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a b s t r a c t 

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the 

largest possible number of vertices. We propose a new exact algorithm, called CliSAT , to solve the 

MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial 

optimization due to its practical relevance for a wide range of applications. The newly developed ex- 

act approach is a combinatorial branch-and-bound algorithm that exploits the state-of-the-art branching 

scheme enhanced by two new bounding techniques with the goal of reducing the branching tree. The 

first one is based on graph colouring procedures and partial maximum satisfiability problems arising in 

the branching scheme. The second one is a filtering phase based on constraint programming and domain 

propagation techniques. CliSAT is designed for structured MCP instances which are computationally 

difficult to solve since they are dense and contain many interconnected large cliques. Extensive experi- 

ments on hard benchmark instances, as well as new hard instances arising from different applications, 

show that CliSAT outperforms the state-of-the-art MCP algorithms, in some cases by several orders of 

magnitude. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Let G be a simple undirected graph, we denote V (G ) its set of

 vertices and E(G ) its set of m edges. Two vertices u, v ∈ V (G )

re called adjacent or neighbours if there is an edge { u, v } ∈ E(G ) .

 clique is a subset of pairwise adjacent vertices or, equivalently, a 

ubset of vertices inducing a complete graph. The maximum clique 

roblem (MCP) calls for determining a clique of G with the largest 

ossible number of vertices, the size of which is known as the 

lique number ω(G ) . Fig. 1 provides an example graph G with n = 8

ertices and m = 22 edges where ω(G ) = 4 . A maximum clique

s K = { v 1 , v 2 , v 3 , v 4 } (the red vertices of the figure), the edges of

he complete graph induced by these vertices are depicted with 

ed lines. This graph contains multiple maximum cliques, another 

aximum clique is, e.g., the set { v 3 , v 4 , v 5 , v 6 } . 
The MCP is one of the most studied combinatorial optimiza- 

ion problems in graph theory. It is known to be strongly N P - 

ard and also hard to approximate within any polynomial factor 

nless P = ZPP ( Håstad, 1999 ). The MCP finds numerous applica- 

ions which span disciplines such as computer vision ( San Segundo 

 Artieda, 2015; San Segundo, Rodriguez-Losada, Matia, & Galan, 
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010; Stentiford, 2019 ), robotics ( San Segundo & Rodriguez-Losada, 

013 ), coding theory, network analysis and bioinformatics, see, e.g., 

omita, Akutsu, & Matsunaga (2011) . 

In this work, we describe a new exact branch-and-bound (BnB) 

lgorithm for the MCP that we call CliSAT . This algorithm is de- 

igned for hard MCP instances with up to several tenths of thou- 

ands of vertices. Hard MCP instances are those with many large 

nterconnected cliques and they are typically dense. For these in- 

tances, the state-of-the-art techniques are combinatorial BnB al- 

orithms (see, e.g., Wu & Hao, 2015 ) that employ bounding proce- 

ures based on graph colouring and partial maximum satisfiability 

SAT) problems arising in the branching scheme. Our new exact 

lgorithm is an enhancement of this class of algorithms that intro- 

uces new bounding procedures. These procedures, combined with 

he state-of-the-art branching scheme, are very effective in solv- 

ng hard MCP instances as shown in the computational section. On 

he classical DIMACS set of instances, CliSAT compares favorably 

ith previous state-of-the-art exact algorithms; moreover, on sev- 

ral new classes of hard instances CliSAT is the best performing 

lgorithm, in some cases by several orders of magnitude. 

It is important to mention that solving the MCP on very sparse 

assive graphs is, in practice, much easier than solving it for struc- 
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Fig. 1. An example graph G with ω(G ) = 4 . In red, a maximum clique K = 

{ v 1 , v 2 , v 3 , v 4 } . (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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f  
ured dense graphs. A different class of specialized algorithms has 

een specifically proposed in the literature for the former setting. 

his family of algorithms is based on tailored graph reduction tech- 

iques that are only effective for sparse instances (see e.g., Jiang, 

i, & Manya, 2016; San Segundo, Lopez, & Pardalos, 2016b; Wal- 

eros & Buchanan, 2020 ). The proposed algorithm CliSAT , even 

f it is not designed for this type of instances, is competitive with 

he state-of-the-art algorithms also for sparse graphs with up to 

50,0 0 0 vertices. 

.1. Basic notation and definitions 

Given a simple graph G and a subset of its vertices W ⊆ V (G ) ,

e denote G [ W ] the induced graph by W , i.e., the graph with ver-

ex set V (G [ W ]) equal to W , and edge set E(G [ W ]) containing the

ubset of edges of E(G ) with both endpoints in W . The comple-

ent graph , denoted G , has the same vertex set of G and edge

et E (G ) = { u, v ∈ V (G ) : { u, v } / ∈ E(G ) , u � = v } . A subset I ⊆ V (G ) of

airwise non-adjacent vertices is called an independent set and 

t corresponds to a clique in G . Moreover, let N(u ) = 

{
v ∈ V (G ) :

 u, v } ∈ E(G ) 
}

denote the neighbourhood of a vertex u ∈ V (G ) . A

ertex colouring of a graph G is a partition of its vertex set into in-

ependent sets, also referred to as colour-classes . The vertex colour- 

ng problem (VCP) calls for determining the minimum number of 

olour-classes in any feasible vertex colouring, i.e., to determine 

he chromatic number χ(G ) of the graph. We refer the interested 

eader to Malaguti & Toth (2010) for further details on the VCP. 

 (vertex) k - colouring of a graph G , which we denote C k (G ) , is

 partition of V (G ) into k independent sets; precisely: C k (G ) =
I 1 , I 2 , . . . , I k 

}
. Clearly, χ(G ) provides an upper bound on the clique

umber ω(G ) , see, e.g., Balas & Yu (1986) , and, consequently, so is

he value k of any k -colouring of the graph, i.e., ω(G ) ≤ χ(G ) ≤
 C k (G ) | = k . Given a subset of vertices W ⊆ V (G ) and a partition of

 into k independent sets, the k -colouring C k (G [ W ]) is a called a

artial vertex colouring of the graph G , i.e., a vertex colouring in 

hich only the vertices of W are coloured. 

.2. Reduction of the MCP to a partial maximum satisfiability 

roblem 

Given a graph G together with a k -colouring C k (G ) , we describe

n this section a reduction, first proposed in Li & Quan (2010b) , of

he MCP to a partial maximum satisfiability problem (PMAX-SAT-P). 

 boolean variable x ∈ { 0 , 1 } is associated to two literals, a posi-

ive literal , denoted y and a negative literal denoted ȳ . The positive 

iteral is true if x = 1 and the negative literal is true if x = 0 . A

lause is a finite collection of literals linked by logical operators 

e.g., ∨ and ∧ ). A unit clause refers to a clause with a single literal.

oolean formulas comprise clauses linked by logical operators. A 
1009 
oolean formula in conjunctive normal form (CNF) is a conjunction 

f clauses, where a clause is a disjunction of literals. 

The PMAX-SAT-P, associated to a MCP and a k -colouring, com- 

rises two types of clauses denoted hard clauses and soft clauses . 

t calls for satisfying the maximum number of soft clauses, while 

atisfying all the hard ones. This PMAX-SAT-P features a vector of 

oolean variables x ∈ { 0 , 1 } | V (G ) | , where each variable x v represents

 vertex v ∈ V (G ) . Its | E (G ) | hard clauses are associated to the non-

dges of G . They contain only negative literals and encode the fact 

hat at most one vertex from each pair of non-adjacent vertices of 

 can be part of a clique: 

 

ȳ u ∨ ȳ v ) , ∀{ u, v } ∈ E (G ) . (1) 

he hard clauses form a CNF boolean formula modelling the fea- 

ibility part of the MCP. The k soft clauses are associated to the 

ndependent sets of C k (G ) . They contain only positive literals and 

ncode the fact that only one vertex from each independent set 

an be part of a clique: 

y v (I, 1) ∨ y v (I, 2) ∨ . . . ∨ y v (I,t) 

)
, ∀ I ∈ C k (G ) . (2) 

or each independent set I ∈ C k (G ) , the function v (I, s ) returns the

ertex v ∈ V (G ) associated to the s th vertex of I, and t = | I| . We

enote I the collection of all the soft clauses (2) , which form a 

NF boolean formula modelling the objective function of the MCP, 

.e., each satisfied clause corresponds to inserting the vertex of its 

rue positive literal in a MCP solution. We denote PSAT (G, C k (G ))

he PMAX-SAT-P associated to the graph G together with the k - 

olouring C k (G ) . 

.3. PMAX-SAT-P based upper bounds on the clique number 

For a given graph G together with a colouring C k (G ) , upper

ounds on the clique number ω(G ) can be derived by reasoning 

nd propagating the information of the hard clauses (1) and soft 

lauses (2) of the associated PSAT (G, C k (G )) . It is straightforward

o see that the existence of a clique of size k in G requires that all

he k soft clauses (2) are satisfied. A subset C ⊆ I of soft clauses 

2) where at most | C | − 1 of them can be satisfied, is called a con-

ict . A conflict-detection procedure determines a conflict by setting 

o false literals, i.e., removing them from the hard and soft clauses, 

hile preserving logical entailment, until a clause becomes empty. 

 conflict logically entails an empty clause , i.e., a clause that con- 

ains no literals and, by definition, evaluates to false. If a conflict 

s found in PSAT (G, C k (G )) , a clique of size k cannot exist in G ; ac-

ordingly, k − 1 is in this case an upper bound on ω(G ) . 

Unit Propagation ( UP ) is one of the main conflict-detection pro- 

edures, see Davis & Putnam (1960) . It exploits the fact that a unit 

lause can only be satisfied by fixing its literal to true and, conse- 

uently, removing the negated literal from the remaining clauses. 

