundary.

We first leveraged T-SNE on the original input to visualize the data in a two-dimensional space

while preserving the pairwise similarities between data points. Each data point represents a firm,

allowing us to gain an intuitive understanding of its inherent structures. The results are shown in

Figure 10.(a). We performed an analysis using the best window lengths identified on the validation set

(WL=4 and WL=5). We can infer that bankruptcy-prone firms usually do not cluster in a specific space

region of the feature space of the input. This observation highlights how challenging is to classify

bankrupt companies because there is some degree of overlap with healthy ones.

Following the outcomes achieved from the T-SNE analysis of the original test set, we focused on

how the LSTM networks represent each firm in their latent space before classifying them, depicted

in Figure 10. These snapshots offer some insights into the decision boundaries identified by the two

recurrent architectures. Decision boundaries for LSTM are depicted in Figure 10.b and for Multi-head

networks in Figure 10.c.

Our analysis reveals that these embeddings effectively distribute firms, with bankrupt firms

forming distinct clusters. This demonstrates the models’ ability to capture meaningful patterns in

the data, particularly concerning bankruptcies. The models consistently demonstrated the ability,

whether the window length is equal to 4 or 5, to discriminate between healthy and bankrupt firms in a

two-dimensional environment. The models’ constant ability to identify significant patterns linked to

financial distress shows the models’ robustness. By comparing the latent representations achieved

with the single LSTM with the ones with the Multi-head, it is evident that the Multi-head achieved a

more scattered representation that led to smaller overlaps between healthy and bankrupt firms. This
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result is also in line with the results presented in Table 6 by checking the number of False positives (FP)

achieved by the two models. Thanks to this, the Multi-head LSTM outperforms the single LSTM, in

terms of AUC, BAC, and FP for both window lengths.

For this reason, we decided to further study the false positives with an additional analysis in the

following section.
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Figure 10. Two-dimensional t-distributed stochastic neighbor embedding (T-SNE) visualization of

the test set. Each data point represents a firm. Subfigure (a) represents plain test data for WL 4 e 5,

(b) displays embeddings from a single-input LSTM, and (c) shows embeddings from a Multi-head

LSTM. These snapshots offer insights into the data’s intrinsic structure and the modeling impact on

representation.

9.2. False Positive Analysis

In bankruptcy prediction, an error has a different cost depending on the class that has been

incorrectly predicted. The cost of predicting a company going into default as healthy (FN) is much
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higher than the cost of predicting a healthy one as bankrupt (FP). However, both networks achieved

a small number of false negatives, but a considerable number of false positives that affect the

performance. Moreover, in light of the evidence presented in the previous section about the different

levels of overlap among bankrupt and healthy firms achieved by the multi and single LSTMs, we

decided to further analyze the latent representation (embedding) of the false positives achieved with

both networks, to better prove the benefits introduced by the multi-head LSTM.

For this analysis, we leveraged again the T-SNE dimensionality reduction to display the

distribution of false positives. The results are depicted in Figure 11 for window lengths 4 and 5.

Examining the embedding obtained from both models, one may observe how the false positives

are close to the bankruptcy clusters presented in the previous section with a considerably smaller

overlap ratio with healthy firms in the case of the Multi-head.

Furthermore, to complete our analysis, we considered how the false positives are distributed

across to the financial industries since the economic conditions and market dynamics can significantly

impact the behavior of businesses within a particular industry. With this aim, we leveraged

the SIC codes presented in Section 4 to understand if industry-specific factors can contribute to

misclassification.
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Figure 11. Visualization of False Positives Using T-SNE: false positive distribution in a high-dimensional

feature space visualized using T-SNE. Subfigure (a) represents the embeddings from a single-input

LSTM, and (b) shows the embeddings from a Multi-head LSTM.

Table 7 presents the false positive, for both models, across different SIC divisions under different

test set conditions (WL = 4 and WL = 5), as well as the respective percentage. We can infer the following

observations:

• Across all divisions, the Multi-head model outperforms LSTM, for both window lengths, in the

number of false positives. This shows how much better the Multi-head LSTM is in classifying

and identifying between alive and bankrupt firms.
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• Examining the variance of false positives with an emphasis on window length reveals an

interesting pattern. When considering the Multi-head LSTM, the more the window length

grows, the lower the percentage of false positives. This can be explained by the Multi-head

LSTM’s capacity to identify structures and patterns that can be missed when the window is set

to 4. On the opposite, since the single LSTM’s performance has more variance, no definitive

conclusions can be made about it, making it difficult to understand how false positives change

across various time windows. This is because there are equal amounts of positive and negative

variations.

These observations regarding the sectors and spatial distribution of false positives provide

important guidance for improving model parameters, maximizing predictive precision, and eventually

improving our models’ applicability in bankruptcy prediction tasks.

Table 7. Divisions’ Distribution in the Test Set for each Model - This table provides an overview of

the distribution of companies across various divisions within the test set, including the total number

of companies belonging to each category. However, for LSTM and Multi-head LSTM models, only

instances of false positives are reported, along with their distribution among different divisions.

Additionally, percentages are presented to express the ratio of false positives in relation to the total

data present in the test set.

Division Test set LSTM (False Positive) Multi-head LSTM (False Positive)

WL = 4 WL = 5 WL = 4 WL = 5 WL = 4 WL = 5

A 17 15 12 (70%) 9 (60 %) 4 (23 %) 3 (20 %)

B 152 142 84 (55%) 79 (52 %) 34 (22 %) 29 (20 %)

C 30 28 13 (43%) 14 (50 %) 5 (17 %) 6 (21 %)

D 1476 1382 824 (55%) 790 (57 %) 326 (22 %) 284 (21 %)

E 254 248 107 (42 %) 139 (56 %) 77 (30 %) 44 (18 %)

F 106 99 73 (69 %) 71 (72 %) 34 (32 %) 28 (28 %)

G 213 202 134 (62 %) 131 (65 %) 104 (49 %) 95 (47 %)

H 66 63 34 (52 %) 32 (51 %) 12 (6%) 5 (8 %)

I 606 556 310 (51 %) 308 (55 %) 70 (11 %) 65 (12 %)

10. Conclusions

In this paper, we have proposed a Multi-head LSTM neural network to assess corporate

bankruptcy. According to the experimental analysis on the test-set, this model outperforms a

single-input LSTM with the same hyper-parameters and architecture as well as the other traditional

ML models. The better forecasting performance of the Multi-head LSTM also proves that modelling

each accounting time-series independently with an attention-head contributes to better-identifying

companies that are likely to face default events (Highest Recall and lowest type II error). This is also

evident in the analysis of false positives presented in the experimental part. Moreover, we can finally

argue that using accounting data for the four most recent fiscal years leads to better performance

when predicting the likelihood of corporate distress. Experiments have been conducted on a dataset

composed of accounting variables from 8262 different American companies over the period 1999-2018

for a total of 78682 firm-year observations. This dataset has been made public so that it can be used as

a benchmark for future studies. Future developments will involve exploiting textual disclosures from

financial reports in conjunction with this model. Moreover, it should be possible to predict defaults only

in specific sectors by adding macroeconomic variables such as sustainability, interest rates, sovereign

risk, and credit spread. Furthermore, our models provide predictions over a single period, not the

survival probabilities over time. In future work, multi-period models can be incorporated to also reach

that goal.
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