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1. Introduction

Let G be a simple undirected graph, we denote V(G) its set of
n vertices and E(G) its set of m edges. Two vertices u,v € V(G)
are called adjacent or neighbours if there is an edge {u, v} € E(G).
A clique is a subset of pairwise adjacent vertices or, equivalently, a
subset of vertices inducing a complete graph. The maximum clique
problem (MCP) calls for determining a clique of G with the largest
possible number of vertices, the size of which is known as the
clique number w(G). Fig. 1 provides an example graph G with n =8
vertices and m =22 edges where w(G) =4. A maximum clique
is K = {vq, 15, 13,14} (the red vertices of the figure), the edges of
the complete graph induced by these vertices are depicted with
red lines. This graph contains multiple maximum cliques, another
maximum clique is, e.g., the set {vs, v, Vs, Ug}.

The MCP is one of the most studied combinatorial optimiza-
tion problems in graph theory. It is known to be strongly N7P-
hard and also hard to approximate within any polynomial factor
unless P = ZPP (Hastad, 1999). The MCP finds numerous applica-
tions which span disciplines such as computer vision (San Segundo
& Artieda, 2015; San Segundo, Rodriguez-Losada, Matia, & Galan,
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2010; Stentiford, 2019), robotics (San Segundo & Rodriguez-Losada,
2013), coding theory, network analysis and bioinformatics, see, e.g.,
Tomita, Akutsu, & Matsunaga (2011).

In this work, we describe a new exact branch-and-bound (BnB)
algorithm for the MCP that we call CLiSAT. This algorithm is de-
signed for hard MCP instances with up to several tenths of thou-
sands of vertices. Hard MCP instances are those with many large
interconnected cliques and they are typically dense. For these in-
stances, the state-of-the-art techniques are combinatorial BnB al-
gorithms (see, e.g., Wu & Hao, 2015) that employ bounding proce-
dures based on graph colouring and partial maximum satisfiability
(SAT) problems arising in the branching scheme. Our new exact
algorithm is an enhancement of this class of algorithms that intro-
duces new bounding procedures. These procedures, combined with
the state-of-the-art branching scheme, are very effective in solv-
ing hard MCP instances as shown in the computational section. On
the classical DIMACS set of instances, CLiSAT compares favorably
with previous state-of-the-art exact algorithms; moreover, on sev-
eral new classes of hard instances C1iSAT is the best performing
algorithm, in some cases by several orders of magnitude.

It is important to mention that solving the MCP on very sparse
massive graphs is, in practice, much easier than solving it for struc-
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Fig. 1. An example graph G with w(G) =4. In red, a maximum clique K =
{v1, 12, v3, 14}. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

tured dense graphs. A different class of specialized algorithms has
been specifically proposed in the literature for the former setting.
This family of algorithms is based on tailored graph reduction tech-
niques that are only effective for sparse instances (see e.g., Jiang,
Li, & Manya, 2016; San Segundo, Lopez, & Pardalos, 2016b; Wal-
teros & Buchanan, 2020). The proposed algorithm C1iSAT, even
if it is not designed for this type of instances, is competitive with
the state-of-the-art algorithms also for sparse graphs with up to
150,000 vertices.

1.1. Basic notation and definitions

Given a simple graph G and a subset of its vertices W C V(G),
we denote G[W] the induced graph by W, i.e., the graph with ver-
tex set V(G[W]) equal to W, and edge set E(G[W]) containing the
subset of edges of E(G) with both endpoints in W. The comple-
ment graph, denoted G, has the same vertex set of G and edge
set E(G) ={u,veV(G):{u,v} ¢ E(G),u s v}. A subset ] < V(G) of
pairwise non-adjacent vertices is called an independent set and
it corresponds to a clique in G. Moreover, let N(u) = {v eV(G):

{u,v} e E(G)} denote the neighbourhood of a vertex ueV(G). A
vertex colouring of a graph G is a partition of its vertex set into in-
dependent sets, also referred to as colour-classes. The vertex colour-
ing problem (VCP) calls for determining the minimum number of
colour-classes in any feasible vertex colouring, i.e., to determine
the chromatic number x (G) of the graph. We refer the interested
reader to Malaguti & Toth (2010) for further details on the VCP.
A (vertex) k-colouring of a graph G, which we denote C,(G), is
a partition of V(G) into k independent sets; precisely: C,(G) =
{11, L,..., Ik}. Clearly, x (G) provides an upper bound on the clique
number w(G), see, e.g., Balas & Yu (1986), and, consequently, so is
the value k of any k-colouring of the graph, i.e., w(G) < x(G) <
|C¢(G)| = k. Given a subset of vertices W < V(G) and a partition of
W into k independent sets, the k-colouring C,(G[W]) is a called a
partial vertex colouring of the graph G, i.e., a vertex colouring in
which only the vertices of W are coloured.

1.2. Reduction of the MCP to a partial maximum satisfiability
problem

Given a graph G together with a k-colouring C;(G), we describe
in this section a reduction, first proposed in Li & Quan (2010b), of
the MCP to a partial maximum satisfiability problem (PMAX-SAT-P).
A boolean variable x € {0, 1} is associated to two literals, a posi-
tive literal, denoted y and a negative literal denoted y. The positive
literal is true if x =1 and the negative literal is true if x=0. A
clause is a finite collection of literals linked by logical operators
(e.g., v and A). A unit clause refers to a clause with a single literal.
Boolean formulas comprise clauses linked by logical operators. A
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Boolean formula in conjunctive normal form (CNF) is a conjunction
of clauses, where a clause is a disjunction of literals.

The PMAX-SAT-P, associated to a MCP and a k-colouring, com-
prises two types of clauses denoted hard clauses and soft clauses.
It calls for satisfying the maximum number of soft clauses, while
satisfying all the hard ones. This PMAX-SAT-P features a vector of
boolean variables x € {0, 1}V(@I, where each variable x, represents
a vertex v € V(G). Its |E(G)| hard clauses are associated to the non-
edges of G. They contain only negative literals and encode the fact
that at most one vertex from each pair of non-adjacent vertices of
G can be part of a clique:

(Ju v Ju). Y{u,v} €E@G). (1)

The hard clauses form a CNF boolean formula modelling the fea-
sibility part of the MCP. The k soft clauses are associated to the
independent sets of C,(G). They contain only positive literals and
encode the fact that only one vertex from each independent set
can be part of a clique:

(Vo) vV Yoay V -V Yoaey ) V1€ G(G). (2)

For each independent set I € C;(G), the function v(l, s) returns the
vertex v € V(G) associated to the sth vertex of I, and t = |I|. We
denote .# the collection of all the soft clauses (2), which form a
CNF boolean formula modelling the objective function of the MCP,
i.e., each satisfied clause corresponds to inserting the vertex of its
true positive literal in a MCP solution. We denote PSAT(G, C,(G))
the PMAX-SAT-P associated to the graph G together with the k-
colouring Cy.(G).

1.3. PMAX-SAT-P based upper bounds on the clique number

For a given graph G together with a colouring C,(G), upper
bounds on the clique number @ (G) can be derived by reasoning
and propagating the information of the hard clauses (1) and soft
clauses (2) of the associated PSAT(G, C,(G)). It is straightforward
to see that the existence of a clique of size k in G requires that all
the k soft clauses (2) are satisfied. A subset ¥ < .# of soft clauses
(2) where at most |¢’| — 1 of them can be satisfied, is called a con-
flict. A conflict-detection procedure determines a conflict by setting
to false literals, i.e., removing them from the hard and soft clauses,
while preserving logical entailment, until a clause becomes empty.
A conflict logically entails an empty clause, i.e., a clause that con-
tains no literals and, by definition, evaluates to false. If a conflict
is found in PSAT(G, C,(G)), a clique of size k cannot exist in G; ac-
cordingly, k — 1 is in this case an upper bound on w(G).

Unit Propagation (UP) is one of the main conflict-detection pro-
cedures, see Davis & Putnam (1960). It exploits the fact that a unit
clause can only be satisfied by fixing its literal to true and, conse-
quently, removing the negated literal from the remaining clauses.
UP is applied iteratively after each removal until either i) there are
no more unit clauses, or (ii) an empty clause is found. In the lat-
ter case, the soft clauses (2) in which a positive literal is set to
true, together with the soft clause that becomes empty, determine
a conflict.

Strong upper bounds on w(G) can be obtained if more
than one conflict is determined, see, e.g., Li, Fang, Jiang, & Xu
(2018a); Li, Jiang, & Manya (2017). A collection of conflicts & =
{¢1,65. ..., ¢ 5} is denoted a proper set of conflicts if for each pair
of conflicts (4¢3, ¢},) in 22, the set of soft clauses in (¢, U%6}) \ (¥a N
%)) is also a conflict. In other words, the soft clauses that belong
exactly to only one of the two conflicts also contain a conflict. If
a proper set of conflicts is found, then w(G) < k — |Z?|. Determin-
ing a proper set of conflicts can be done iteratively, one conflict
at a time, see, e.g., Li et al. (2018a, 2017). We recall, in what fol-
lows, the overarching idea of such procedures. For each conflict ¢
found, the PSAT(G, C,(G)) is modified in such a way that the set of
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clauses in ¢ are satisfiable. Precisely, the graph G is enlarged with
|#| additional vertices, by inserting a new vertex per independent
set associated to the clauses of %. Each new vertex is connected to
every vertex V(G) in the graph, except to those vertices associated
to the literals of its clause. In this way, we obtain a new graph
called the transformed graph of a conflict, which we denote G(%).
The new Ci(G(¥)) is obtained from the original C,(G) by colour-
ing each new vertex with the colour class of its associated clause.
In addition, a new PSAT(G(%),C¢(G(%))) can be defined in which
the relaxed clauses of ¥ are satisfiable. This problem is used to
determine additional conflicts. A set of conflicts iteratively deter-
mined in this way is, by nature, a proper set of conflicts.

In addition to UP, and when no unit clauses are available,
the failed literal conflict-detection procedure (FL), another well-
established inference procedure used by SAT solvers, can be used
in this context to determine conflicts. A positive literal of a soft
clause is denoted failed if an empty clause is determined when it
is set to true. If every literal in a clause is proven failed by suc-
cessive calls to FL, a conflict has been found. The soft clauses of
this conflict are those in which a positive clause is fixed to true
by the different calls to FL together with the corresponding empty
clauses.

14. Literature review on exact MCP algorithms

A large amount of effort has been devoted to solving the MCP
to proven optimality. We refer the reader to Wu & Hao (2015) for
a detailed survey on this topic. A complete overview of exact al-
gorithms is out of the scope of this work. In what follows, we
describe what we consider the most relevant ones together with
their corresponding breakthroughs. One of the first successful BnB
algorithms is described in Carraghan & Pardalos (1990), where
a tailored n-ary branching scheme for the MCP is proposed. A
bounding technique based on vertex colouring is described in Fahle
(2002), an idea almost universally employed by modern exact MCP
algorithms, see, e.g., San Segundo, Matia, Rodriguez-Losada, & Her-
nando (2013); San Segundo, Rodriguez-Losada, & Jiménez (2011);
San Segundo & Tapia (2014); Tomita, Sutani, Higashi, Takahashi,
& Wakatsuki (2010). One of the major breakthroughs of the last
decade is the bounding technique proposed in Li & Quan (2010a,b).
This family of upper bounds is based on partial maximum satisfi-
ability problems arising in the branching scheme. Thanks to this
new idea, the exact MCP algorithms have substantially improved
their performance. Some of the state-of-art algorithms of this type
are, e.g., Li et al. (2018a, 2017); San Segundo, Nikolaev, & Batsyn
(2015); San Segundo, Nikolaev, Batsyn, & Pardalos (2016¢). Finally,
bitstring optimizations are known to be an additional source of ef-
ficiency, see, e.g., San Segundo et al. (2013, 2015); San Segundo
et al. (2016¢, 2011); San Segundo & Tapia (2014).