P is applied iteratively after each removal until either i ) there are 

o more unit clauses, or (ii ) an empty clause is found. In the lat-

er case, the soft clauses (2) in which a positive literal is set to 

rue, together with the soft clause that becomes empty, determine 

 conflict. 

Strong upper bounds on ω(G ) can be obtained if more 

han one conflict is determined, see, e.g., Li, Fang, Jiang, & Xu 

2018a) ; Li, Jiang, & Manyà (2017) . A collection of conflicts P = 

 C 1 , C 2 , . . . , C | P| } is denoted a proper set of conflicts if for each pair

f conflicts ( C a , C b ) in P , the set of soft clauses in (C a ∪ C b ) \ (C a ∩
 b ) is also a conflict. In other words, the soft clauses that belong 

xactly to only one of the two conflicts also contain a conflict. If 

 proper set of conflicts is found, then ω(G ) ≤ k − | P| . Determin-

ng a proper set of conflicts can be done iteratively, one conflict 

t a time, see, e.g., Li et al. (2018a , 2017) . We recall, in what fol-

ows, the overarching idea of such procedures. For each conflict C 

ound, the PSAT (G, C (G )) is modified in such a way that the set of
k 
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lauses in C are satisfiable. Precisely, the graph G is enlarged with 

 C | additional vertices, by inserting a new vertex per independent 

et associated to the clauses of C . Each new vertex is connected to

very vertex V (G ) in the graph, except to those vertices associated 

o the literals of its clause. In this way, we obtain a new graph

alled the transformed graph of a conflict , which we denote G (C ) .

he new C k (G (C )) is obtained from the original C k (G ) by colour- 

ng each new vertex with the colour class of its associated clause. 

n addition, a new PSAT 
(
G (C ) , C k (G (C )) 

)
can be defined in which

he relaxed clauses of C are satisfiable. This problem is used to 

etermine additional conflicts. A set of conflicts iteratively deter- 

ined in this way is, by nature, a proper set of conflicts. 

In addition to UP , and when no unit clauses are available, 

he failed literal conflict-detection procedure ( FL ), another well- 

stablished inference procedure used by SAT solvers, can be used 

n this context to determine conflicts. A positive literal of a soft 

lause is denoted failed if an empty clause is determined when it 

s set to true. If every literal in a clause is proven failed by suc-

essive calls to FL , a conflict has been found. The soft clauses of 

his conflict are those in which a positive clause is fixed to true 

y the different calls to FL together with the corresponding empty 

lauses. 

.4. Literature review on exact MCP algorithms 

A large amount of effort has been devoted to solving the MCP 

o proven optimality. We refer the reader to Wu & Hao (2015) for 

 detailed survey on this topic. A complete overview of exact al- 

orithms is out of the scope of this work. In what follows, we 

escribe what we consider the most relevant ones together with 

heir corresponding breakthroughs. One of the first successful BnB 

lgorithms is described in Carraghan & Pardalos (1990) , where 

 tailored n -ary branching scheme for the MCP is proposed. A 

ounding technique based on vertex colouring is described in Fahle 

2002) , an idea almost universally employed by modern exact MCP 

lgorithms, see, e.g., San Segundo, Matia, Rodriguez-Losada, & Her- 

ando (2013) ; San Segundo, Rodríguez-Losada, & Jiménez (2011) ; 

an Segundo & Tapia (2014) ; Tomita, Sutani, Higashi, Takahashi, 

 Wakatsuki (2010) . One of the major breakthroughs of the last 

ecade is the bounding technique proposed in Li & Quan (2010a,b) . 

his family of upper bounds is based on partial maximum satisfi- 

bility problems arising in the branching scheme. Thanks to this 

ew idea, the exact MCP algorithms have substantially improved 

heir performance. Some of the state-of-art algorithms of this type 

re, e.g., Li et al. (2018a , 2017) ; San Segundo, Nikolaev, & Batsyn

2015) ; San Segundo, Nikolaev, Batsyn, & Pardalos (2016c) . Finally, 

itstring optimizations are known to be an additional source of ef- 

ciency, see, e.g., San Segundo et al. (2013 , 2015) ; San Segundo 

t al. (2016c , 2011) ; San Segundo & Tapia (2014) . 

To the best of our knowledge, the most successful exact algo- 

ithm for hard dense MCP instances is MoMC , which is described in 

i et al. (2017) . In the computational section, we compare the per- 

ormance of our new algorithm CliSAT against MoMC , as well as 

everal other efficient exact algorithms and integer linear program- 

ing (ILP) models solved by a state-of-the-art commercial solver. 

Another recent stream of research aims at determining the 

lique number of real and very sparse massive graphs, such as 

hose associated with social networks. Specialized algorithms 

xploit the scale-free nature of such graphs, i.e., graphs whose 

egree distribution follow a power law. These algorithms are able 

o solve the MCP to proven optimality in networks with millions 

f vertices, see, e.g., Hespe, Lamm, Schulz, & Strash (2020) ; San Se- 

undo et al. (2016b) ; Walteros & Buchanan (2020) . The techniques 

mployed to determine a maximum clique for these instances 

re typically not effective for hard and dense MCP instances. For 
1010 
parse massive instances, the most successful exact algorithms 

re dOmega , proposed in Walteros & Buchanan (2020) , BBMCSP , 
roposed in San Segundo et al. (2016b) and LMC proposed in Jiang 

t al. (2016) . These two algorithms are compared against CliSAT 
n the computational section. 

It is also worth mentioning that exact algorithms have been de- 

eloped in recent years for variants and generalization of the MCP. 

fficient exact algorithms for the maximum vertex weighted clique 

roblem are described in Jiang, Li, Liu, & Manya (2018) ; San Se- 

undo, Furini, & Artieda (2019b) , while exact algorithms for the 

dge-weighted case are described in San Segundo, Coniglio, Furini, 

 Ljubi ́c (2019a) ; Shimizu, Yamaguchi, & Masuda (2018) . In addi- 

ion, exact algorithms for vertex and edge interdiction variants of 

he MCP have been described in Furini, Ljubic, Segundo, & Zhao 

2021) and Furini, Ljubic, Martin, & Segundo (2019) . Finally, a re- 

ent exact algorithm for the knapsack problem with conflicts is 

escribed in Coniglio, Furini, & Segundo (2021) ; this problem cor- 

esponds to the MCP with an additional knapsack constraint. 

.5. Methodological contributions and outline of the article 

The main contribution of this paper is the development and 

he extensive testing of a new exact algorithm for the maximum 

lique problem. The algorithm, called CliSAT , is designed for hard 

CP instances and is built upon the state-of-the-art procedures of 

he best-performing MCP algorithms in the literature. CliSAT in- 

egrates modern branching schemes with effective bounding tech- 

iques to reduce the size of the branching tree. The two state-of- 

rt bounding mechanisms are based on graph colouring procedures 

nd partial maximum satisfiability problems arising in the branch- 

ng scheme. Starting from these cutting-edge techniques, CliSAT 
xploits new routines which are crucial for improving its perfor- 

ance to solve hard MCP instances. 

Section 2 is entirely devoted to the presentation of the new 

lgorithm. The first Section 2.1 presents the state-of-the-art 

ncremental branching scheme of CliSAT . This n -ary scheme 

mploys the notions of branching and pruned sets of vertices and 

s described in Section 2.2 . In Section 2.2.1 we present the most 

ffective state-of-the-art techniques employed by MCP algorithms 

o enlarge the pruned set, which are based on PMAX-SAT-P-based 

pper bounds. In this context, the new SATCOL procedure pre- 

ented in Section 2.2.2 is the first methodological improvement 

f CliSAT . Its goal is to further enlarge the pruned set by 

ombining colouring-based and PMAX-SAT-P-based upper bounds. 

 second important methodological contribution is the filtering 

hase of CliSAT described in Section 2.3 . To the best of our 

nowledge, CliSAT is the first exact MCP algorithm to employ 

onstraint programming and domain propagation techniques to 

lter vertices from the branching set, i.e., to completely remove 

hem from branching subtrees. To this end, two ad hoc procedures 

re designed: the first one, denoted FiltCOL , is presented in 

ection 2.3.1 ; the second one, denoted FiltSAT , is presented 

n Section 2.3.2 . After explaining the incremental upper bounds 

lso employed by CliSAT in Section 2.4 , the pseudocode for the 

lgorithm is discussed in Section 2.5 . Extensive experiments on 

ard benchmark MCP instances, as well as new hard instances 

rising from different applications, are presented in Section 3 . 

ur computational campaign demonstrates the effectiveness of 

liSAT on solving hard MCP instances and demonstrates that 

liSAT outperforms the state-of-the-art MCP algorithms, for 

ome classes of instances, by orders of magnitude. Section 4 con- 

ludes the paper summarizing the principal algorithmic improve- 

ents of CliSAT and outlines several promising lines of future 

esearch. 
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Fig. 2. The graphs G (v 6 ) (left part) and G (v 7 ) (right part) associated to the graph G of Fig. 1 . 
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. The new exact BnB algorithm: CliSAT 

In this section, we describe the new BnB exact algorithm 

liSAT for the MCP. CliSAT employs an n -ary branching scheme 

f a constructive type that iteratively builds a clique by adding one 

ertex at a time in a recursive fashion. We denote ˆ K ⊆ V (G ) the

ubproblem clique associated to a branching node. Precisely, ˆ K con- 

ains the vertices fixed during branching and added to the sub- 

roblem clique in the nodes preceding the current one. Moreover, 

ach branching node is associated to a subproblem graph , denoted 

ˆ 
 . This graph contains the vertices which can be added singularly 

o ˆ K , see Section 2.1 . During its execution, CliSAT keeps track of 

he incumbent solution , denoted K inc . The size | K inc | of the incum-

ent solution is denoted lb (a lower bound on ω(G ) ). Moreover, if 

 larger clique is found during the branching, i.e., if the condition 

 ̂

 K | > lb holds, both K inc and lb are updated accordingly. After the 

xecution of CliSAT , K inc corresponds to a maximum clique of G 

nd, accordingly, lb = ω(G ) . 