To the best of our knowledge, the most successful exact algo-
rithm for hard dense MCP instances is MoMC, which is described in
Li et al. (2017). In the computational section, we compare the per-
formance of our new algorithm C1iSAT against MoMC, as well as
several other efficient exact algorithms and integer linear program-
ming (ILP) models solved by a state-of-the-art commercial solver.

Another recent stream of research aims at determining the
clique number of real and very sparse massive graphs, such as
those associated with social networks. Specialized algorithms
exploit the scale-free nature of such graphs, i.e. graphs whose
degree distribution follow a power law. These algorithms are able
to solve the MCP to proven optimality in networks with millions
of vertices, see, e.g., Hespe, Lamm, Schulz, & Strash (2020); San Se-
gundo et al. (2016b); Walteros & Buchanan (2020). The techniques
employed to determine a maximum clique for these instances
are typically not effective for hard and dense MCP instances. For
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sparse massive instances, the most successful exact algorithms
are dOmega, proposed in Walteros & Buchanan (2020), BBMCSP,
proposed in San Segundo et al. (2016b) and LMC proposed in Jiang
et al. (2016). These two algorithms are compared against CLiSAT
in the computational section.

It is also worth mentioning that exact algorithms have been de-
veloped in recent years for variants and generalization of the MCP.
Efficient exact algorithms for the maximum vertex weighted clique
problem are described in Jiang, Li, Liu, & Manya (2018); San Se-
gundo, Furini, & Artieda (2019b), while exact algorithms for the
edge-weighted case are described in San Segundo, Coniglio, Furini,
& Ljubic (2019a); Shimizu, Yamaguchi, & Masuda (2018). In addi-
tion, exact algorithms for vertex and edge interdiction variants of
the MCP have been described in Furini, Ljubic, Segundo, & Zhao
(2021) and Furini, Ljubic, Martin, & Segundo (2019). Finally, a re-
cent exact algorithm for the knapsack problem with conflicts is
described in Coniglio, Furini, & Segundo (2021); this problem cor-
responds to the MCP with an additional knapsack constraint.

1.5. Methodological contributions and outline of the article

The main contribution of this paper is the development and
the extensive testing of a new exact algorithm for the maximum
clique problem. The algorithm, called C1iSAT, is designed for hard
MCP instances and is built upon the state-of-the-art procedures of
the best-performing MCP algorithms in the literature. CLiSAT in-
tegrates modern branching schemes with effective bounding tech-
niques to reduce the size of the branching tree. The two state-of-
art bounding mechanisms are based on graph colouring procedures
and partial maximum satisfiability problems arising in the branch-
ing scheme. Starting from these cutting-edge techniques, CLiSAT
exploits new routines which are crucial for improving its perfor-
mance to solve hard MCP instances.

Section 2 is entirely devoted to the presentation of the new
algorithm. The first Section 2.1 presents the state-of-the-art
incremental branching scheme of CliSAT. This n-ary scheme
employs the notions of branching and pruned sets of vertices and
is described in Section 2.2. In Section 2.2.1 we present the most
effective state-of-the-art techniques employed by MCP algorithms
to enlarge the pruned set, which are based on PMAX-SAT-P-based
upper bounds. In this context, the new SATCOL procedure pre-
sented in Section 2.2.2 is the first methodological improvement
of CliSAT. Its goal is to further enlarge the pruned set by
combining colouring-based and PMAX-SAT-P-based upper bounds.
A second important methodological contribution is the filtering
phase of CLiSAT described in Section 2.3. To the best of our
knowledge, C1iSAT is the first exact MCP algorithm to employ
constraint programming and domain propagation techniques to
filter vertices from the branching set, i.e.,, to completely remove
them from branching subtrees. To this end, two ad hoc procedures
are designed: the first one, denoted FiltCOL, is presented in
Section 2.3.1; the second one, denoted FiltSAT, is presented
in Section 2.3.2. After explaining the incremental upper bounds
also employed by C1iSAT in Section 2.4, the pseudocode for the
algorithm is discussed in Section 2.5. Extensive experiments on
hard benchmark MCP instances, as well as new hard instances
arising from different applications, are presented in Section 3.
Our computational campaign demonstrates the effectiveness of
C1liSAT on solving hard MCP instances and demonstrates that
CliSAT outperforms the state-of-the-art MCP algorithms, for
some classes of instances, by orders of magnitude. Section 4 con-
cludes the paper summarizing the principal algorithmic improve-
ments of CLiSAT and outlines several promising lines of future
research.
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Fig. 2. The graphs G(vg) (left part) and G(v;) (right part) associated to the graph G of Fig. 1.

2. The new exact BnB algorithm: C1iSAT

In this section, we describe the new BnB exact algorithm
C1iSAT for the MCP. CLiSAT employs an n-ary branching scheme
of a constructive type that iteratively builds a clique by adding one
vertex at a time in a recursive fashion. We denote K < V(G) the
subproblem clique associated to a branching node. Precisely, K con-
tains the vertices fixed during branching and added to the sub-
problem clique in the nodes preceding the current one. Moreover,
each branching node is associated to a subproblem graph, denoted
G. This graph contains the vertices which can be added singularly
to K, see Section 2.1. During its execution, CLiSAT keeps track of
the incumbent solution, denoted Kj,.. The size |Kj,.| of the incum-
bent solution is denoted [b (a lower bound on w(G)). Moreover, if
a larger clique is found during the branching, i.e., if the condition
|| > Ib holds, both K;,. and Ib are updated accordingly. After the
execution of C1iSAT, K;,. corresponds to a maximum clique of G
and, accordingly, Ib = @ (G).

The main idea of the branching scheme is to partition the set
of vertices of the subproblem graph G into two subsets: i) the
branching set B and ii) the pruned set P (see Section 2.2). This
idea has been used in the state-of-the-art combinatorial BnB al-
gorithms for the MCP and their variants, see, e.g., Li et al. (2018a);
Li et al. (2017); Li, Liu, Jiang, Manya, & Li (2018b); San Segundo
et al. (20193, 2019b); San Segundo et al. (2013, 2015); San Segundo
et al. (2016¢, 2011); San Segundo & Tapia (2014). By definition of P,
at least one vertex from B =V(G) \ P is necessary to improve the
incumbent solution Kj,.. Accordingly, branching on any of the ver-
tices in P is not necessary in a given branching node, and the
algorithm backtracks when the set B is empty. After the pruned
and branching sets are determined, C1iSAT carries out a |B|-ary
branching operation, creating a branching node for every vertex in
B by adding it to the current subproblem clique K (see Section 2.1).

We consider the vertex set V(G) of the input graph G
sorted according to a given initial ordering (vq,vs,...,Vn), See
Section 2.5 for further details on this topic. We denote V;(G) <
V(G) the subset of vertices that comprises the first i < n vertices of
V(G); precisely: V;(G) = {vl,...,vi with i=2,...,n, and V;(G) =
{v1}. Moreover, we denote V(v;, G) € V(G) the subset of vertices
that comprises the first i vertices of V(G) intersected with the
neighbourhood of the vertex v;; precisely: V(v;, G) = Vi(G) N N(v;),
i=1,...,n. We then define |V(G)| graphs G(v;) as the ones in-
duced by the (non-empty) sets of vertices V(v;, G); precisely:
G(v;) =GV (v, G)], i=1,...,|V(G)]. 3)
Fig. 2 depicts the graphs G(vg) and G(v7) associated to the graph
G of Fig. 1. The vertices vg and v; appear in red, V(G(vg)) and
V(G(v7)) in green. The edges of both graphs are drawn as thick
black straight lines. The edges connecting vertex v; to the vertices
preceding it according to the initial ordering are coloured in blue.
The edge that connects v; to vg appears as a dashed blue line, in-
dicating that vg does not belong to E(G(v;)). The same information
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is shown for G(vg). All the remaining edges in E(G) are shown as
dashed black lines.

2.1. The incremental branching scheme of C1iSAT

The input of the branching scheme of C1iSAT corresponds to
the family of graphs G(v;), i=2,...,n. CLiSAT executes a BnB
procedure for each one of these graphs, examining them in order.
We recall that G is the subproblem graph and K is the subprob-
lem clique associated to a branching node. In the first level of the
branching tree, G corresponds to one of the graphs G(v;) and K is
the singleton {v;}. In order to determine the subproblem graphs G
for subsequent child nodes, CLiSAT first partitions the vertex set
V(6) into the pruned and branching sets P and B, i.e., V(G) = PUB
and BNP = 4.

The pruned set P is a subset of vertices of V(G) respecting the
following condition:

K| +@(G[P]) < Ib, (4)
where E(C[P]) is any upper bound on the clique number of G[P].
The entire left hand side of (4) corresponds to an upper bound on
the clique number of the graph G[K UP]. In other words, the con-
dition states that the graph induced by the vertices in K UP does
not contain a clique of size larger than Ib = |Kj,.|. Precisely, if a
set P that respects the condition (4) is found, it means that, in or-
der to improve the incumbent solution Kj,, it is necessary to add
to K at least one of the vertices in V(G) which is not in P. Con-
sequently, we define the branching set B as V(G) \ P. The specific
way in which the P set is constructed by C1iSAT, as well as the
specific upper bounds on the clique number it employs, are pre-
sented in Section 2.2.

Once the sets P and B are created, the vertices of these sets are
ordered according to the initial ordering (vq, v, V) and rela-
belled as follows:

P:{p1,p2,...,p|p|} and B:{bl,bz,...,b‘m}. (5)

C1liSAT keeps track of the initial labels of the vertices v € V(G) by
establishing a mapping between the vertices p € P and b € B and
the corresponding vertices in V(G). This is done efficiently with
the help of its bitstring encoding of vertex sets in memory.

An example of the P and B sets is presented in the left
part of Fig. 3. Precisely, it shows the partition of the vertex set
{v1, 2, v4, s, vg} of the subproblem graph G(v;) of Fig. 2 (the orig-
inal graph G, we recall, is shown in Fig. 1), into the sets P = {v,, vg}
(grey) and B = {vq, v4, v5} (black). The edges of G(v;) are depicted
as thick black lines. In this example we assume G to be the input
graph, so K = {v7} (v, is shown in red). Since w(G[{p1, p2}]) =1,
it follows that the size Ib of the incumbent solution must be equal
to 2 for the condition (4) to hold. For the sake of clarity, the ver-
tices of the sets B and P are shown according to the relabelling
established by Eq. (5), i.e., P = {py, p2} and B = {by, b,, b3}. In blue,

.....
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Fig. 3. Left: the pruned and branching sets P and B for the subproblem graph G(v7) of Fig. 2. Middle: the subproblem graph G(bs). Right: the subproblem graph G(b;).

the edges incident to v; which are involved in the branching. The
vertices v3 and vg are shown in white (without a label) since they
do not belong to G(v;), i.e., v3 is not adjacent to v; and vg comes
after v in the initial ordering. Finally, the incident edges to v3 and
vg are drawn as dashed lines.