The main idea of the branching scheme is to partition the set 

f vertices of the subproblem graph 

ˆ G into two subsets: i ) the 

ranching set B and ii ) the pruned set P (see Section 2.2 ). This

dea has been used in the state-of-the-art combinatorial BnB al- 

orithms for the MCP and their variants, see, e.g., Li et al. (2018a) ;

i et al. (2017) ; Li, Liu, Jiang, Manya, & Li (2018b) ; San Segundo

t al. (2019a , 2019b) ; San Segundo et al. (2013 , 2015) ; San Segundo

t al. (2016c , 2011) ; San Segundo & Tapia (2014) . By definition of P ,

t least one vertex from B = V ( ̂  G ) \ P is necessary to improve the

ncumbent solution K inc . Accordingly, branching on any of the ver- 

ices in P is not necessary in a given branching node, and the 

lgorithm backtracks when the set B is empty. After the pruned 

nd branching sets are determined, CliSAT carries out a | B | -ary 

ranching operation, creating a branching node for every vertex in 

 by adding it to the current subproblem clique ˆ K (see Section 2.1 ). 

We consider the vertex set V (G ) of the input graph G 

orted according to a given initial ordering (v 1 , v 2 , . . . , v n ) , see

ection 2.5 for further details on this topic. We denote V i (G ) ⊆
 (G ) the subset of vertices that comprises the first i ≤ n vertices of

 (G ) ; precisely: V i (G ) = 

{
v 1 , . . . , v i 

}
with i = 2 , . . . , n, and V 1 (G ) =

 v 1 } . Moreover, we denote V (v i , G ) ⊆ V (G ) the subset of vertices

hat comprises the first i vertices of V (G ) intersected with the 

eighbourhood of the vertex v i ; precisely: V (v i , G ) = V i (G ) ∩ N(v i ) ,
 = 1 , . . . , n. We then define | V (G ) | graphs G (v i ) as the ones in-

uced by the (non-empty) sets of vertices V (v i , G ) ; precisely: 

 (v i ) = G [ V (v i , G )] , i = 1 , . . . , | V (G ) | . (3)

ig. 2 depicts the graphs G (v 6 ) and G (v 7 ) associated to the graph

 of Fig. 1 . The vertices v 6 and v 7 appear in red, V (G (v 6 )) and

 (G (v 7 )) in green. The edges of both graphs are drawn as thick 

lack straight lines. The edges connecting vertex v 7 to the vertices 

receding it according to the initial ordering are coloured in blue. 

he edge that connects v 7 to v 8 appears as a dashed blue line, in-

icating that v does not belong to E(G (v )) . The same information
8 7 
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s shown for G (v 6 ) . All the remaining edges in E(G ) are shown as

ashed black lines. 

.1. The incremental branching scheme of CliSAT 

The input of the branching scheme of CliSAT corresponds to 

he family of graphs G (v i ) , i = 2 , . . . , n . CliSAT executes a BnB

rocedure for each one of these graphs, examining them in order. 

e recall that ˆ G is the subproblem graph and 

ˆ K is the subprob- 

em clique associated to a branching node. In the first level of the 

ranching tree, ˆ G corresponds to one of the graphs G (v i ) and 

ˆ K is 

he singleton { v i } . In order to determine the subproblem graphs ˆ G

or subsequent child nodes, CliSAT first partitions the vertex set 

 ( ̂  G ) into the pruned and branching sets P and B , i.e., V ( ̂  G ) = P ∪ B

nd B ∩ P = ∅ . 
The pruned set P is a subset of vertices of V ( ̂  G ) respecting the

ollowing condition: 

 ̂

 K | + ω 

(
ˆ G [ P ] 

)
≤ lb, (4) 

here ω 

(
ˆ G [ P ] 

)
is any upper bound on the clique number of ˆ G [ P ] .

he entire left hand side of (4) corresponds to an upper bound on 

he clique number of the graph G [ ̂  K ∪ P ] . In other words, the con-

ition states that the graph induced by the vertices in 

ˆ K ∪ P does 

ot contain a clique of size larger than lb = | K inc | . Precisely, if a

et P that respects the condition (4) is found, it means that, in or- 

er to improve the incumbent solution K inc , it is necessary to add 

o ˆ K at least one of the vertices in V ( ̂  G ) which is not in P . Con-

equently, we define the branching set B as V ( ̂  G ) \ P . The specific

ay in which the P set is constructed by CliSAT , as well as the

pecific upper bounds on the clique number it employs, are pre- 

ented in Section 2.2 . 

Once the sets P and B are created, the vertices of these sets are

rdered according to the initial ordering (v 1 , v 2 , . . . , v n ) and rela-

elled as follows: 

 = 

{
p 1 , p 2 , . . . , p | P| 

}
and B = 

{
b 1 , b 2 , . . . , b | B | 

}
. (5)

liSAT keeps track of the initial labels of the vertices v ∈ V (G ) by

stablishing a mapping between the vertices p ∈ P and b ∈ B and

he corresponding vertices in V (G ) . This is done efficiently with 

he help of its bitstring encoding of vertex sets in memory. 

An example of the P and B sets is presented in the left 

art of Fig. 3 . Precisely, it shows the partition of the vertex set 

 v 1 , v 2 , v 4 , v 5 , v 6 } of the subproblem graph G (v 7 ) of Fig. 2 (the orig-

nal graph G , we recall, is shown in Fig. 1 ), into the sets P = { v 2 , v 6 }
grey) and B = { v 1 , v 4 , v 5 } (black). The edges of G (v 7 ) are depicted

s thick black lines. In this example we assume G to be the input 

raph, so ˆ K = { v 7 } ( v 7 is shown in red). Since ω( ̂  G [ { p 1 , p 2 } ]) = 1 ,

t follows that the size lb of the incumbent solution must be equal 

o 2 for the condition (4) to hold. For the sake of clarity, the ver-

ices of the sets B and P are shown according to the relabelling 

stablished by Eq. (5) , i.e., P = { p , p } and B = { b , b , b } . In blue,
1 2 1 2 3 
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Fig. 3. Left: the pruned and branching sets P and B for the subproblem graph G (v 7 ) of Fig. 2 . Middle: the subproblem graph ˜ G (b 3 ) . Right: the subproblem graph ˜ G (b 1 ) . 
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he edges incident to v 7 which are involved in the branching. The 

ertices v 3 and v 8 are shown in white (without a label) since they 

o not belong to G (v 7 ) , i.e., v 3 is not adjacent to v 7 and v 8 comes

fter v 7 in the initial ordering. Finally, the incident edges to v 3 and 

 8 are drawn as dashed lines. 

To create the subproblem graphs ˆ G of the child nodes asso- 

iated to branching on the vertices of the set B , we define a

ew family of graphs, called 

˜ G . We denote B j ( ̂  G ) ⊆ B , the sub-

et of vertices that comprises the first j ≤ | B | vertices; precisely: 

 j ( ̂  G ) = 

{
b 1 , . . . , b j 

}
, with j = 2 , . . . , | B | , and B 1 ( ̂  G ) = { b 1 } . In addi-

ion, we denote ˆ V (b j , ˆ G ) ⊆ { P ∪ B } the subset of vertices that com-

rises the intersection between the set P , together with the first 

j vertices of B , with the neighbourhood of the vertex b j ; pre- 

isely: ˆ V (b j , ˆ G ) = 

{
P ∪ B j ( ̂  G ) 

}
∩ N(b j ) , j = 1 , . . . , | B | . We then de-

ne | B | graphs ˜ G (b j ) as the graphs induced by the (non-empty)

ets of vertices ˆ V (b j , ˆ G ) ; precisely: 

˜ 
 (b j ) = 

ˆ G 

[
ˆ V (b j , ˆ G ) 

]
, j = 1 , . . . , | B | . (6)

he graphs ˜ G (b j ) become the subproblem graphs ˆ G in subsequent 

hild nodes, and 

ˆ K ∪ { b j } the associated subproblem cliques. By 

onstruction, the vertices of ˜ G (b j ) are connected to all the vertices 

f ˆ K . CliSAT proceeds recursively until either all the vertices in B 

ave been explored, or B becomes the empty set. 

Fig. 3 shows the graphs ˜ G (b 3 ) (middle part) and 

˜ G (b 1 ) (right 

art) associated to the branching set B . As in previous figures, the 

et of vertices of both graphs, i.e., { p 2 , b 2 } and { p 1 , p 2 } respectively,

re coloured in green. By branching on the vertex b 3 (resp. b 1 ), ˆ K 

ecomes { v 7 , b 3 } (resp. { v 7 , b 1 } ) and its unique edge, i.e., { v 7 , b 3 }
resp. { v 7 , b 1 } ), is shown as a red line. In blue, the edges that con-

ect the vertices of ˜ G (b 3 ) and 

˜ G (b 1 ) to the associated 

ˆ K . The edge

et of ˜ G (b 1 ) is empty, while the edge set of ˜ G (b 3 ) is the singleton

 p 2 , b 2 } (drawn as a black line). The edge { b 1 , b 2 } is drawn as a

ashed blue line in the right part of the figure to indicate that b 2 
oes not belong to V ( ̃  G (b 1 )) , since b 2 comes after b 1 in the new

abelling (see Eq. (5) ). All the remaining edges of E(G ) are shown

s dashed black lines. 

We denote this way of branching incremental hereafter, as op- 

osed to the more traditional branching scheme that considers 

he child subproblems derived from the full neighbourhood of 

he vertices selected for branching, see, e.g., San Segundo et al. 

2015 , 2016c) ; San Segundo & Rodriguez-Losada (2013) . Incremen- 

al branching has been employed by the recent efficient algorithms 

oMC ( Li et al., 2017 ) and IncMC2 ( Li et al., 2018a ), and we have

dopted this strategy for our algorithm CliSAT . 

.2. Determining the pruned and branching sets 

In this section we explain the techniques used by CliSAT 
o determine the branching and pruned sets. We recall that the 

ranching operations of CliSAT require determining a pruned set 
1012 
 ⊆ V ( ̂  G ) respecting the condition (4) . One such type of pruned set, 

hich we denote P C , is determined by a partial κ-colouring: 

 κ ( ̂  G [ P C ]) = { I 1 , I 2 , . . . , I κ} , where κ = lb − | ̂  K | . (7) 

he value κ corresponds to an upper bound ω ( ̂  G [ P C ]) , and the

-colouring is a collection of κ independent sets ( Section 1.1 ). 

liSAT employs the greedy independent-set sequential colouring 

rocedure to compute a κ-colouring. This procedure is referred to 

s ISEQ , and was first proposed (in connection with the MCP) 

n San Segundo et al. (2013 , 2011) . We outline, in what fol-

ows, the main operations of ISEQ , and refer the reader to the 

forementioned papers for further details. Given a vertex ordering 

v 1 , v 2 , . . . , v | V ( ̂ G ) | ) of V ( ̂  G ) , each iteration of ISEQ builds an inde-

endent set processing the vertices in order. At each step within an 

teration, and starting from the empty set, a vertex is added to the 

ndependent set under construction if it is not linked to any of its 

ertices. ISEQ continues iterating until κ independent sets are de- 

ermined. It is worth mentioning that CliSAT implements ISEQ 
fficiently using a bitstring encoding of the vertex sets in memory, 

ee ( San Segundo et al., 2011 ). 

We show the operations of ISEQ considering the subproblem 

raph 

ˆ G depicted in the left part of Fig. 4 . This graph is cho- 

en since it features a gap of one unit between its clique num- 

er and its chromatic number, i.e., ω( ̂  G ) = 4 and χ( ̂  G ) = 5 . In ad-

ition, ˆ G is considered associated to a branching node with | ̂  K | = 

 and lb = 5 , so κ = 4 according to Eq. (7) . Given the ordering

v 1 , v 2 , . . . , v 7 ) of the vertex set V ( ̂  G ) , ISEQ determines the follow-

ng 4 independent sets in order: I 1 = { v 1 } , I 2 = { v 2 } , I 3 = { v 3 , v 4 }
nd I 4 = { v 5 , v 6 } . Each independent set is depicted with a different

olour. The grey vertices in the right part of the figure correspond 

o the pruned set P C = { p 1 , p 2 , . . . , p 6 } , shown after the relabelling

ccording to Eq. (5) . The remaining vertex b 1 (depicted in black) 

ecomes the branching set B . The edges incident to b 1 are repre- 

ented as dashed lines. 

In this example, the ISEQ procedure is not able to construct a 

runed set P C = V ( ̂  G ) , so branching is necessary. The example illus-

rates the limits of using a (heuristic) vertex colouring procedure 

o create the set P . Since χ( ̂  G ) = 5 , the branching node cannot be

runed even with an optimal colouring. 

.2.1. Enlarging the pruned set with PMAX-SAT-P-based upper bounds 

Given a κ-colouring C κ ( ̂  G [ P C ]) , defined in the previous 

ection 2.2 , the set P C can be enlarged by adding vertices from 

 = V ( ̂  G ) \ P C , one at a time, using the PMAX-SAT-P upper bound

resented in Section 1.3 . We describe in what follows the state-of- 

he-art procedure of this type employed by, e.g., Li et al. (2017) . 

ereafter, we denote for short P C ∪ { b} as P b . A vertex b ∈ B can

e added to P C if an upper bound ω ( ̂  G [ P b ]) ≤ lb − | ̂  K | can be de-

ermined. To this end, a partition of V ( ̂  G [ P b ]) into κ + 1 colour

lasses is created by assigning the vertex b to a new colour 

lass. Precisely, C κ+1 ( ̂  G [ P b ]) = C κ ( ̂  G [ P C ]) ∪ { b} and the associated

SAT ( ̂  G [ P b ] , C κ+1 ( ̂  G [ P b ])) can be used to prove that ω ( ̂  G [ P b ]) = κ
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Fig. 4. To the left, a subproblem graph ˆ G associated to a branching node of CliSAT . The coloured vertices correspond to the independent sets determined by ISEQ . To the 

right, the corresponding pruned set P C = { p 1 , p 2 , . . . , p 6 } and the branching set B = { b 1 } . 
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f the UP procedure determines a conflict C (starting from the 

nit clause of { b} ). If a conflict C is found, P b becomes the new

runed set and b is removed from the branching set B . In order 

o add more than one vertex from B to P C , it is necessary to find

 proper set of conflicts by iteratively building the transformed- 

raphs as explained in Section 1.2 . The effect on the branching tree 

s twofold: i ) a node is fathomed if the branching set B becomes

mpty; ii ) the number of child nodes is reduced if the set P C is

nlarged, see Section 2.1 . 

We illustrate this technique by referring again to the sub- 

roblem graph 

ˆ G in Fig. 4 and C 4 ( ̂  G [ P C ]) . We recall that

he branching set is B = { b 1 } and the pruned set is P C =
 p 1 , p 2 , . . . , p 6 } , and show how to obtain ω ( ̂  G [ P b ]) = 4 after

etermining C 5 ( ̂  G [ P b ]) as explained previously. Precisely, the 

ssociated PSAT ( ̂  G [ P b ]) , C 5 ( ̂  G [ P b ]) contains the 5 soft clauses:

y p 1 ) , (y p 2 ) , (y p 3 ∨ y p 4 ) , (y p 5 ∨ y p 6 ) , (y b 1 ) , and it is possible to de-

ermine a conflict by executing UP on the unit clause (y b 1 ) . The

easoning is as follows: setting to true the literal y b 1 removes the 

iterals y p 3 and y p 6 (according to the hard clauses ( ̄y b 1 ∨ , ̄y p 3 ) and

 ̄y b 1 ∨ , ̄y p 6 ) ) so that both clauses (y p 3 ∨ y p 4 ) and (y p 5 ∨ y p 6 ) be-

ome unit. Finally, setting to true the literal y p 4 empties the other 

nit clause, resulting in the conflict { (y b 1 ) , (y p 3 ∨ y p 4 ) , (y p 5 ∨ y p 6 ) } .
onsequently, P = V ( ̂  G ) , B = ∅ and the branching node is fath-

med. As can be seen, the PMAX-SAT-P-based upper bounds can 

e stronger than the chromatic number. 

.2.2. Enlarging the pruned set with the SATCOL procedure 

In what follows, we describe a new procedure, denoted 

ATCOL , that is employed by CliSAT to (potentially) enlarge the 

runed set P C by adding one independent set I ⊆ B at a time. Each

ndependent set is computed by one iteration of ISEQ on the ver- 

ices in B . We denote for short P C ∪ I as P I . A larger pruned set P I 
s determined if a conflict C is found in PSAT ( ̂  G [ P I ] , C κ+1 ( ̂  G [ P I ])) ,

here C κ+1 ( ̂  G [ P I ]) corresponds to the κ-colouring C κ ( ̂  G [ P C ]) to-

ether with the independent set I. In such a case, ω̄ ( ̂  G [ P I ]) = κ ,

he new pruned set becomes P I , I is removed from B , and the

ransformed-graph 

ˆ G [ P I ](C ) is computed. To find a conflict C , 

ATCOL executes the procedure FL on each of the literals asso- 

iated to the vertices of I attempting to prove them failed, see 

ection 1.3 . It follows that, if C is found, the soft clause associated

o I must be part of C . SATCOL continues examining independent 

ets in B until it either fails to find a conflict, or the set B = ∅ and

he branching node is fathomed. When the procedure stops, the 

runed set determined in this way is denoted P S . The transformed- 

raphs are necessary to ensure that the set of conflicts determined 

teratively by SATCOL is a proper set of conflicts, see Section 1.2 . 

SATCOL presents a number of advantages with respect to prior 

tate-of-the-art procedures that examine vertices in B individually. 

n the first place, SATCOL , creates a single soft clause per indepen- 

ent set I (if it is part of a conflict). An equivalent procedure that 
1013 
xecutes UP to find a conflict for each of the vertices in I, gen-

rates | I| soft clauses and | I| transformed-graphs during the rea- 

oning. In addition, each transformation relaxes the clauses of the 

orresponding conflict with an additional literal, see Section 1.3 , so 

mptying these clauses becomes more difficult in subsequent iter- 

tions. Keeping the number of soft clauses low (and of small size) 

s crucial for the overall efficiency of SATCOL . In the second place, 

ATCOL can also determine larger pruned sets, since it typically 

xamines the vertices in B in a “better” order (according to inde- 

endent sets) than the initial order. We illustrate this behaviour by 

eans of the following example. 

The left part of Fig. 5 shows a new subproblem graph 

ˆ G as- 

ociated to a branching node, with | ̂  K | = 1 and lb = 4 , so κ =
 according to Eq. (7) . The figure also shows the 3-colouring 

 3 (G [ P C ]) determined by ISEQ . The right part of the figure de-

icts the relabelled vertices of the pruned set P C = { p 1 , p 2 , . . . , p 6 }
grey) and the branching set B = { b 1 , b 2 , b 3 } (black). The edges

ith an endpoint in B appear dashed. SATCOL first examines the 

ndependent set I = { b 1 , b 2 } from B , and the procedure FL deter-

ines a first conflict C 1 = { (y p 3 ∨ y p 4 ) , (y p 5 ∨ y p 6 ) , (y b 1 ∨ y b 2 ) } in

he associated PSAT 
(

ˆ G [ P I ] , C 4 ( ̂  G [ P I ]) 
)
, where, we recall, P I = P C ∪ I.

onsequently, P I becomes the enlarged pruned set, and I is re- 

oved from B . In the next and final iteration, SATCOL consid- 

rs the remaining vertex b 3 in B and finds a second conflict 

 2 = { (y p 1 ∨ y p 2 ) , (y p 3 ∨ y p 4 , z 1 ) , (y p 5 ∨ y p 6 ∨ z 2 ) , (y b 3 ) } in the as-

ociated PSAT 
(

ˆ G (C 1 ) , C 5 ( ̂  G (C 1 )) 
)
. For completeness we provide its

 (unsatisfiable) soft clauses: (y p 1 ∨ y p 2 ) , (y p 3 ∨ y p 4 ∨ z 1 ) , (y p 5 ∨
 p 6 ∨ z 2 ) , (y b 1 ∨ y b 2 ∨ z 3 ) and (y b 3 ) . The added z literals correspond

o the transformed-graph 

ˆ G (C 1 ) . As can be seen from the conflict 

 2 , the reasoning involves (besides the unit clause of b 3 ) the soft

lauses associated to the yellow, blue and cyan colour classes in 

he figure. 