To create the subproblem graphs G of the child nodes asso-
ciated to branching on the vertices of the set B, we define a
new family of graphs, called G. We denote B]-(C) C B, the sub-
set of vertices that comprises the first j < |B| vertices; precisely:
B;(G) = {by.....b;}, with j=2.....|B|, and B;(G) = {b;}. In addi-
tion, we denote V(b;, G) € {PU B} the subset of vertices that com-
prises the intersection between the set P, together with the first
j vertices of B, with the neighbourhood of the vertex b;; pre-

cisely: V(b;.G) = {PUBj(C)} AN(b)). j=1...., |B|. We then de-
fine |B| graphs C(bj) as the graphs induced by the (non-empty)
sets of vertices V(b;, G); precisely:

G(by) = G[V (b;. G)]. =1,...,|B| (6)

The graphs C(bj) become the subproblem graphs G in subsequent
child nodes, and I?U{bj} the associated subproblem cliques. By
construction, the vertices of G(b ;) are connected to all the vertices

of K. C1iSAT proceeds recursively until either all the vertices in B
have been explored, or B becomes the empty set.

Fig. 3 shows the graphs G(b3;) (middle part) and G(b;) (right
part) associated to the branching set B. As in previous figures, the
set of vertices of both graphs, i.e., {p,, bo} and {p;, p,} respectively,
are coloured in green. By branching on the vertex b (resp. by), K
becomes {v;, b3} (resp. {v7,bq}) and its unique edge, i.e., {v7, b3}
(resp. {v, by}), is shown as a red line. In blue, the edges that con-
nect the vertices of G(b3) and G(b;) to the associated K. The edge
set of G(by) is empty, while the edge set of G(b3) is the singleton
{p2. by} (drawn as a black line). The edge {by, by} is drawn as a
dashed blue line in the right part of the figure to indicate that b,
does not belong to V(G(b;)), since b, comes after b; in the new
labelling (see Eq. (5)). All the remaining edges of E(G) are shown
as dashed black lines.

We denote this way of branching incremental hereafter, as op-
posed to the more traditional branching scheme that considers
the child subproblems derived from the full neighbourhood of
the vertices selected for branching, see, e.g., San Segundo et al.
(2015, 2016¢); San Segundo & Rodriguez-Losada (2013). Incremen-
tal branching has been employed by the recent efficient algorithms
MoMC (Li et al., 2017) and IncMC2 (Li et al., 2018a), and we have
adopted this strategy for our algorithm C1iSAT.

J

2.2. Determining the pruned and branching sets

In this section we explain the techniques used by CliSAT
to determine the branching and pruned sets. We recall that the
branching operations of CLiSAT require determining a pruned set
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P c V(C) respecting the condition (4). One such type of pruned set,
which we denote P, is determined by a partial x-colouring:

Ce(GIR]D) = {h.L,....I.}, where &k =Ib—|K|. (7)

The value « corresponds to an upper bound @(G[P-]), and the
k-colouring is a collection of « independent sets (Section 1.1).
CliSAT employs the greedy independent-set sequential colouring
procedure to compute a x-colouring. This procedure is referred to
as ISEQ, and was first proposed (in connection with the MCP)
in San Segundo et al. (2013, 2011). We outline, in what fol-
lows, the main operations of ISEQ, and refer the reader to the
aforementioned papers for further details. Given a vertex ordering
(1, V2, V) OF V(G), each iteration of ISEQ builds an inde-
pendent set processing the vertices in order. At each step within an
iteration, and starting from the empty set, a vertex is added to the
independent set under construction if it is not linked to any of its
vertices. ISEQ continues iterating until ¥ independent sets are de-
termined. It is worth mentioning that C1iSAT implements ISEQ
efficiently using a bitstring encoding of the vertex sets in memory,
see (San Segundo et al., 2011).

We show the operations of ISEQ considering the subproblem
graph G depicted in the left part of Fig. 4. This graph is cho-
sen since it features a gap of one unit between its clique num-
ber and its chromatic number, i.e., w(G) = 4 and x(6) =5. In ad-
dition, G is considered associated to a branching node with |K| =
1 and [b=5, so k =4 according to Eq. (7). Given the ordering
(1,13, ..., v7) of the vertex set V(G), ISEQ determines the follow-
ing 4 independent sets in order: Iy = {v1}, L = {1y}, I3 = {13, v4}
and I; = {vs, vg}. Each independent set is depicted with a different
colour. The grey vertices in the right part of the figure correspond
to the pruned set P = {p1. pa. ..., ps}, shown after the relabelling
according to Eq. (5). The remaining vertex b; (depicted in black)
becomes the branching set B. The edges incident to b; are repre-
sented as dashed lines.

In this example, the ISEQ procedure is not able to construct a
pruned set P- = V(G), so branching is necessary. The example illus-
trates the limits of using a (heuristic) vertex colouring procedure
to create the set P. Since x (G) = 5, the branching node cannot be
pruned even with an optimal colouring.

2.2.1. Enlarging the pruned set with PMAX-SAT-P-based upper bounds

Given a «-colouring Cc(G[P]), defined in the previous
Section 2.2, the set P- can be enlarged by adding vertices from
B=V(G)\ P, one at a time, using the PMAX-SAT-P upper bound
presented in Section 1.3. We describe in what follows the state-of-
the-art procedure of this type employed by, e.g., Li et al. (2017).
Hereafter, we denote for short P-uU {b} as P,. A vertex b e B can
be added to P- if an upper bound @(G[P,]) <Ib— |K| can be de-
termined. To this end, a partition of V(G[P,]) into x +1 colour
classes is created by assigning the vertex b to a new colour
class. Precisely, Cc.1(G[P,]) =Ce(G[P-])U{b} and the associated
PSAT(G[P,], G 1(GIP,])) can be used to prove that @(G[R,]) =«
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Fig. 4. To the left, a subproblem graph G associated to a branching node of CLiSAT. The coloured vertices correspond to the independent sets determined by ISEQ. To the

right, the corresponding pruned set P- = {p1, p»

if the UP procedure determines a conflict ¥ (starting from the
unit clause of {b}). If a conflict ¥ is found, P, becomes the new
pruned set and b is removed from the branching set B. In order
to add more than one vertex from B to I, it is necessary to find
a proper set of conflicts by iteratively building the transformed-
graphs as explained in Section 1.2. The effect on the branching tree
is twofold: i) a node is fathomed if the branching set B becomes
empty; ii) the number of child nodes is reduced if the set P is
enlarged, see Section 2.1.

We illustrate this technique by referring again to the sub-
problem graph G in Fig. 4 and C4(G[P-]). We recall that
the branching set is B={b;} and the pruned set is P =
..... pl, and show how to obtain @(G[P,]) =4 after
determining Cs(G[P,]) as explained previously. Precisely, the
associated PSAT(G[P,]).C5(G[P,]) contains the 5 soft clauses:
1)y Upy)s Ops V¥py)s Wps V¥pg)s Wp, ), and it is possible to de-
termine a conflict by executing UP on the unit clause (yp,). The
reasoning is as follows: setting to true the literal ¥p, removes the
literals yp, and yp, (according to the hard clauses Vb, V- Vps) and
(Fb,V.¥pg)) so that both clauses (yp; vyp,) and (yps Vypg) be-
come unit. Finally, setting to true the literal y,, empties the other
unit clause, resulting in the conflict {(yp, ), Vp; V ¥py)s Ups v ¥pg)}-

Consequently, P=V(G), B=¢ and the branching node is fath-
omed. As can be seen, the PMAX-SAT-P-based upper bounds can
be stronger than the chromatic number.

2.2.2. Enlarging the pruned set with the SATCOL procedure

In what follows, we describe a new procedure, denoted
SATCOL, that is employed by C1iSAT to (potentially) enlarge the
pruned set P- by adding one independent set I C B at a time. Each
independent set is computed by one iteration of ISEQ on the ver-
tices in B. We denote for short P-UI as P,. A larger pruned set P
is determined if a conflict ¢ is found in PSAT(G[P], Cc.1 (GIP])),
where G q (G[P]) corresponds to the «-colouring Ce(G[P:]) to-
gether with the independent set I. In such a case, @(G[P]) =,
the new pruned set becomes P, I is removed from B, and the
transformed-graph G[B](¥) is computed. To find a conflict %,
SATCOL executes the procedure FL on each of the literals asso-
ciated to the vertices of I attempting to prove them failed, see
Section 1.3. It follows that, if ¢ is found, the soft clause associated
to I must be part of ¥. SATCOL continues examining independent
sets in B until it either fails to find a conflict, or the set B= 2 and
the branching node is fathomed. When the procedure stops, the
pruned set determined in this way is denoted Ps. The transformed-
graphs are necessary to ensure that the set of conflicts determined
iteratively by SATCOL is a proper set of conflicts, see Section 1.2.

SATCOL presents a number of advantages with respect to prior
state-of-the-art procedures that examine vertices in B individually.
In the first place, SATCOL, creates a single soft clause per indepen-
dent set I (if it is part of a conflict). An equivalent procedure that

pe} and the branching set B = {b;}.
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executes UP to find a conflict for each of the vertices in I, gen-
erates |I| soft clauses and |I| transformed-graphs during the rea-
soning. In addition, each transformation relaxes the clauses of the
corresponding conflict with an additional literal, see Section 1.3, so
emptying these clauses becomes more difficult in subsequent iter-
ations. Keeping the number of soft clauses low (and of small size)
is crucial for the overall efficiency of SATCOL. In the second place,
SATCOL can also determine larger pruned sets, since it typically
examines the vertices in B in a “better” order (according to inde-
pendent sets) than the initial order. We illustrate this behaviour by
means of the following example.

The left part of Fig. 5 shows a new subproblem graph G as-
sociated to a branching node, with |K| =1 and Ib=4, so k =
3 according to Eq. (7). The figure also shows the 3-colouring
C3(G[P-]) determined by ISEQ. The right part of the figure de-
picts the relabelled vertices of the pruned set P- = {p;, p2..... Ps}
(grey) and the branching set B = {b1, by, b3} (black). The edges
with an endpoint in B appear dashed. SATCOL first examines the
independent set I = {by, b,} from B, and the procedure FL deter-
mines a first conflict 47 = {(Yp; vV ¥py), Wps V ¥ps)s Wb, vV ¥p,)} in
the associated PSAT(G[R].C4(G[P])), where, we recall, P =R UL
Consequently, P, becomes the enlarged pruned set, and I is re-
moved from B. In the next and final iteration, SATCOL consid-
ers the remaining vertex b; in B and finds a second conflict
G ={Wp; V¥py)s Wps vV ¥ps21)s Wps vV ¥ps V 22), (yb3)} in the as-
sociated PSAT(G(%7).Cs(G(%1))). For completeness we provide its
5 (unsatisfiable) soft clauses: (Vp, V¥p,), (Vps V¥p, V21), (VpgV
Ype V2Z2)s (Wb, V ¥, Vv 23) and (yp,). The added z literals correspond

to the transformed-graph G(%). As can be seen from the conflict
%5, the reasoning involves (besides the unit clause of b3) the soft
clauses associated to the yellow, blue and cyan colour classes in
the figure.

Alternatively, we now consider the operations of the UP
procedure on the vertices in B following the initial order,
i.e, v7, vg and vg (also by, b3 and b,). The first conflict
determined by UP when setting y, to true is % = {(p; v
Vps)» Wps v Vpg). 0’b1)}- and a second conflict, when setting Vb,
to true, is € = {(Wp, V¥p,)Wps V¥ps vV 21), Wp, V23), b))} At
this point, UP is unable to find a third conflict in the as-
sociated PSAT((G(1))(%2).Cs((G(41))(%3))). Its 6 soft clauses
are: (Yp, V¥p, vVZ1), (Ups V¥py VZ1VZy), Vps VVpsV2Z2), Wp, v
73V Z5), Vp, vz,) and (y,,), where z and 2z’ are the added liter-
als corresponding to the conflicts 47 and %, respectively. It is not
difficult to see that setting ¥p, to true is unable to turn into unit
any of the remaining (relaxed) clauses.