Alternatively, we now consider the operations of the UP 
rocedure on the vertices in B following the initial order, 

.e., v 7 , v 8 and v 9 (also b 1 , b 3 and b 2 ). The first conflict

etermined by UP when setting y b 1 to true is C 1 = { (y p 3 ∨
 p 4 ) , (y p 5 ∨ y p 6 ) , (y b 1 ) } , and a second conflict, when setting y b 3 
o true, is C 2 = { (y p 1 ∨ y p 2 )(y p 3 ∨ y p 4 ∨ z 1 ) , (y b 1 ∨ z 3 ) , (y b 3 ) } . At

his point, UP is unable to find a third conflict in the as- 

ociated PSAT 
(
( ̂  G (C 1 ))(C 2 ) , C 6 (( ̂  G (C 1 ))(C 2 )) 

)
. Its 6 soft clauses

re: (y p 1 ∨ y p 2 ∨ z ′ 
1 
) , (y p 3 ∨ y p 4 ∨ z 1 ∨ z ′ 

2 
) , (y p 5 ∨ y p 6 ∨ z 2 ) , (y b 1 ∨

 3 ∨ z ′ 3 ) , (y b 3 ∨ z ′ 4 ) and (y b 2 ) , where z and z ′ are the added liter-

ls corresponding to the conflicts C 1 and C 2 respectively. It is not 

ifficult to see that setting y b 2 to true is unable to turn into unit 

ny of the remaining (relaxed) clauses. 

.3. The filtering phase of CliSAT 

We now describe one of the main algorithmic contributions of 

liSAT . After the ISEQ procedure terminates and computes a 
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Fig. 5. To the left, a subproblem graph ˆ G associated to a branching node of CliSAT . The coloured vertices correspond to the independent sets determined by ISEQ . To the 

right, the corresponding pruned set P C = { p 1 , p 2 , . . . , p 6 } and branching set B = { b 1 , b 2 , b 3 } . 

Fig. 6. On the left, a (κ + 1) -partite subproblem graph ˆ G of a (κ + 1) -partite branching node with κ = 3 , together with a 4-colouring. The independend sets I 1 = { v 1 , v 4 , v 5 } , 
I 2 = { v 2 , v 6 } and I 3 = { v 3 } are the first 3 colours; the branching set B = { v 7 , v 8 } , in black, is the 4th colour. On the right part, the (κ + 1) -partite subproblem graph ˆ G , with 

κ = 2 , resulting from branching on the vertex v 7 in the reference node shown in the left part. Encircled vertices are filtered: v 6 (red) by FiltCOL and v 4 (green) by 

FiltSAT . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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artial κ-colouring of a subproblem graph 

ˆ G , i.e., determines the 

runed set P C , CliSAT attempts to find a (κ + 1) -colouring of ˆ G ,

 κ+1 ( ̂  G ) , by checking if the branching set B is an independent set.

f this is the case, clearly B is the last colour class of C κ+1 ( ̂  G ) .

liSAT exploits such a colouring to further reduce the branching 

ree. 

A branching node where CliSAT is able to determine a (κ + 

) -colouring of ˆ G , i.e., ˆ G is (κ + 1) -partite, is called a (κ + 1) -

artite branching node . In these “special” branching nodes it is nec- 

ssary to add to ˆ K exactly one vertex from each of the κ + 1 colour

lasses in order to improve the lower bound lb. This is true since, 

n (κ + 1) -partite graphs, only one vertex from each of the κ + 1

olour classes can make part of a clique. 

The left part of Fig. 6 shows a (κ + 1) -partite subproblem graph 

ˆ 
 (associated to a (κ + 1) -partite branching node) with κ = 3 

assuming | ̂  K | = 1 and lb = 4 ). The ISEQ procedure determines

he 3 independent sets: I 1 = { v 1 , v 4 , v 5 } , I 2 = { v 2 , v 6 } and I 3 = { v 3 }
shown with different colours in the figure). Moreover, CliSAT 
s able to determine a 4-colouring of ˆ G , since the branching set 

 = { v 7 , v 8 } forms an independent set. In the example, the 4-clique

 v 1 , v 2 , v 3 , v 7 } improves the lb value and, as can be seen, each of its

ertices belongs to one of the colour classes of the 4-colouring. 

CliSAT exploits a (κ + 1) -partite subproblem graph 

ˆ G by dis- 

arding some vertices from V ( ̂  G ) that cannot improve the incum- 

ent solution. We call these operations of CliSAT the filtering 

hase of the algorithm. To the best of our knowledge, no state- 

f-the-art MCP algorithm employs filtering techniques, which are 

owever extensively used for solving (Binary) Constraint Satisfac- 

ion Problems, see, e.g., San Segundo, Furini, & León (2022) ; Zhou, 

jellerstrand, & Fruhman (2015) . Moreover, filtering is a core tech- 

ique in state-of-the-art Constraint Programming solvers, see e.g., 

ossi, Van, & Walsh (2006) . Filtering vertices from V ( ̂  G ) can have a

ubstantial impact on the size of the branching tree, since, once a 

ertex is filtered, it is discarded from the entire branching subtree 

ooted in a (κ + 1) -partite branching node. In contrast, the vertices 
1014 
n the pruned set P can still make part of a solution in subsequent

hild nodes, i.e., they can belong to future branching sets in subse- 

uent child nodes. 

The general condition to filter a vertex of a (κ + 1) -subproblem 

raph 

ˆ G is to prove that it cannot make part of any clique of size 

κ + 1) contained in 

ˆ G . In practice, a necessary condition which is 

asier to check is that the vertex is not linked to any of the ver-

ices from another colour class, given a (κ + 1) -colouring of ˆ G . To 

valuate this condition efficiently, CliSAT employs the procedure 

iltCOL , which is described in Section 2.3.1 . An alternative suf- 

cient condition is that the corresponding literal of the vertex in 

he associated PSAT ( ̂  G , C κ+1 ( ̂  G )) is a failed literal. This is evaluated

y a second procedure FiltSAT presented in Section 2.3.2 . 

.3.1. The FiltCOL filtering procedure 

FiltCOL is the efficient colour-based procedure employed by 

liSAT to filter vertices. To better explain the operations of 

iltCOL , we first introduce some definitions and notation. We 

all reference node the (κ + 1) -partite root node of a subtree, and 

enote ˆ G R its associated subroblem graph. We call reference (ver- 

ex) colouring , C κ+1 ( ̂  G R ) , the κ-colouring computed by ISEQ , see 

ection 2.2 , together with the colour class determined by the 

ranching set B . The reference colouring C κ+1 ( ̂  G R ) induces a colour- 

ng C r α( ̂  G ) , α < (κ + 1) , in any α-partite subproblem graph 

ˆ G of the

ubtree rooted in the reference node. Precisely, C r α( ̂  G ) is obtained 

hen the vertices of ˆ G preserve the colour class of C κ+1 ( ̂  G R ) . 

iltCOL exploits the fact that C r α( ̂  G ) differs from C α( ̂  G ) to filter

ertices of ˆ G . 

We illustrate the above notions by again referring to the 

xample of Fig. 6 . Precisely, we consider its (κ + 1) -partite sub- 

roblem graph, with κ = 3 , to be the reference branching node 
ˆ 
 R . The coloured vertices show the reference colouring C 4 ( ̂  G R ) : 

 1 ( ̂  G R ) = { v 1 , v 4 , v 5 } , I 2 ( ̂  G R ) = { v 2 , v 6 } , I 3 ( ̂  G R ) = { v 3 } and I 4 ( ̂  G R ) =
 v 7 , v 8 } (left part). The right part of the figure depicts the (κ + 1) -

artite child subproblem graph 

ˆ G = 

ˆ G (v ) , with κ = 2 , which 
R 7 
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esults from branching on the vertex v 7 ∈ G R (pink). The edges 

f ˆ G appear in black; in blue the edges with an endpoint in v 7 .
he induced colouring C r α( ̂  G ) , α = 3 , is I r 

1 
= { v 1 , v 4 } , I r 

2 
= { v 2 , v 6 }

nd I r 3 = { v 3 } . The coloured vertices correspond to C 3 ( ̂  G ) , i.e.

 1 = { v 1 , v 4 , v 6 } and I 2 = { v 2 } , together with the branching set

 = { v 3 } = I 3 . As can be seen, C r 
3 
( ̂  G ) � = C 3 ( ̂  G ) , since the vertex v 6 

encircled in red) does not belong to the same colour class. 

In a nutshell, given a reference colouring C κ+1 ( ̂  G R ) and an α- 

artite subproblem graph 

ˆ G , α < κ + 1 , FiltCOL computes the 

nduced colouring C r α( ̂  G ) while, at the same time, attempts to fil- 

er vertices of ˆ G that do not belong to its associated colour class 

n C α( ̂  G ) . In detail, the operations of FiltCOL are as follows.

iltCOL processes the vertices of ˆ G according to the initial or- 

er. At the beginning of each iteration, FiltCOL starts with an 

mpty independent set I. The first time a vertex v ∈ V ( ̂  G ) is added

o I, the procedure determines a correspondence between I and 

he independent set I( ̂  G R ) ∈ C κ+1 ( ̂  G R ) to which v belonged in the

eference colouring, i.e., v ∈ I( ̂  G R ) . Then, for each additional ver- 

ex w ∈ V ( ̂  G ) that can enlarge I, i.e., I ∪ { w } is an independent set,

iltCOL checks if the correspondence with I( ̂  G R ) is preserved, 

.e., if w ∈ I( ̂  G R ) . If this is the case, w is added to I. Alternatively,

here are two possibilities: (a ) the vertex w comes after the last 

ertex of I( ̂  G R ) according to the initial order, in which case it is fil-

ered from 

ˆ G . This is possible because w is not a member of I( ̂  G R )

nd is non-adjacent to all its vertices. (b) the vertex w precedes 

he last vertex of I( ̂  G R ) , in which case w is skipped for future it-

rations. In this case w cannot be filtered, since it could still be 

inked to other vertices of I( ̂  G R ) that are also in 

ˆ G and which have

ot yet been examined. The iteration ends when all the vertices in 

 ( ̂  G ) have been considered. FiltCOL continues building indepen- 

ent sets until the induced colouring C r α( ̃  G ) is determined for the 

esulting reduced graph 

˜ G . 

Considering the suproblem graph 

ˆ G of Fig. 6 , FiltCOL is able 

o filter the vertex v 6 (encircled in red) in its first iteration with 

he following operations. Initially, I 1 is the empty set and vertex 

 1 is added to I 1 , establishing a correspondence with the inde- 

endent set I 1 ( ̂  G R ) = { v 1 , v 4 , v 5 } of the reference colouring C 4 ( ̂  G R ) .

ext, FiltCOL adds vertex v 4 to I 1 successfully, since v 4 ∈ I 1 ( ̂  G R ) .

inally, v 6 is selected to enlarge I 1 ; however, since v 6 / ∈ I 1 ( ̂  G R ) and

t has a higher index than the last vertex of I 1 ( ̂  G R ) , i.e., v 5 , it is

ltered (removed) from the graph. In the remaining 2 iterations, 

he independent sets I 2 = { v 2 } and I 3 = { v 3 } are determined. The

ertices of the reduced graph are V ( ̃  G ) = { v 1 , v 2 , v 3 , v 4 } . 
Finally, we mention an important optimization related to 

iltCOL . Once CliSAT executes both filtering procedures 

 FiltCOL and FiltSAT ), and before branching, it keeps track 

f the vertices with the highest index from each of the α colour 

lasses of C r α( ̂  G ) . These α vertices, and not the ones from the ref-

rence colouring, are used to determine if a vertex is skipped or 

ltered during the execution of FiltCOL in the child nodes of ˜ G . 

n the example, and considering only the execution of FiltCOL , 
he vertices stored would be v 4 , v 2 and v 3 , for the independent

ets I 1 , I 2 and I 3 respectively. 

.3.2. The FiltSAT filtering procedure 

Upon termination of FiltCOL , CliSAT executes the second 

ltering procedure FiltSAT on the reduced subproblem (κ + 1) - 

artite graph 

˜ G , with κ + 1 = α, attempting to filter additional ver- 

ices and, ultimately, fathom the node. 

FiltSAT exploits the following observations concerning the 

ssociated PSAT( ̃  G , C r α( ̃  G ) ): i ) if a failed literal is found, its associ-

ted vertex cannot be part of an α-clique in 

˜ G and the correspond- 

ng vertex can be filtered, i.e., removed from 

˜ G ; ii ) if a conflict is

ound, an α-clique cannot exist in 

˜ G and, therefore, the node can 

e fathomed. The latter is true since, as explained in Section 1.3 , 

 conflict found in PSAT( ̃  G , C r α( ̃  G ) ) reduces the colour-based upper
1015 
ound w ( ̃  G ) = α by one unit. The vertex associated to a failed lit- 

ral can be filtered for similar reasons. 

FiltSAT attempts to filter every vertex in V ( ̃  G ) by execut- 

ng the procedure FL on the associated literals in PSAT( ̃  G , C r α( ̃  G ) ),

tarting from the vertices of the branching set B . Any literal proven 

ailed by FL is filtered from V ( ̃  G ) . The procedure ends when all the

ertices in V ( ̃  G ) have been examined or any one of the PSAT( ̃  G ,

 

r 
α( ̃  G ) ) α clauses becomes empty, in which case the node is fath- 

med. 

We illustrate the operations of FiltSAT by referring again to 

he example from Fig. 6 . Precisely, we consider the reduced sub- 

roblem graph 

˜ G that results from the execution of FiltCOL , 
here, we recall, V ( ̃  G ) = { v 1 , v 2 , v 3 , v 4 } . FiltSAT executes FL on

he literals of PSAT( ̃  G , R 3 ( ̃  G ) ), starting with the literal associated to

he branching set y v 3 . In this case y v 3 cannot be filtered, since it 

s part of the solution { v 1 , v 2 , v 3 } , but y v 4 is found to be a failed

iteral ( v 4 is non-adjacent to the singleton vertex v 2 of I 2 ). Conse-

uently, v 4 (encircled in green in the figure) is removed from 

˜ G . 

he resulting graph 

˜ G [ { v 1 , v 2 , v 3 } ] is a 3-clique, so the filtering is

ptimal. 

Finally, it is worth mentioning that for the subproblem graph 

ˆ 
 R of the reference node, FiltCOL is not executed since there is no 

eference colouring available. In this case only FiltSAT is run on 

SAT( ̂  G R , C κ+1 ( ̂  G R ) ). 

.4. Incremental upper bounds 

One of the advantages of the incremental branching scheme 

s that upper bounds on the large subproblems can be efficiently 

omputed based on upper bounds of previously examined smaller 

ubproblems. Such upper bounds, denoted incremental in Li, Fang, 

 Xu (2013) , have been employed in recent SAT-based algorithms 

or the MCP, see, e.g., Li et al. (2018a , 2017) , and are also employed

y the new algorithm CliSAT . We briefly describe the incremen- 

al bound employed by CliSAT in what follows. 

Let ˆ G = ( ̂  V , ̂  E ) be a subproblem graph whose vertices are 

orted according to the ordering ( ̂ v 1 , ̂  v 2 , . . . ̂  v | ̂ V | ) . We define μ( ̂  G ) =
μ[ ̂ v 1 ] , μ[ ̂ v 2 ] , . . . , μ[ ̂ v | ̂ V | ]) as an ordered collection of | ̂  V | values as-

ociated to ˆ V , such that each value μ[ ̂ v i ] is a valid upper bound 

n the clique number of the graph induced by ˆ v i together with 

he set of adjacent vertices to ˆ v i that precede it in the ordering. 

recisely, this induced graph corresponds with a branching sub- 

roblem of CliSAT ’s incremental branching scheme. Furthermore, 

nd owing to the hereditary nature of cliques, a valid value (up- 

er bound) μ[ ̂ v i ] , 2 < i ≤ | ̂  V | , can always be computed in O (| ̂  V | ) ,
iven the values of μ associated to the vertices in 

ˆ V preceding ˆ v i 
 μ[ ̂ v 1 ] = 1 ), as follows: 

[ ̂ v i ] = 1 + max 
{
μ[ u ] : u ∈ 

ˆ V i −1 ( ̂  G ) , (u, ̂  v i ) ∈ 

ˆ E 
}
, i = 2 , . . . | ̂  V | , 

(8) 

here ˆ V i −1 ( ̂  G ) is the set of vertices that precede ˆ v i in 

ˆ V . 

The values of μ( ̂  G ) are dynamically updated during the execu- 

ion of CliSAT according to Eq. (8) , taking into account as well 

he size of the incumbent solution obtained after examining the 

orresponding subproblem. They provide a computationally cheap 

pper bounding condition for reducing the number of branching 

hild nodes for a given a branching set B . This condition is evalu-

ted just after the child subproblem is determined, and before the 

ounding techniques described in the previous sections are exe- 

uted. In practice, CliSAT considers the vertex ordering (5) , i.e., 

ertices in the pruned set P first, followed by the vertices in the 

ranching set B , to determine the values of μ in every node, as 

n Li et al. (2017) . The specific details concerning how the μ val- 

es are employed by CliSAT to prune the branching tree are de- 

cribed in Algorithm 1 . 
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Algorithm 1: CliSAT algorithm for the maximum clique 

problem. 