2.3. The filtering phase of CLiSAT

We now describe one of the main algorithmic contributions of
C1liSAT. After the ISEQ procedure terminates and computes a
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Fig. 5. To the left, a subproblem graph G associated to a branching node of CLiSAT. The coloured vertices correspond to the independent sets determined by ISEQ. To the

right, the corresponding pruned set P- = {p1, p>

Pe} and branching set B = {by, b, b3}.

Fig. 6. On the left, a (k + 1)-partite subproblem graph G of a (k + 1)-partite branching node with k = 3, together with a 4-colouring. The independend sets I = {v;, V4, Us},
L = {v5,v6} and Is = {13} are the first 3 colours; the branching set B = {17, g}, in black, is the 4th colour. On the right part, the (x + 1)-partite subproblem graph G, with
k = 2, resulting from branching on the vertex v; in the reference node shown in the left part. Encircled vertices are filtered: vg (red) by FiltCOL and v4 (green) by
FiltSAT. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

partial k-colouring of a subproblem graph G, i.e., determines the
pruned set P, CLiSAT attempts to find a (x + 1)-colouring of G,
Cei1 (G), by checking if the branching set B is an independent set.
If this is the case, clearly B is the last colour class of C 4 6.
C1liSAT exploits such a colouring to further reduce the branching
tree.

A branching node where C1iSAT is able to determine a («x +
1)-colouring of G, ie. G is (k + 1)-partite, is called a (k + 1)-
partite branching node. In these “special” branching nodes it is nec-
essary to add to K exactly one vertex from each of the k + 1 colour
classes in order to improve the lower bound [b. This is true since,
in (k + 1)-partite graphs, only one vertex from each of the « + 1
colour classes can make part of a clique.

The left part of Fig. 6 shows a (k + 1)-partite subproblem graph
G (associated to a (k + 1)-partite branching node) with « =3
(assuming |K| =1 and Ib=4). The ISEQ procedure determines
the 3 independent sets: Iy = {vy,v4, 05}, b = {v,, 6} and I3 = {v3}
(shown with different colours in the figure). Moreover, CLiSAT
is able to determine a 4-colouring of G, since the branching set
B = {v7,vg} forms an independent set. In the example, the 4-clique
{vy, vy, v3, 17} improves the Ib value and, as can be seen, each of its
vertices belongs to one of the colour classes of the 4-colouring.

C1iSAT exploits a (k + 1)-partite subproblem graph G by dis-
carding some vertices from V(G) that cannot improve the incum-
bent solution. We call these operations of C1iSAT the filtering
phase of the algorithm. To the best of our knowledge, no state-
of-the-art MCP algorithm employs filtering techniques, which are
however extensively used for solving (Binary) Constraint Satisfac-
tion Problems, see, e.g., San Segundo, Furini, & Leén (2022); Zhou,
Kjellerstrand, & Fruhman (2015). Moreover, filtering is a core tech-
nique in state-of-the-art Constraint Programming solvers, see e.g.,
Rossi, Van, & Walsh (2006). Filtering vertices from V(G) can have a
substantial impact on the size of the branching tree, since, once a
vertex is filtered, it is discarded from the entire branching subtree
rooted in a (x + 1)-partite branching node. In contrast, the vertices
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in the pruned set P can still make part of a solution in subsequent
child nodes, i.e., they can belong to future branching sets in subse-
quent child nodes.

The general condition to filter a vertex of a (k + 1)-subproblem
graph G is to prove that it cannot make part of any clique of size
(k +1) contained in G. In practice, a necessary condition which is
easier to check is that the vertex is not linked to any of the ver-
tices from another colour class, given a (k + 1)-colouring of G. To
evaluate this condition efficiently, C1iSAT employs the procedure
FiltCOL, which is described in Section 2.3.1. An alternative suf-
ficient condition is that the corresponding literal of the vertex in
the associated PSAT(G, C,,1(G)) is a failed literal. This is evaluated
by a second procedure FiltSAT presented in Section 2.3.2.

2.3.1. The Fil1tCOL filtering procedure

FiltCOL is the efficient colour-based procedure employed by
CliSAT to filter vertices. To better explain the operations of
FiltCOL, we first introduce some definitions and notation. We
call reference node the («x + 1)-partite root node of a subtree, and
denote Gy its associated subroblem graph. We call reference (ver-
tex) colouring, Cy4q (Gg), the k-colouring computed by ISEQ, see
Section 2.2, together with the colour class determined by the
branching set B. The reference colouring C;4 (Gg) induces a colour-
ing C}, (), @ < (k + 1), in any a-partite subproblem graph G of the
subtree rooted in the reference node. Precisely, C}, (G) is obtained
when the vertices of G preserve the colour class of Ces1 (Gp).
FiltCOL exploits the fact that C7,(G) differs from C,(G) to filter
vertices of G.

We illustrate the above notions by again referring to the
example of Fig. 6. Precisely, we consider its (x + 1)-partite sub-
problem graph, with « =3, to be the reference branching node
CR.AThe coloured verticgs show the refegence colouring C4£CR):
I (GR) = {11.v4,v5}, h(Gg) = {v2. U}, I3(Gg) ={v3} and I4(Gg) =
{v7,vg} (left part). The right part of the figure depicts the (k + 1)-
partite child subproblem graph G = Gg(v;), with « =2, which
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results from branching on the vertex v; € Gg (pink). The edges
of G appear in black; in blue the edges with an endpoint in v;.
The induced colouring C&(C), a=3,is I} ={v.v4}, I, = {v5.v6}
and I} = {v3}. The coloured vertices correspond to Cs (6, ie.
Iy = {v1,v4,06} and L, = {v,}, together with the branching set
B={v3} =I5. As can be seen, C;(G) # C3(G), since the vertex vg
(encircled in red) does not belong to the same colour class.

In a nutshell, given a reference colouring C, 1 (Gp) and an «-
partite subproblem graph G, o <« +1, FiltCOL computes the
induced colouring CQ(C) while, at the same time, attempts to fil-
ter vertices of G that do not belong to its associated colour class
in Cy(G). In detail, the operations of FiltCOL are as follows.
FiltCOL processes the vertices of G according to the initial or-
der. At the beginning of each iteration, FiltCOL starts with an
empty independent set I. The first time a vertex v € V(G) is added
to I, the procedure determines a correspondence between I and
the independent set I(Gg) € Cea1 (Gr) to which v belonged in the
reference colouring, i.e., v e I(Gg). Then, for each additional ver-
tex w € V(G) that can enlarge I, i.e., IU{w} is an independent set,
FiltCOL checks if the correspondence with I(Gg) is preserved,
ie, if we I(Gg). If this is the case, w is added to I. Alternatively,
there are two possibilities: (a) the vertex w comes after the last
vertex of I(Gg) according to the initial order, in which case it is fil-
tered from G. This is possible because w is not a member of I(Gg)
and is non-adjacent to all its vertices. (b) the vertex w precedes
the last vertex of I(Gg), in which case w is skipped for future it-
erations. In this case w cannot be filtered, since it could still be
linked to other vertices of I(Gg) that are also in G and which have
not yet been examined. The iteration ends when all the vertices in
V() have been considered. Fi1tCOL continues building indepen-
dent sets until the induced colouring C7,(G) is determined for the
resulting reduced graph G.

Considering the suproblem graph G of Fig. 6, FiltCOL is able
to filter the vertex vg (encircled in red) in its first iteration with
the following operations. Initially, I; is the empty set and vertex
v; is added to I, establishing a correspondence with the inde-
pendent set I; (Gg) = {vy, V4, U5} of the reference colouring C4(Gg).
Next, FiltCOL adds vertex v4 to I; successfully, since v4 e I; (Gg).
Finally, vg is selected to enlarge I;; however, since vg ¢ I; (Gg) and
it has a higher index than the last vertex of I (Gg), i.e. vs, it is
filtered (removed) from the graph. In the remaining 2 iterations,
the independent sets I, = {v,} and |5 = {v3} are determined. The
vertices of the reduced graph are V(G) = {vy, vy, V3, V4}.

Finally, we mention an important optimization related to
FiltCOL. Once C1liSAT executes both filtering procedures
(Fi1ltCOL and FiltSAT), and before branching, it keeps track
of the vertices with the highest index from each of the o colour
classes of c;(é). These « vertices, and not the ones from the ref-
erence colouring, are used to determine if a vertex is skipped or
filtered during the execution of FiltCOL in the child nodes of G.
In the example, and considering only the execution of FiltCOL,
the vertices stored would be v4, v, and v3, for the independent
sets I;, I, and I3 respectively.

2.3.2. The Fi1tSAT filtering procedure

Upon termination of FiltCOL, C1iSAT executes the second
filtering procedure FiltSAT on the reduced subproblem («x + 1)-
partite graph G, with « + 1 = «, attempting to filter additional ver-
tices and, ultimately, fathom the node.

FiltSAT exploits the following observations concerning the
associated PSAT(G, C,(G)): i) if a failed literal is found, its associ-
ated vertex cannot be part of an a-clique in G and the correspond-
ing vertex can be filtered, i.e., removed from G; ii) if a conflict is
found, an «-clique cannot exist in G and, therefore, the node can
be fathomed. The latter is true since, as explained in Section 1.3,
a conflict found in PSAT(G, Cf,(G)) reduces the colour-based upper
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bound W(G) = « by one unit. The vertex associated to a failed lit-
eral can be filtered for similar reasons.

FiltSAT attempts to filter every vertex in V(G) by execut-
ing the procedure FL on the associated literals in PSAT(G, C.,(G)),
starting from the vertices of the branching set B. Any literal proven
failed by FL is filtered from V (G). The procedure ends when all the
vertices in V(G) have been examined or any one of the PSAT(G,
Cr(G)) o clauses becomes empty, in which case the node is fath-
omed.

We illustrate the operations of Fil1tSAT by referring again to
the example from Fig. 6. Precisely, we consider the reduced sub-
problem graph G that results from the execution of FiltCOL,
where, we recall, V(G) = {vy, vy, V3, v4}. FiltSAT executes FL on
the literals of PSAT(G, R3(G)), starting with the literal associated to
the branching set yy,. In this case y,, cannot be filtered, since it
is part of the solution {v1,v,,v3}, but y,, is found to be a failed
literal (v4 is non-adjacent to the singleton vertex v, of I,). Conse-
quently, v4 (encircled in green in the figure) is removed from G.
The resulting graph G[{vq,v5,v3}] is a 3-clique, so the filtering is
optimal.

Finally, it is worth mentioning that for the subproblem graph
Gy of the reference node, FiltCOL is not executed since there is no
referel}ce colouAring available. In this case only FiltSAT is run on
PSAT(Gg, Cy41(GR))-

2.4. Incremental upper bounds

One of the advantages of the incremental branching scheme
is that upper bounds on the large subproblems can be efficiently
computed based on upper bounds of previously examined smaller
subproblems. Such upper bounds, denoted incremental in Li, Fang,
& Xu (2013), have been employed in recent SAT-based algorithms
for the MCP, see, e.g., Li et al. (2018a, 2017), and are also employed
by the new algorithm C1iSAT. We briefly describe the incremen-
tal bound employed by C1iSAT in what follows.

Let G=(V,E) be a subproblem graph whose vertices are
sorted according to the ordering (1, ¥y, ... ﬁIVl)’ We define u(G) =

(w1, ulosl. ..., M[ﬁlvl]) as an ordered collection of |V| values as-

sociated to V, such that each value w[#] is a valid upper bound
on the clique number of the graph induced by 7#; together with
the set of adjacent vertices to 7; that precede it in the ordering.
Precisely, this induced graph corresponds with a branching sub-
problem of C1iSAT’s incremental branching scheme. Furthermore,
and owing to the hereditary nature of cliques, a valid value (up-
per bound) u[#;], 2 <i<|V|, can always be computed in O(|V|),
given the values of j associated to the vertices in V preceding #;
(u[i1] = 1), as follows:

w[Di] = 1+ max {,u[u] cueV (6), () e E}, i

where V;_;(G) is the set of vertices that precede #; in V.

The values of 1(G) are dynamically updated during the execu-
tion of C1iSAT according to Eq. (8), taking into account as well
the size of the incumbent solution obtained after examining the
corresponding subproblem. They provide a computationally cheap
upper bounding condition for reducing the number of branching
child nodes for a given a branching set B. This condition is evalu-
ated just after the child subproblem is determined, and before the
bounding techniques described in the previous sections are exe-
cuted. In practice, CLiSAT considers the vertex ordering (5), i.e.,
vertices in the pruned set P first, followed by the vertices in the
branching set B, to determine the values of w in every node, as
in Li et al. (2017). The specific details concerning how the u val-
ues are employed by C1iSAT to prune the branching tree are de-
scribed in Algorithm 1.
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Algorithm 1: C1iSAT algorithm for the maximum clique
problem.

Input: A simple graph G = (V,E)

Output: A maximum clique K in G (Ib = |K| = w(G))

1 (v, Va,...,V) < Sort(V)

2 K < FindClique(V), Ib < |K|

3 Initialize u(G)

4 fori< |K|+1tondo

V< {veVi1(G) :{v.v;) cE}

5 > child subproblem
6 P<—{171,172,...,17|K|}

7 | FindMaxClique(G[V], {v;}, P, it(G))

8 | ulyl < 1b

9 FindMaxClique(G, K, P, 1)
10 i < {ufv]:veP}
1 B:{b],...,b|3|} (—V\P

12 for [ < 1 to |B| do
13 Compute fi[b;] > see Equation (8)
u | if alb]+ K| <1Ib > skip the I-th subproblem
15 | then
16 LP<—PU{b,}andB<—B\{b,}
17 | else
18 V< {PnN()}ulbjeB:j<l{b; b} ek}

> child subproblem
19 if V = ¢ then
20 L if |[K| > Ib then Ib < |K| and K < K
21 return
22 if the current branching node is (k + 1)-partite

> Section 2.3
23 then
24 (P, B) < Fi1tcoL (V) > Section 2.3.1
25 (P, B) < FiltsaT (P, B) > Section 2.3.2
26 else
27 | (P.B) < satcoL (V); > Section 2.2.2
28 if B ¢ then
29 | FindMaxClique(G[V], KU {b}, P, /1)
30 | Alb] < min{a[b]. Ib— K|}

2.5. The algorithm C1iSAT

The algorithm C1iSAT produces a branching tree that inter-
leaves the bounding procedures SATCOL, FiltCOL and FiltSAT
presented in the previous sections with the general branching
scheme described in Section 2.1. Pseudocode for CLiSAT is pre-
sented in Algorithm 1. In the pseudocode, the steps (1-3) corre-
spond to the initial preprocessing phase of CLiSAT, which is cov-
ered at the end of this section. Branching takes place in the re-
cursive call to FindMaxClique (step 7), and is described in what
follows.

At the end of its preprocessing phase, CLiSAT branches on
the vertices in V (according to the initial order established in step
1) starting from the |K|-th + 1 vertex (the first Ib = |K| vertices
are skipped, since they cannot improve the initial clique by them-
selves). Then, for each vertex v; eV, i=1Ib+1,...,n, selected for
branching, C1iSAT determines the set of vertices V of the child
subproblem, i.e., the adjacent vertices to v; that precede it in V

1016

European Journal of Operational Research 307 (2023) 1008-1025

(step 5), computes a trivial Pruned Set P that comprises the first Ib
vertices in V (step 6) and calls the recursive procedure FindMax-
Clique to explore G(V) (step 7). On backtracking, the value of u
corresponding to the branched vertex v; is updated with [b (step
8).

Inside a branching node, the sets P and B always store the ver-
tices according to their index number, the predetermined initial
order of the vertices in G. This operation is done efficiently with
the help of bitsets. The first task executed by FindMaxClique is to
compute the values of & for the vertices in P. Since these vertices
will not be branched on, preliminary tests established that the best
compromise between efficiency and pruning ability was to give
them the corresponding values in the father node (step 10). This
efficient inheritance (originally described in Li et al. (2017), to the
best of our knowledge, in combination with incremental branch-
ing) is possible because, as stated previously, the order of the ver-
tices in P is preserved in every node. Since child subproblems are
always subsets of father subproblems, the upper bound values con-
cerning the latter are also valid for the former. In contrast, the val-
ues of i for each branching vertex in B are computed in step 13
according to Eq. (8).

Pruning with the (upper bound) values of [ occurs prior to
the computation of each new child subproblem in step 14. If the
pruning is successful, the vertex by e B, =1... |B| is added to P
and removed from B (and the corresponding subproblem is not
explored); otherwise, the child subproblem is determined in step
18. If the latter corresponds to a leaf node that improves the cur-
rent solution, the incumbent clique is updated in step 20; else the
child node is either processed according to the procedure SATCOL,
or, in case the node is (x + 1)-partite, according to the filter-
ing procedures FiltCOL and FiltSAT (steps 22-27), see the
Sections 2.2.2, 2.3.1 and 2.3.2 respectively. Finally, if at this point
the child node has not been fathomed, CLiSAT branches to the
child subproblem in a recursive fashion (step 29). Worst-case com-
plexity analysis of the filtering and SATCOL phases of C1iSAT,
which are complex procedures, could be the object of future re-
search.

We conclude this section by presenting the initial preprocessing
phase of C1iSAT. This phase comprises the following 3 operations
executed in the first 3 steps of the algorithm: (i) an initial ordering
of the vertices (step 1); (ii) a clique is computed heuristically (step
2); (iii) the collection of upper bound values p is initialized (step
3). We describe the three operations in the following.

It is well established in the literature that the initial order-
ing of vertices plays an important role in BnB algorithms for the
MCP, see, e.g. Maslov, Batsyn, & Pardalos (2014). More precisely,
state-of-the-art exact MCP algorithms employ two different or-
derings: (i) degenerate degree-based (DEG-SORT) and (ii) colour-
based (COLOR-SORT). The term degenerate in (i) refers to the fact
that the sorting criterium (vertex degree) is dynamic, i.e., it is re-
computed on the remaining unsorted vertices each time a vertex
is selected. These two orderings are briefly presented in what fol-
lows; for a more in-depth analysis we refer the interested reader
to San Segundo, Lopez, Batsyn, Nikolaev, & Pardalos (2016a).

The most frequently employed ordering is DEG-SORT, which
can be traced back to Carraghan & Pardalos (1990). In its basic
form, the degree-based ordering (v1,v,,...,vy) is such that v, is
a vertex with smallest degree in G, v,_; is a vertex with smallest
degree in the induced graph G[V,_1(G)], and so on. A successful
colour-based ordering for the MCP was first described in Li et al.
(2013) to the best of our knowledge.

COLOR-SORT partitions V into k independent sets
{li,h,..., I}, such that I; is a maximum independent set in
G, I, is a maximum independent set in the induced subgraph
G[V\ 1], and so on. Moreover, CLiSAT considers the following
order within each independent set I: for any pair of vertices
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(v, vj) eI such that 1 <i < j <n (v; precedes v;), the degree of v;
is greater or equal to the degree of v;. It is worth noting that find-
ing partitions of maximum independent sets is as computationally
hard as the original problem. However, hard MCP instances are
normally dense or very dense, and, therefore, determining max-
imum independents sets is expected to be easy. In practice, to
determine COLOR-SORT we execute C1iSAT on the complement
graph and search for maximum cliques with a fixed time limit.

Depending on the actual instance, C1iSAT employs either
DEG-SORT or COLOR-SORT. Extensive preliminary tests carried
out showed that, in the general case, COLOR-SORT improves the
efficiency of CLiSAT when the size k of the independent set parti-
tion provides a tight upper bound on w(G). If this is not the case,
DEG-SORT is to be preferred. This is consistent with the results
found in the literature, see, e.g., San Segundo et al. (2016a). The
procedure referred to as Sort(V) in step 1 of the pseudocode, se-
lects the concrete ordering and is adapted from San Segundo et al.
(2016a); we refer the reader to the latter for further details. When
Sort(V) terminates, the adjacency matrix of G is processed so that
the vertex order becomes the index order of the vertices in G, i.e.,
we compute an isomorphic graph to G which becomes the new in-
put graph to C1iSAT. This optimization was originally described
in the bitstring algorithm (San Segundo et al., 2011) to the best of
our knowledge.

To compute an initial clique Kj,. (step 2 of the initial pre-
processing phase), CLiSAT executes the multi-start tabu search
heuristic AMTS (Wu & Hao, 2013) with a reduced time limit
(see the computational section Section 3), and sets [b accordingly,
i.e., Ib=|Kj, |- Finally, ;£(G) is initialized in step 3 according to
Eq. (8) (u[r1] =1). In addition, the first |Kj,.| values of u are
bounded by Ib, and its remaining values are bounded by the size k
of the independent set partition determined by COLOR-SORT.

3. Computationals

In this section we assess the computational performance of
the new BnB algorithm C1iSAT presented in this work. The goal
of this computational study is twofold: i) to evaluate the perfor-
mance of CLiSAT with respect to its main components, covered
in Section 3.2; ii) to compare C1iSAT against the state-of-art al-
gorithms in the literature, covered in Sections 3.3 and 3.4.

3.1. Experimental setting and testbed of instances

All the experiments have been carried out on a 20-core Intel(R)
Xeon(R) CPU E5-2690 v2@3.00 gigahertz, disposing of 128 gigabyte
of main memory and running a 64 bit Linux operating system. The
source code was compiled with gcc 5.4.0 and the -03 optimiza-
tion flag. The configuration parameters of CLiSAT are as follows.
In all the runs, during C1iSAT’s initial preprocessing phase the
heuristic AMTS is executed with a time limit of 0.05 seconds to
determine an initial large clique. Since our testbed contains a wide
variety of instances whose solution time varies from seconds to
days, we employ this very short and fixed time limit so as not to
degrade the performance of CLiSAT on the easy instances. More-
over, the C1iSAT algorithm is typically able to find good quality
heuristic solutions at the early stages of the search, thus limit-
ing the impact of initial solutions. According to our extensive pre-
liminary results, running AMTS for 0.05 seconds during the ini-
tial preprocessing phase was significant for a limited number of
instances of the DIMACS dataset, such as, for example, the subset
brock800 or the instance keller5. In the case of the BHOSLIB dataset,
AMTS only proved useful in those few cases where it found a max-
imum clique, whereas C1LiSAT by itself was unable to do so under
0.05 seconds. Finally, fixing this very short time limit allows us to
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focus on the impact of the new components of CLiSAT. A system-
atic analysis of the impact of the initial solutions on the overall
performance of CLiSAT could be the object of future research.

The time limit to determine each maximum independent set re-
quired by COLOR-SORT is also fixed to 0.05 seconds (see the de-
scription of the initial preprocessing phase of CLiSAT at the end
of the previous Section 2.5 for an explanation of this threshold).