Input : A simple graph G = (V, E) 
Output : A maximum clique K in G ( lb = | K| = ω(G ) ) 

1 (v 1 , v 2 , . . . , v n ) ← Sort( V ) 
2 K ← FindClique( V ), lb ← | K| 
3 Initialize μ(G ) 
4 for i ← | K| + 1 to n do 

5 ˆ V ← { v ∈ V i −1 (G ) : { v , v i } ∈ E} � child subproblem 
6 P ← { ̂ v 1 , ̂  v 2 , . . . , ̂  v | K| } 
7 FindMaxClique ( G [ ̂  V ] , { v i } , P, μ(G ) ) 
8 μ[ v i ] ← lb 

9 FindMaxClique ( ̂  G , ˆ K , P , μ) 
10 ˆ μ ← { μ[ v ] : v ∈ P } 
11 B = { b 1 , . . . , b | B | } ← 

ˆ V \ P 
12 for l ← 1 to | B | do 

13 Compute ˆ μ[ b l ] � see Equation (8) 
14 if ˆ μ[ b l ] + | ̂  K | ≤ lb � skip the l-th subproblem 
15 then 

16 P ← P ∪ { b l } and B ← B \ { b l } 
17 else 

18 ˜ V ← { P ∩ N(b l ) } ∪ { b j ∈ B : j < l, { b j , b l } ∈ 

ˆ E } 
� child subproblem 

19 if ˜ V = ∅ then 

20 if | ̂  K | > l b then l b ← | ̂  K | and K ← 

ˆ K 

21 return 

22 if the current branching node is (κ + 1) -partite 
� Section 2.3 

23 then 

24 ( ̃  P , ˜ B ) ← FiltCOL ( ̃  V ) � Section 2.3.1 
25 ( ̃  P , ˜ B ) ← FiltSAT ( ̃  P , ˜ B ) � Section 2.3.2 
26 else 

27 ( ̃  P , ˜ B ) ← SATCOL ( ̃  V ) ; � Section 2.2.2 

28 if ˜ B � = ∅ then 

29 FindMaxClique ( ̂  G [ ̃  V ] , ˆ K ∪ { b l } , ˜ P , ˆ μ) 

30 ˆ μ[ b l ] ← min { ̂  μ[ b l ] , lb − | ̂  K |} 
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.5. The algorithm CliSAT 

The algorithm CliSAT produces a branching tree that inter- 

eaves the bounding procedures SATCOL , FiltCOL and FiltSAT 
resented in the previous sections with the general branching 

cheme described in Section 2.1 . Pseudocode for CliSAT is pre- 

ented in Algorithm 1 . In the pseudocode, the steps (1–3) corre- 

pond to the initial preprocessing phase of CliSAT , which is cov- 

red at the end of this section. Branching takes place in the re- 

ursive call to FindMaxClique (step 7), and is described in what 

ollows. 

At the end of its preprocessing phase, CliSAT branches on 

he vertices in V (according to the initial order established in step 

) starting from the | K| -th + 1 vertex (the first lb = | K| vertices

re skipped, since they cannot improve the initial clique by them- 

elves). Then, for each vertex v i ∈ V , i = lb + 1 , . . . , n , selected for

ranching, CliSAT determines the set of vertices ˆ V of the child 

ubproblem, i.e., the adjacent vertices to v that precede it in V 
i 

1016 
step 5), computes a trivial Pruned Set P that comprises the first lb

ertices in 

ˆ V (step 6) and calls the recursive procedure FindMax- 

lique to explore G ( ̂  V ) (step 7). On backtracking, the value of μ
orresponding to the branched vertex v i is updated with lb (step 

). 

Inside a branching node, the sets P and B always store the ver- 

ices according to their index number, the predetermined initial 

rder of the vertices in G . This operation is done efficiently with 

he help of bitsets. The first task executed by FindMaxClique is to 

ompute the values of ˆ μ for the vertices in P . Since these vertices 

ill not be branched on, preliminary tests established that the best 

ompromise between efficiency and pruning ability was to give 

hem the corresponding values in the father node (step 10). This 

fficient inheritance (originally described in Li et al. (2017) , to the 

est of our knowledge, in combination with incremental branch- 

ng) is possible because, as stated previously, the order of the ver- 

ices in P is preserved in every node. Since child subproblems are 

lways subsets of father subproblems, the upper bound values con- 

erning the latter are also valid for the former. In contrast, the val- 

es of ˆ μ for each branching vertex in B are computed in step 13 

ccording to Eq. (8) . 

Pruning with the (upper bound) values of ˆ μ occurs prior to 

he computation of each new child subproblem in step 14. If the 

runing is successful, the vertex b l ∈ B , l = 1 . . . | B | is added to P 

nd removed from B (and the corresponding subproblem is not 

xplored); otherwise, the child subproblem is determined in step 

8. If the latter corresponds to a leaf node that improves the cur- 

ent solution, the incumbent clique is updated in step 20; else the 

hild node is either processed according to the procedure SATCOL , 
r, in case the node is (κ + 1) -partite, according to the filter- 

ng procedures FiltCOL and FiltSAT (steps 22–27), see the 

ections 2.2.2, 2.3.1 and 2.3.2 respectively. Finally, if at this point 

he child node has not been fathomed, CliSAT branches to the 

hild subproblem in a recursive fashion (step 29). Worst-case com- 

lexity analysis of the filtering and SATCOL phases of CliSAT , 
hich are complex procedures, could be the object of future re- 

earch. 

We conclude this section by presenting the initial preprocessing 

hase of CliSAT . This phase comprises the following 3 operations 

xecuted in the first 3 steps of the algorithm: (i ) an initial ordering 

f the vertices (step 1); (ii ) a clique is computed heuristically (step 

); (iii ) the collection of upper bound values μ is initialized (step 

). We describe the three operations in the following. 

It is well established in the literature that the initial order- 

ng of vertices plays an important role in BnB algorithms for the 

CP, see, e.g. Maslov, Batsyn, & Pardalos (2014) . More precisely, 

tate-of-the-art exact MCP algorithms employ two different or- 

erings: (i ) degenerate degree-based ( DEG-SORT ) and (ii ) colour- 

ased ( COLOR-SORT ). The term degenerate in (i ) refers to the fact 

hat the sorting criterium (vertex degree) is dynamic, i.e., it is re- 

omputed on the remaining unsorted vertices each time a vertex 

s selected. These two orderings are briefly presented in what fol- 

ows; for a more in-depth analysis we refer the interested reader 

o San Segundo, Lopez, Batsyn, Nikolaev, & Pardalos (2016a) . 

The most frequently employed ordering is DEG-SORT , which 

an be traced back to Carraghan & Pardalos (1990) . In its basic 

orm, the degree-based ordering (v 1 , v 2 , . . . , v n ) is such that v n is

 vertex with smallest degree in G , v n −1 is a vertex with smallest

egree in the induced graph G [ V n −1 (G )] , and so on. A successful

olour-based ordering for the MCP was first described in Li et al. 

2013) to the best of our knowledge. 

COLOR-SORT partitions V into k independent sets 

 I 1 , I 2 , . . . , I k } , such that I 1 is a maximum independent set in

 , I 2 is a maximum independent set in the induced subgraph 

 [ V \ I 1 ] , and so on. Moreover, CliSAT considers the following

rder within each independent set I: for any pair of vertices 
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v i , v j ) ∈ I such that 1 ≤ i < j ≤ n ( v i precedes v j ), the degree of v i 
s greater or equal to the degree of v j . It is worth noting that find-

ng partitions of maximum independent sets is as computationally 

ard as the original problem. However, hard MCP instances are 

ormally dense or very dense, and, therefore, determining max- 

mum independents sets is expected to be easy. In practice, to 

etermine COLOR-SORT we execute CliSAT on the complement 

raph and search for maximum cliques with a fixed time limit. 

Depending on the actual instance, CliSAT employs either 

EG-SORT or COLOR-SORT . Extensive preliminary tests carried 

ut showed that, in the general case, COLOR-SORT improves the 

fficiency of CliSAT when the size k of the independent set parti- 

ion provides a tight upper bound on ω(G ) . If this is not the case,

EG-SORT is to be preferred. This is consistent with the results 

ound in the literature, see, e.g., San Segundo et al. (2016a) . The 

rocedure referred to as Sort(V) in step 1 of the pseudocode, se- 

ects the concrete ordering and is adapted from San Segundo et al. 

2016a) ; we refer the reader to the latter for further details. When 

ort(V) terminates, the adjacency matrix of G is processed so that 

he vertex order becomes the index order of the vertices in G , i.e.,

e compute an isomorphic graph to G which becomes the new in- 

ut graph to CliSAT . This optimization was originally described 

n the bitstring algorithm ( San Segundo et al., 2011 ) to the best of

ur knowledge. 

To compute an initial clique K inc (step 2 of the initial pre- 

rocessing phase), CliSAT executes the multi-start tabu search 

euristic AMTS ( Wu & Hao, 2013 ) with a reduced time limit 

see the computational section Section 3 ), and sets lb accordingly, 

.e., lb = | K inc | . Finally, μ(G ) is initialized in step 3 according to

q. (8) ( μ[ v 1 ] = 1 ). In addition, the first | K inc | values of μ are

ounded by lb, and its remaining values are bounded by the size k 

f the independent set partition determined by COLOR-SORT . 

. Computationals 

In this section we assess the computational performance of 

he new BnB algorithm CliSAT presented in this work. The goal 

f this computational study is twofold: i ) to evaluate the perfor- 

ance of CliSAT with respect to its main components, covered 

n Section 3.2 ; ii ) to compare CliSAT against the state-of-art al- 

orithms in the literature, covered in Sections 3.3 and 3.4 . 

.1. Experimental setting and testbed of instances 

All the experiments have been carried out on a 20-core Intel(R) 

eon(R) CPU E5-2690 v2@3.00 gigahertz, disposing of 128 gigabyte 

f main memory and running a 64 bit Linux operating system. The 

ource code was compiled with gcc 5.4.0 and the -O3 optimiza- 

ion flag. The configuration parameters of CliSAT are as follows. 

n all the runs, during CliSAT ’s initial preprocessing phase the 

euristic AMTS is executed with a time limit of 0.05 seconds to 

etermine an initial large clique. Since our testbed contains a wide 

ariety of instances whose solution time varies from seconds to 

ays, we employ this very short and fixed time limit so as not to 

egrade the performance of CliSAT on the easy instances. More- 

ver, the CliSAT algorithm is typically able to find good quality 

euristic solutions at the early stages of the search, thus limit- 

ng the impact of initial solutions. According to our extensive pre- 

iminary results, running AMTS for 0.05 seconds during the ini- 

ial preprocessing phase was significant for a limited number of 

nstances of the DIMACS dataset, such as, for example, the subset 

rock800 or the instance keller5 . In the case of the BHOSLIB dataset, 

MTS only proved useful in those few cases where it found a max- 

mum clique, whereas CliSAT by itself was unable to do so under 

.05 seconds. Finally, fixing this very short time limit allows us to 
1017 
ocus on the impact of the new components of CliSAT . A system- 

tic analysis of the impact of the initial solutions on the overall 

erformance of CliSAT could be the object of future research. 