For the tests, we have considered a testbed of 791 instances
which comprises 501 structured instances (see Table 1) and 290
uniform random instances (see Table 4). The choice of orders and
densities of the 290 random instances is in accordance with sim-
ilar tests that can be found in the literature for exact MCP al-
gorithms, see, e.g., Table 2 of (San Segundo et al., 2016c). The
501 structured instances can be divided into the following 4 cat-
egories (datasets): (i) the 86 instances from the 2nd DIMACS Chal-
lenge (http://dimacs.rutgers.edu/programs/challenge/); (ii) the 41
instances from the BHOSLIB dataset; (iii) 223 representative in-
stances derived from binary constraint satisfaction problems (BC-
SPs), which we denote the CSPLIB dataset and (iv) 151 hard
MCP instances taken from different sources, hereafter the miscella-
neous dataset MISCLIB. The 501 structured instances are publicly
available in the github repository https://github.com/psanse/CliSAT.
We consider this extended dataset, wrt typical clique benchmarks
employed elsewhere, an additional contribution of this work, and
hope it will stimulate further research in this field. Moreover, the
repository also contains a linux release of CLiSAT and additional
comparison performance results to those reported in this section.

The DIMACS and BHOSLIB datasets are consistently employed
in the literature to test exact MCP algorithms. The instances of our
CSPLIB dataset are obtained as follows: vertices represent spe-
cific values of variable domains, and there is an edge between two
vertices if the corresponding 2 values are compatible according to
the constraints imposed on the original BCSP. It is worth men-
tioning that all the instances from the BHOSLIB dataset also de-
rive from BCSPs, which has motivated the choice of the CSPLIB.
Last of all, the miscellaneous dataset MISCLIB comprises 4 fam-
ilies: (i) the 20 instances of the recent evil dataset (Szab6 &
Zavalnij, 2019), claimed to be harder than the BHOSLIB dataset
; (ii) 3 instances derived from monotone matrices (mon) (Szabd,
2013); (iii) 78 instances (denoted vc) derived from the 200 ver-
tex cover problems from the PACE Challenge (Track 1a) (https:
/[pacechallenge.org/2019/vc/). Precisely, we have included those in-
stances from the PACE Challenge with less than 8,000 vertices;
(iv) the first 50 (out of more than 49,150) instances of the Gor-
don Royle’s 17 -clue Sudoku collection (https://github.com/t-dillon/
tdoku/blob/master/data.zip), and referred to as sud in the follow-
ing. In the sud instances, vertices represent a specific number and
square of the 9 x 9 Sudoku grid, and there is an edge between two
vertices if the corresponding (number, square) pairs are compatible
according to the rules of the game. All the instances of sud have
729 vertices and a unique maximum clique of order 81.

Table 1 reports information related to the number of instances
(#inst.), order (|V|) and density (d(G)) of our 501 dataset of struc-
tured instances classified by categories (datasets) and aggregated
by families. As can be seen from the table, the average density of
the different families of instances is high, i.e. with the exception of
the family c-fat, the smallest average density is 0.49; moreover,
in 15 out of the 24 families, the average density is greater than
0.75. It is also worth noting that some of the instances were not
solved by any of the algorithms tested and remain open.

3.2. Empirical analysis of the main components of C1iSAT
In this section, we evaluate the impact on the performance

of C1iSAT of its main components over the entire 501 struc-
tured instance dataset, considering a time limit of 1800 seconds.
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Information on the dataset of 501 structured and dense MCP instances considered in this work.

Number of vertices |V|

Edge density d(G)

Category Family # instances min avg max min avg max
DIMACS brock 12 200 466.7 800 0.50 0.67 0.75
C 7 125 1,410.7 4,000 050 0.79 0.90
c-fat 7 200 3714 500 004 019 043
dsjc 7 250 678.6 1,000 0.10 0.50 0.90
gen 5 200 320.0 400 090 090 0.90
ham 6 64 448.0 1,024 035 0.78 0.99
john 5 28 208.8 496 0.56 0.78 0.91
keller 3 171 1,436.0 3,361 0.65 0.74 0.82
MANN 4 45 1,194.8 3,321 0.93 098  0.999
p_hat 15 300 800.0 1,500 024 049 0.75
san 15 200 346.7 1,000 050 0.73 0.90
86
CSPLIB aim 48 472 909.8 2,016 091 093 0.96
B 25 529 627.0 729 0.72 0.74 0.75
comp 25 330 616.4 1,050 088 093 0.96
D 25 320 1,8240 7,200 0.86 087 0.89
ehi 25 2,079  2,1445 2,205 0.95 095 0.95
geom 25 1,000 1,000.0 1,000 088 090 0.91
lat 25 613 3,023.0 6,961 097 098 0.99
RB2 25 450 773.2 1,150 0.82 085 0.88
223
MISCLIB evil 20 120 182.6 253 0.87 094 0.98
mon 3 343 528.0 729 0.79  0.81 0.84
ve 78 153 1,501.8 7,400 0.82 096  0.9995
sud 50 729 729.0 729 0.63 0.63 0.63
151
BHOSLIB frb 41 450 1,086.1 4,000 0.82 0.87 093

Table 2
Analysis of the main components of the algorithm C1iSAT over the entire dataset of 501 instances. The time limit is set to 1800 sec-
onds.
CLiSAT
C1liSAT No SATCOL No FiltCOL\FiltSAT No both
Categ. #inst.  #opt  time [seconds]  #opt  time [seconds]  #opt  time [seconds] #opt  time [seconds]
DIMACS 86 72 59.8 67 63.3 68 50.8 67 58.0
CSPLIB 223 213 72.3 175 82.0 147 86.7 144 85.6
MISCLIB 151 138 52.5 130 61.0 77 117.0 74 84.2
BHOSLIB 141 30 209.2 30 227.2 20 76.9 20 76.6
Total 501 453 73.3 402 82.9 312 85.8 305 78.6

Table 2 summarizes the results obtained. The table shows the
number of instances solved to proven optimality (#opt) grouped
by categories, and the average time (in seconds) spent by the dif-
ferent algorithmic variants to prove optimality, i.e., those instances
in which the time limit was reached are not included. Specifically,
we report performance results for the following procedures: (i) the
algorithm C1iSAT; (ii) C1iSAT without the SATCOL procedure
(described in Section 2.2.2); (iii) CLiSAT without the filtering pro-
cedures FiltCOL (Section 2.3.1) and FiltSAT (Section 2.3.2) for
(k + 1)-partite branching nodes, and (iv) C1iSAT without both
components.

As shown in Table 2, C1iSAT solves to proven optimality 453
instances of the 501 dataset within the time limit, and removing
one or both of the components leads to a degradation in its perfor-
mance. Specifically, if the filtering component, i.e., the procedures
FiltCOL and FiltSAT, is removed, 312 instances are solved,
whereas if the component SATCOL is removed, 407 instances are
solved. This indicates that the filtering component has more im-
pact on the overall performance of C1iSAT than its counterpart
SATCOL. In addition, the algorithm performs the worst when both
components are removed, solving only 305 instances. This pro-
vides clear empirical evidence that the main source of efficiency
of CLiSAT is the combined effect of both components.

1018

It is worth noting that, according to the reported results, the
impact of the filtering component of C1iSAT is smaller on the
DIMACS dataset than on the other 3 datasets. A possible expla-
nation for this fact is that in the DIMACS dataset, the average gap
between the clique number and the colour-based bound is larger
than in the other 3 datasets. Consequently, the probability of find-
ing (x + 1)-partite nodes in the shallow levels of the branching
tree is lower. In extensive preliminary tests we have observed that
the incremental nature of CLiSAT’s branching scheme favours the
appearance of (k + 1)-partite nodes, and might be one explana-
tion for the “good” overall performance of CLiSAT when com-
bined with the FiltCOL\FiltSAT component.

We also report the performance profile, see Dolan & Moré
(2002). The performance profile is constructed in the following
way. We compute the normalized time t as the ratio of the com-
puting time of each algorithm (which is oo if the instance is not
solved to optimality within the time limit, here set to 1800 sec-
onds) over the minimum computing time spent the tested algo-
rithms. For each value of t on the horizontal axis, the vertical axis
reports the percentage of instances for which the corresponding al-
gorithm spent at most T times the computing time of the fastest
algorithm (see Dolan & Moré, 2002 for further details). The chart
interpretation at both ends of the horizontal axis is as follows. At
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Performance comparison of the algorithms C1iSAT and MoMC for the entire strucured dataset of 501 instances:
i) 86 DIMACS instances (time limit 15 days); ii) 223 CSPLIB instances (time limit 1800 seconds); iii) 151
MISCLIB instances (time limit 15 days for the evil, mon and vc families, 1800 seconds for the sud family) ;

iv) 41 BHOSLIB instances (time limit 15 days).

C1liSAT MoMC
Time [seconds] Time [seconds]

Categ. Family #inst. #opt  avg. max. #opt  avg. max.

DIMACS brock 12 12 827.7 3,652.2 12 500.7 1,867.1
C 7 3 9,263.2 27,660.5 3 11,689.1 34,936.7
c-fat 7 7 0.05 0.1 7 0.03 0.1
dsjc 7 5 17.5 86.2 5 22.9 1123
gen 5 5 0.1 0.1 5 0.4 1.1
ham 6 5 0.1 0.1 5 5.0 24.5
john 5 3 0.10 0.2 3 0.03 0.1
keller 3 2 11.6 231 2 78.9 157.7
MANN 4 4 90,361.5 361,440.5 4 242,661.6 970,637.5
p_hat 15 14 1,215.8 16,289.6 14 1,082.2 14,453.0
san 15 15 2.8 39.1 15 3.7 515
86 75 75

CSPLIB aim 48 47 133.5 1,459.7 20 215.8 1,620.4
B 25 25 333 146.5 25 82.1 349.0
comp 25 25 0.1 0.2 22 0.5 1.1
D 25 25 51.7 858.4 22 183 191.5
ehi 25 25 18.9 139.2 24 171.3 273.5
geom 25 25 0.4 4.9 25 2.7 12.0
lat 25 16 65.8 528.1 8 49.3 158.2
RB2 25 24 153.0 1,514.6 22 64.4 662.5
223 212 168

MISCLIB evil 20 20 4,176.4 54,828.4 17 13,721.2 165,792.0
mon 3 3 22,722.8 68,019.1 2 209.3 415.9
vc 78 76 7,262.6 406,912.1 63 62.9 1,463.0
sud 50 50 1.5 16.9 1 1.6 1.6
151 149 83

BHOSLIB  frb30-15 5 5 0.1 0.1 5 0.3 0.4
frb35-17 5 5 0.2 0.4 5 1.0 1.5
frb40-19 5 5 1.0 2.9 5 33 5.8
frb45-21 5 5 311 100.7 5 76.8 168.1
frb50-23 5 5 612.8 2,5344 5 1,400.6 5,932.0
frb53-24 5 5 861.6 1,557.3 5 1,758.0 3,415.1
frb56-25 5 5 19,907.5 53,642.3 5 45,209.2 121,379.9
frb59-26 5 5 73,261.5 108,058.4 5 146,109.4 257,586.4
frb100-40 1 0 tl - 0 tl -

141 40 40
Total 501 476 366

T =1, the value of the curves is equal to the percentage of in-
stances which the corresponding algorithm solves to optimality in
less time. At the right-end, i.e., the largest value of 7, each curve
corresponds to the percentage of instances solved to optimality by
the specific algorithm. Consequently, in the performance profile the
best performance is achieved by those algorithms whose curves
appear highest in the chart, “wrapping” the other curves.

According to Fig. 7, the best performing algorithm is, clearly,
C1iSAT, which is the fastest in slightly less than 90% of the in-
stances (left-end of the figure), and also solves the largest amount,
i.e., slightly over 90% (as shown by the intersection of its curve in
the right-end) within the time limit. The performances of the other
algorithmic variants are consistent with the results reported in
Table 2. Precisely, the filtering variant (no SATCOL) performs sec-
ond best, solving to optimality slightly over 80% of the instances,
followed by the variant without filtering, which solves slightly over
62% of the instances. Finally, the performance profile of the vari-
ant without both components is dominated by the other 3 curves,
which appear on top in the chart.

We end the section reporting the impact of the components
of C1iSAT on the number of the recursive calls (steps) made
by the algorithm during branching. The reduction of the number
of steps is significant, and can go up to an order of magnitude.
The average number of steps of C1iSAT for this subset of in-
stances is approximately 1.7 x 10°. On the other hand, the vari-
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ant “no FiltCOL\FiltSAT” explores 2.0 x 106 steps, the variant
“no SATCOL” explores 9.4 x 10° steps and, finally, the variant “no
both” explores 1.8 x 107 steps. To avoid any distortion in the data,
due to time limits, we consider in the above reported averages only
those instances that are solved to proven optimality by all the vari-
ants of C1iSAT.

3.3. Comparison between C1iSAT and MoMC over structured
instances

We compare in detail the performance of CLiSAT against the
exact combinatorial BnB algorithm MoMC (Li et al., 2017). MoMC is
the most recent and successful SAT-based algorithm for the MCP
to the best of our knowledge. In this section, we consider for com-
parison purposes the 501 structured instance dataset described
in Section 3.1. The results obtained are reported in the Table 3.
The tables show aggregated results by families for the categories
(datasets) DIMACS, CSPLIB, MISCLIB and BHOSLIB respectively,
reporting the number of instances solved (#opt) and the average
and maximum times in seconds spent by the 2 algorithms to solve
the instances to proven optimality.

We fixed the time limit to 15 days for families of instances
which either had been consistently employed in the recent lit-
erature for similar purposes, i.e., the DIMACS and BHOSLIB
datasets, or we considered relevant, i.e., evil, mon and vc. For
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Fig. 7. Performance profile of the main components of the algorithm C1iSAT over the entire dataset of 501 instances. The time limit was fixed at 1800 seconds.

Table 4

Comparison between the algorithms C1iSAT, LMC and MoMC over 290 uniform random
graphs. In all the instances with more than 10,000 vertices, MOMC reported a memory prob-

lem (indicated by “_").

Clique number w(G)

Average time [seconds]

V| d(G) #inst. min.  av. max. CliSAT LMC MoMC
150 0.7 10 16 16.5 17 0.06 0.02 0.05
150 0.8 10 22 229 24 0.08 0.05 0.07
150 0.9 10 35 37.1 41 0.10 0.09 0.10
150 0.95 10 53 54.5 57 0.05 0.01 0.01
200 0.7 10 18 18.2 19 0.12 0.13 0.17
200 0.8 10 24 25.1 26 0.63 0.88 1.11
200 0.9 10 39 40.7 42 3.56 6.11 3.73
200 0.95 10 60 62.3 64 0.40 0.79 0.49
200 0.98 10 91 94.7 98 0.05 0.02 0.02
300 0.6 10 15 15.4 16 0.25 0.44 0.37
300 0.7 10 20 20.2 21 2.02 3.52 5.03
300 0.8 10 28 28.5 30 41.32 58.44 98.18
500 0.4 10 10 10.7 11 0.13 0.19 0.23
500 0.5 10 13 133 14 0.67 1.23 1.36
500 0.6 10 17 17.0 17 9.09 17.20 12.86
500 0.7 10 22 224 23 335.06 448.65 728.74
500 0.99 10 261 266.2 276 0.06 0.68 0.65
1000 0.2 10 7 7.5 8 0.09 0.10 0.17
1000 0.3 10 9 9.2 10 0.40 0.61 0.78
1000 0.4 10 12 12.0 12 3.54 6.27 5.15
1000 0.5 10 15 15.0 15 80.13 148.89 113.47
3000 0.1 10 6 6.4 7 0.31 0.42 0.98
3000 0.2 10 9 9.0 9 441 4.90 5.19
5000 0.1 10 7 7.0 7 131 2.11 3.18
5000 0.2 10 9 9.1 10 62.87 51.18 59.90
10,000 0.1 10 7 7.4 8 21.62 19.39 21.00
15,000 0.1 10 8 8.0 8 126.10 74.81 -
20,000 0.1 10 8 8.0 8 549.11 221.58 -
30,000 0.1 10 8 8.0 8 5,565.21 1313.10 -

example, the evil family is interesting because, as mentioned in
Section 3.1, the creators claim it to be harder than BHOSLIB. For
the CSPLIB dataset and the Sudoku family (sud), the time limit
was reduced to 1800 seconds for practical purposes.

According to Table 3, CliSAT consistently outperforms
MoMC solving more instances than its counterpart or spending
less time, on average, when both algorithms solve the same
number of instances to proven optimality. It is worth mentioning
that there is no family in which MoMC solves more instances
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than C1iSAT. In detail, CLiSAT solves within the time limit 75
DIMACS instances out of a possible 86, 212 CSPLIB instances out
of a possible 223, 149 MISCLIB instances out of a possible 151
and 40 out of the 41 instances of the BHOSLIB dataset. Overall,
it is able to solve to proven optimality 476 instances out of a pos-
sible 501. In contrast, MoMC solves the same number of instances
as CLliSAT from the DIMACS and BHOSLIB datasets, but its
performance drops to 168 instances from MISCLIB, and 83 from
CSPLIB. Altogether, MoMC manages to solve within the time limit
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366 instances out of the possible 501, i.e.,, 110 instances less than
C1iSAT.

One possible explanation for the difference in the number of
instances solved from the CSPLIB dataset, and also the evil and
sud families (MISCLIB), is the pruning ability of the new filtering
component of CLiSAT. This is because, in these instances, there is
more probability of finding (k + 1)-partite branching nodes in the
shallow levels of the tree.

Also from the reported results in the Table, and comparing in-
stances of similar size, the evil family is much harder to solve
than the BHOSLIB dataset for MoMC, in accordance with what is
claimed in the literature, see Szab6 & Zavalnij (2019). However this
is not the case for CLiSAT, which manages to solve the 20 evil
instances within the time limit. CLiSAT also outperforms MoMC
in the BHOSLIB dataset, e.g., it is more than twice as fast in the
instances from the family frb59-26. With respect to the 50 Su-
doku instances, the difference in performance in favour of CLiSAT
is even more acute, solving all the instances in an average time
of 1.5 seconds, whereas MoMC is able to solve just one instance.
In addition, Table 2 clearly shows that the filtering component of
C1iSAT is the major cause of its good performance on the sud
family.

To end the section, we highlight that even though C1iSAT
outperforms MoMC in most of the families, there are exceptions.
Specifically, in the (hard) families brock and p_hat from the
DIMACS dataset, MoMC significantly outperforms CliSAT. The
brock family is very sensitive to initial pre-processing, so it is
difficult to relate the poor performance of C1iSAT on this family
with its algorithmic components. In the case of p_hat, the com-
puting performance of CLiSAT is reasonably close to MoMC. The
other 2 cases in which MoMC outperforms C1iSAT are the fam-
ily c-fat and 3 instances of the family john. These are easy in-
stances solved by both algorithms in less than 1 second, and there-
fore not representative enough, in our opinion, to draw any conclu-
sion.

3.4. Comparison between C1iSAT, MoMC and LMC over uniform
random instances

We also compare the algorithms C1iSAT and MoMC, together
with the algorithm LMC (Jiang et al., 2016) designed for sparse
graphs, over a set of 290 Erdoés-Rényi random G(n, p) graphs of
different sizes (n = |V| ranging from 150 up to 30,000) and edge
densities (see Table 4 for the specific density values tested). These
uniform random graphs are created according to a given proba-
bility (equal to the desired edge density value) of existence of an
edge between any pair of vertices, and are commonly used for test-
ing clique algorithms; precisely, the testbed employed is the same
as the one used in San Segundo et al. (2016¢), extended with the
families G(20, 000, 0.1) and G(30, 000, 0.1). For each of the 29 dif-
ferent classes of random graphs considered, we run 10 instances
with similar features. All instances were solved to optimality by
both algorithms within the time limit, with the exception of the
instances from the families n > 15,000, for which MoMC reported
a memory problem in all 10 cases.

According to Table 4, CLiSAT also outperforms MoMC in this
testbed (not taking into account families where a memory prob-
lem is reported). In detail, CLiSAT is faster than MoMC (on av-
erage) in 23 families out of a possible 29. The bigger differences
in favour of C1iSAT occur in the dense graphs of order 300 and
500. For example, CLiSAT is more than twice as fast in the classes
G(300,0.8) and G(500, 0.7) than its counterpart. From the table, it
can also be observed that the difference in performance between
both algorithms becomes less acute as the order of the graphs in-
crease for those families with n > 1000 (densities < 0.5). On the
other hand, LMC outperforms C1iSAT (and MoMC) in the large
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graphs with 0.1 density, i.e., n > 15,000, also scaling much bet-
ter as the size of the graphs increase. This is consistent with the
fact that LMC is designed precisely for large and massive graphs
with small densities. LMC is also the fastest in some small easy in-
stances, possibly because of CLiSAT’s initial pre-processing phase
(see Section 2.5).

3.5. Comparison with algorithms designed for sparse real-world
graphs

As mentioned in the introductory section, the algorithm
CliSAT is tailored to solve hard dense graphs of small and
medium order, ie. |V| <25,000. Existing algorithms for sparse
large and massive real-world graphs, such as, e.g., Hespe et al.
(2020); Jiang et al. (2016); San Segundo et al. (2016b); Walteros
& Buchanan (2020) (see also the introductory section), exploit the
specific topology of such networks, e.g. the fact that the clique
number is usually “close” to the graph’s degeneracy y (G). We recall
that the degeneracy y (G) of a graph G (also known as the graph’s
k-core) is the maximum integer such that a subgraph G’ of G exists
with minimum degree §(G’) greater or equal than y (G). It follows
that y(G) +1 is an upper bound on the clique number w(G) of
the graph. Such algorithms rely heavily on kernelization, i.e., a pre-
processing stage (typically) in which the original input network is
replaced by a smaller network called a kernel, and other reduction
techniques inspired in the vertex cover problem, see, e.g., Hespe
et al. (2020), that are employed in the nodes of a combinatorial
branch-and-reduce tree.

The aim of this section is to establish an approximate (not
exhaustive) performance comparison between C1liSAT and the
state-of-the-art algorithms for real-world graphs. For this purpose,
we have selected the algorithms LMC (Jiang et al., 2016), dOmega
(Walteros & Buchanan, 2020) and BBMCSP (San Segundo et al.,
2016b). The 3 algorithms employ some form of kernelization, but
while dOmega is of the type branch-and-reduce, BBMCSP and LMC
are branch-and-bound algorithms that employ kernelization during
pre-processing.

Table 5 reports results over 27 real-world networks with less
than 150,000 vertices: 22 networks are taken from the DIMACS10,
SNAP and Social Networks collections and 5 from other
sources (all the instances are available at the network repository
http://www.networkrepository.com/). Specifically, the dataset con-
tains all the instances with less than 150,000 vertices reported in
Jiang et al. (2016) and a subset of those reported in San Segundo
et al. (2016b); Walteros & Buchanan (2020). In the latter case, the
real-world graphs with less than 150,000 vertices are all relatively
easy. The table shows the number of vertices and edges, the de-
generacy (y (G)), the clique number(w(G)) and the time spent by
the 4 algorithms for the 27 instances reported. In all the tests, the
time limit was fixed at 7200 seconds. The |V| < 150, 000 constraint
is motivated by the memory requirements of CLiSAT, which are
too large for massive graphs since it stores the full adjacency ma-
trix in memory to operate efficiently with vertex neighbourhoods
using bitmasks.

According to Table 5, CLiSAT is outperformed by at least one
of the other 3 algorithms in 25 out of the 27 instances, be-
ing the fastest in the two smallest instances bio-human-genel
and bio-human-gene2. Nevertheless, CL1SAT solves all the in-
stances within the time limit, whereas BBMCSP and dOmega are
unable to solve one instance each. Besides the two smallest in-
stances, CLiSAT also performs similarly to the best algorithm
LMC in the instance bio-mouse-gene, performs better than
BBMCSP in 2 instances and better than dOmega in 5. The re-
ported results also show that LMC is the best algorithm for this
dataset, and that kernelization is an effective technique specially
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Performance comparison of the algorithm C1iSAT with 3 state-of-the-art algorithms designed for real-world networks, over a set of 27 instances with |V| < 150, 000. The

symbol tl indicates that the time limit of 7200 seconds was reached.

LMC BBMCSP dOmega CLliSAT
Source Name V| |E| Y(G)  ®(G) Time [seconds] Time [seconds] Time [seconds] Time [seconds]
Misc. bio-human-gene2 14,340 9,027,024 1902 1300 87.5 25244 102.5 5.2
Misc. bio-human-genel 22,283 12,323,680 2047 1335 2249 tl 210.0 40.8
SNAP p2p-Gnutella24 26,518 65,369 5 4 0.0 0.0 0.0 0.1
SNAP Cit-HepTh 27,769 352,285 37 23 0.0 0.1 0.3 0.2
DIMACS10  delaunay_nilb 32,768 98,274 4 4 0.0 0.0 0.0 0.2
SNAP Cit-HepPh 34,546 420,877 30 19 0.0 0.2 0.2 0.2
Misc. sc-TSOPF-RS-b2383-c1 38,120 16,115,324 655 7 6.3 3.7 106.8 6.0
DIMACS10  cond-mat-2005 40,421 175,691 29 30 0.0 0.0 0.0 0.2
DIMACS10  fe-body 45,087 163,734 6 6 0.0 0.0 0.0 0.3
Biolog. bio-mouse-gene 45,101 14,461,095 1045 561 87.8 4141.4 2375.6 94.9
DIMACS10  t60k 60,005 89,440 2 2 0.0 0.0 0.1 0.5
DIMACS10 wing 62,032 121,544 3 3 0.0 0.1 0.0 0.5
DIMACS10 delaunay_nil6 65,536 196,575 4 4 0.0 0.1 0.1 0.6
Misc. rec-movielens 71,567 9,991,339 531 29 15.0 75.0 tl 70.2
SNAP soc-Epinions1 75,879 405,740 67 23 0.1 0.2 0.6 0.9
DIMACS10 fe-tooth 78,136 452,591 7 5 0.0 0.2 0.3 1.1
Social soc-Slashdot0902 82,168 504,230 55 27 0.0 0.2 0.4 1.1
Misc. ia-enron-email-dynamic 87,273 297,456 53 33 0.0 0.1 0.2 26.1
Social soc-BlogCatalog 88,784 2,093,195 221 45 1.5 3.9 186.5 236.8
DIMACS10 fe_rotor 99,617 662,431 8 5 0.1 0.3 0.4 2.5
Social soc-buzznet 101,163 2,763,066 153 31 1.1 3.2 43.0 10.1
Social soc-LiveMocha 104,103 2,193,083 92 15 04 2.1 4.0 4.3
DIMACS10 598a 110,971 741,934 8 7 0.1 0.5 0.3 2.3
Social soc-wiki-conflict 118,100 2,027,871 145 25 0.5 13 7.4 471
DIMACS10  delaunay_nl7 131,072 393,176 4 4 0.0 0.2 0.1 2.4
DIMACS10 fe-ocean 143,437 409,593 4 2 0.0 0.2 0.2 2.9
DIMACS10 144 144,649 1,074,393 9 7 0.1 0.7 0.6 4.6

when applied to the instances with millions of edges such as, e.g.,
soc-BlogCatalog, rev-movielens and soc-buzznet.

The reduction techniques employed by dOmega in the search
tree are less effective when the gap between the graph’s degener-
acy and its clique number is large (with the exception of the two
smallest graphs). In contrast, the algorithms BBMCSP and LMC are
less affected by this gap, possibly because they rely more on typ-
ical maximum clique techniques employed for small and medium
dense graphs.

3.6. Comparison with additional MCP exact approaches

In order to provide a broader picture of the performance of
C1liSAT, we provide a comparison against integer linear program-
ming (ILP) formulations, solved by a general purpose ILP solver,
and 3 additional effective combinatorial branch-and-bound algo-
rithms from the literature.

Let x, be a binary variable taking value 1 if and only if vertex
v € V(G) belongs to the maximum clique. The natural ILP formula-
tion for the MCP reads as follows:

®(G) =max »_x, (9a)
ueV

Xe+xy <1, V(u,v)eE(G), (9Db)

xy, €{0,1}, VueV(G). (9¢)

The objective function (9a) corresponds to the total number
of vertices of the maximum clique. Constraints (9b) impose that
at most one vertex from each pair of non-adjacent vertices is
selected. It is well known that the linear programming (LP) re-
laxation of this formulation provides a very weak upper bound
> |V|/2. In line with what is typically done in the literature to
strengthen Constraints (9b), we consider a collection ¥ of inde-
pendent sets of the graph G, covering all the pairs of non-adjacent
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vertices {u, v} € E(G). We therefore can replace Constraints (9b) by:

Y xu<l, View. (10)

uel

Constraints (10) impose that no more than a single vertex is se-
lected from each independent set I € ¥. Different heuristic proce-
dures can be used for creating ¥’; we employ the one proposed in
Bettinelli, Cacchiani, & Malaguti (2017).

We use the IBM CPLEX Optimizer version 12.8, one of the
state-of-the-art commercial solvers, to tackle the ILP model (9) en-
hanced by Constraints (10). According to extensive preliminary ex-
periments, these constraints have a positive impact on the perfor-
mance of the solver. The solver also generates several additional
valid inequalities of type (10) (as well as several other families
of general purpose valid inequalities) during the execution of its
branch-and-cut scheme to further strengthen the LP relaxation of
the formulation. For a fair comparison against the branch-and-
bound algorithms, the solver is run in single-thread mode (with
default parameters). We denote this methodology to solve the MCP
based on an ILP formulation as CPLEX in the remainder of this
section.

We now briefly introduce 3 additional combinatorial branch-
and-bound algorithms for the MCP from the literature that are
tested in this work:

e IncMC2 (Li et al., 2018a): An incremental SAT-based solver
in the lines of MoMC, but which was developed some time
earlier.

e BBMCX (San Segundo et al., 2015): An incremental SAT-based
solver, denoted infrachromatic (see also Section 1.2), whose
reasoning scheme is restricted to determining (a subset of)
conflicting independent sets of cardinality 3. The algorithm
also employs a similar bit-encoding as CLiSAT to represent
the graph and sets of vertices in memory.
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Fig. 8. Performance profile of the algorithm C1iSAT and other 6 state-of-the-art algorithms over the entire dataset of 501 structured instances. The time limit is fixed at

1800 seconds.
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Fig. 9. Box plots of the performances of C1iSAT and other 6 state-of-the-art algorithms over the entire dataset of 501 structured instances. The time limit is fixed at

1800 seconds.

e CLIQUER (Ostergard, 2002): To the best of our knowledge,
the first successful exact MCP solver that employs the Rus-
sian Doll Search (RDS) branching scheme.

Fig. 8 shows the performance profile (see Dolan & Moré, 2002)
of the 3 algorithms described above plus CPLEX, together with
C1iSAT, MoMC and LMC, over our 501 structured instance dataset.
According to Fig. 8, the best performing algorithm is, clearly,
C1iSAT, which is the fastest in more than 63% of the instances
(left-end of the figure), and also solves the largest amount, i.e.,
slightly over 90% (as shown by the intersection of its curve in the
right-end). The algorithms MoMC and IncMC2 are the second best
performers according to the figure, MoMC solving to optimality 2
more instances (343) than its counterpart IncMC2 (341); this rep-
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resents slightly more than 63% of the 501 dataset in both cases.
The fourth performer is CPLEX, which initially solves around 18%
of the instances, and shows the best slope as 7 increases, solving
more than 64% of the instances to optimality. The worst perform-
ing solvers according to the figure are BBMCX, which solves more
than 51% of the instances and, finally, LMC and CLIQUER, which
managed to solve slightly over 33% and 24% of the instances re-
spectively.

We end the section by showing in Fig. 9 the computing time
boxplots of the 7 algorithms. The figure plots the time (in seconds
and logarithmic scale) spent by each algorithm through their quar-
tiles. Precisely, each box represents the first (lower) and third (up-
per) quartiles, and the line separating both quartiles is the median
of the reported CPU time distribution; the lines extending verti-
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cally from the boxes (known as whiskers) indicate the variability
outside the upper and lower quartiles. Outside the whiskers, the
outliers (heterogeneous results) are plotted as individual points.
The numbers in the top row (header #OPT) show the number
of instances solved to proven optimality within the time limit of
1800 seconds by each of the algorithms. Fig. 9 evidences the supe-
rior computing times of CLiSAT, and is consistent with the results
reported in the performance profile. It solves the largest amount
of instances within the time limit (453), and presents the best me-
dian, which is slightly below 1 second.

4. Conclusions and future work

In this paper we present a very efficient combinatorial branch-
and-bound exact algorithm C1iSAT for the maximum clique prob-
lem. CLiSAT combines all the recent state-of-the-art techniques
with two new bounding procedures: (i) a filtering phase which
exploits the notion of (x + 1)-partite branching nodes, i.e., nodes
that are associated to a (k + 1)-partite graph and which require
precisely a (k + 1)-clique to improve the incumbent solution;
(if) a partial maximum satisfiability-based procedure that prunes
branching candidate vertices grouped according to independent
sets, instead of individually. Our implementation has been ex-
tensively tested over a dataset of more than 700 instances from
the literature, where it outperforms the state-of-the-art algorithms
sometimes by several orders of magnitude.

A number of conclusions may be drawn from the tests. To be-
gin with, empirical evidence suggests that the two new bounding
techniques presented do not dominate each other and that the fil-
tering phase of CLiSAT is more effective in those instances where
the gap between the chromatic number and the clique number is
“small”. Another conclusion is that, contrary to what is suggested
in the recent paper entitled Why is Maximum Clique Often Easy
in Practice? (Walteros & Buchanan, 2020), the problem remains
very hard in practice, as witnessed by the instances that could not
be solved to proven optimality by any of the algorithms tested.
Clearly, further breakthroughs will be required to solve these very
hard instances. An open question is whether these breakthroughs
will come in the form of new heuristics for partial maximum sat-
isfiability or in some other form. Another open question is the im-
pact that the incremental branching scheme of CLiSAT has on the
effectiveness of its filtering phase. Intuitively, it would seem that
incremental branching favours the appearance of (k + 1)-partite
branching nodes in the shallow levels of the branch-and-bound
tree, which, in turn, might be pruned with higher probability by
the filtering phase of C1iSAT.
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