The time limit to determine each maximum independent set re- 

uired by COLOR-SORT is also fixed to 0.05 seconds (see the de- 

cription of the initial preprocessing phase of CliSAT at the end 

f the previous Section 2.5 for an explanation of this threshold). 

For the tests, we have considered a testbed of 791 instances 

hich comprises 501 structured instances (see Table 1 ) and 290 

niform random instances (see Table 4 ). The choice of orders and 

ensities of the 290 random instances is in accordance with sim- 

lar tests that can be found in the literature for exact MCP al- 

orithms, see, e.g., Table 2 of ( San Segundo et al., 2016c ). The

01 structured instances can be divided into the following 4 cat- 

gories (datasets): (i ) the 86 instances from the 2nd DIMACS Chal- 

enge ( http://dimacs.rutgers.edu/programs/challenge/ ); (ii ) the 41 

nstances from the BHOSLIB dataset; (iii ) 223 representative in- 

tances derived from binary constraint satisfaction problems (BC- 

Ps), which we denote the CSPLIB dataset and (i v ) 151 hard 

CP instances taken from different sources, hereafter the miscella- 

eous dataset MISCLIB . The 501 structured instances are publicly 

vailable in the github repository https://github.com/psanse/CliSAT . 

e consider this extended dataset, wrt typical clique benchmarks 

mployed elsewhere, an additional contribution of this work, and 

ope it will stimulate further research in this field. Moreover, the 

epository also contains a linux release of CliSAT and additional 

omparison performance results to those reported in this section. 

The DIMACS and BHOSLIB datasets are consistently employed 

n the literature to test exact MCP algorithms. The instances of our 

SPLIB dataset are obtained as follows: vertices represent spe- 

ific values of variable domains, and there is an edge between two 

ertices if the corresponding 2 values are compatible according to 

he constraints imposed on the original BCSP. It is worth men- 

ioning that all the instances from the BHOSLIB dataset also de- 

ive from BCSPs, which has motivated the choice of the CSPLIB . 
ast of all, the miscellaneous dataset MISCLIB comprises 4 fam- 

lies: (i ) the 20 instances of the recent evil dataset ( Szabó & 

aválnij, 2019 ), claimed to be harder than the BHOSLIB dataset 

 (ii ) 3 instances derived from monotone matrices ( mon ) ( Szabó,

013 ); (iii ) 78 instances (denoted vc ) derived from the 200 ver-

ex cover problems from the PACE Challenge (Track 1a) ( https: 

/pacechallenge.org/2019/vc/ ). Precisely, we have included those in- 

tances from the PACE Challenge with less than 8,0 0 0 vertices; 

i v ) the first 50 (out of more than 49,150) instances of the Gor-

on Royle’s 17 -clue Sudoku collection ( https://github.com/t-dillon/ 

doku/blob/master/data.zip ), and referred to as sud in the follow- 

ng. In the sud instances, vertices represent a specific number and 

quare of the 9 × 9 Sudoku grid, and there is an edge between two 

ertices if the corresponding (number, square) pairs are compatible 

ccording to the rules of the game. All the instances of sud have 

29 vertices and a unique maximum clique of order 81. 

Table 1 reports information related to the number of instances 

#inst.), order ( | V | ) and density ( d(G ) ) of our 501 dataset of struc-

ured instances classified by categories (datasets) and aggregated 

y families. As can be seen from the table, the average density of 

he different families of instances is high, i.e. with the exception of 

he family c-fat , the smallest average density is 0.49; moreover, 

n 15 out of the 24 families, the average density is greater than 

.75. It is also worth noting that some of the instances were not 

olved by any of the algorithms tested and remain open. 

.2. Empirical analysis of the main components of CliSAT 

In this section, we evaluate the impact on the performance 

f CliSAT of its main components over the entire 501 struc- 

ured instance dataset, considering a time limit of 1800 seconds. 

http://dimacs.rutgers.edu/programs/challenge/
https://github.com/psanse/CliSAT
https://pacechallenge.org/2019/vc/
https://github.com/t-dillon/tdoku/blob/master/data.zip
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Table 1 

Information on the dataset of 501 structured and dense MCP instances considered in this work. 

Number of vertices | V | Edge density d(G ) 

Category Family # instances min avg max min avg max 

DIMACS brock 12 200 466.7 800 0.50 0.67 0.75 

C 7 125 1,410.7 4,000 0.50 0.79 0.90 

c-fat 7 200 371.4 500 0.04 0.19 0.43 

dsjc 7 250 678.6 1,000 0.10 0.50 0.90 

gen 5 200 320.0 400 0.90 0.90 0.90 

ham 6 64 448.0 1,024 0.35 0.78 0.99 

john 5 28 208.8 496 0.56 0.78 0.91 

keller 3 171 1,436.0 3,361 0.65 0.74 0.82 

MANN 4 45 1,194.8 3,321 0.93 0.98 0.999 

p_hat 15 300 800.0 1,500 0.24 0.49 0.75 

san 15 200 346.7 1,000 0.50 0.73 0.90 

86 

CSPLIB aim 48 472 909.8 2,016 0.91 0.93 0.96 

B 25 529 627.0 729 0.72 0.74 0.75 

comp 25 330 616.4 1,050 0.88 0.93 0.96 

D 25 320 1,824.0 7,200 0.86 0.87 0.89 

ehi 25 2,079 2,144.5 2,205 0.95 0.95 0.95 

geom 25 1,000 1,000.0 1,000 0.88 0.90 0.91 

lat 25 613 3,023.0 6,961 0.97 0.98 0.99 

RB2 25 450 773.2 1,150 0.82 0.85 0.88 

223 

MISCLIB evil 20 120 182.6 253 0.87 0.94 0.98 

mon 3 343 528.0 729 0.79 0.81 0.84 

vc 78 153 1,501.8 7,400 0.82 0.96 0.9995 

sud 50 729 729.0 729 0.63 0.63 0.63 

151 

BHOSLIB frb 41 450 1,086.1 4,000 0.82 0.87 0.93 

Table 2 

Analysis of the main components of the algorithm CliSAT over the entire dataset of 501 instances. The time limit is set to 1800 sec- 

onds. 

CliSAT 

CliSAT No SATCOL No FiltCOL \FiltSAT No both 

Categ. #inst. #opt time [seconds] #opt time [seconds] #opt time [seconds] #opt time [seconds] 

DIMACS 86 72 59.8 67 63.3 68 50.8 67 58.0 

CSPLIB 223 213 72.3 175 82.0 147 86.7 144 85.6 

MISCLIB 151 138 52.5 130 61.0 77 117.0 74 84.2 

BHOSLIB 41 30 209.2 30 227.2 20 76.9 20 76.6 

Total 501 453 73.3 402 82.9 312 85.8 305 78.6 
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able 2 summarizes the results obtained. The table shows the 

umber of instances solved to proven optimality (#opt) grouped 

y categories, and the average time (in seconds) spent by the dif- 

erent algorithmic variants to prove optimality, i.e., those instances 

n which the time limit was reached are not included. Specifically, 

e report performance results for the following procedures: (i ) the 

lgorithm CliSAT ; (ii ) CliSAT without the SATCOL procedure 

described in Section 2.2.2 ); (iii ) CliSAT without the filtering pro- 

edures FiltCOL ( Section 2.3.1 ) and FiltSAT ( Section 2.3.2 ) for 

κ + 1) -partite branching nodes, and (i v ) CliSAT without both 

omponents. 

As shown in Table 2 , CliSAT solves to proven optimality 453 

nstances of the 501 dataset within the time limit, and removing 

ne or both of the components leads to a degradation in its perfor- 

ance. Specifically, if the filtering component, i.e., the procedures 

iltCOL and FiltSAT , is removed, 312 instances are solved, 

hereas if the component SATCOL is removed, 407 instances are 

olved. This indicates that the filtering component has more im- 

act on the overall performance of CliSAT than its counterpart 

ATCOL . In addition, the algorithm performs the worst when both 

omponents are removed, solving only 305 instances. This pro- 

ides clear empirical evidence that the main source of efficiency 

f CliSAT is the combined effect of both components. 
1018 
It is worth noting that, according to the reported results, the 

mpact of the filtering component of CliSAT is smaller on the 

IMACS dataset than on the other 3 datasets. A possible expla- 

ation for this fact is that in the DIMACS dataset, the average gap 

etween the clique number and the colour-based bound is larger 

han in the other 3 datasets. Consequently, the probability of find- 

ng (κ + 1) -partite nodes in the shallow levels of the branching 

ree is lower. In extensive preliminary tests we have observed that 

he incremental nature of CliSAT ’s branching scheme favours the 

ppearance of (κ + 1) -partite nodes, and might be one explana- 

ion for the “good” overall performance of CliSAT when com- 

ined with the FiltCOL \FiltSAT component. 

We also report the performance profile, see Dolan & Moré

2002) . The performance profile is constructed in the following 

ay. We compute the normalized time τ as the ratio of the com- 

uting time of each algorithm (which is ∞ if the instance is not 

olved to optimality within the time limit, here set to 1800 sec- 

nds) over the minimum computing time spent the tested algo- 

ithms. For each value of τ on the horizontal axis, the vertical axis 

eports the percentage of instances for which the corresponding al- 

orithm spent at most τ times the computing time of the fastest 

lgorithm (see Dolan & Moré, 2002 for further details). The chart 

nterpretation at both ends of the horizontal axis is as follows. At 
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Table 3 

Performance comparison of the algorithms CliSAT and MoMC for the entire strucured dataset of 501 instances: 

i ) 86 DIMACS instances (time limit 15 days); ii ) 223 CSPLIB instances (time limit 1800 seconds); iii ) 151 

MISCLIB instances (time limit 15 days for the evil , mon and vc families, 1800 seconds for the sud family) ; 

i v ) 41 BHOSLIB instances (time limit 15 days). 

CliSAT MoMC 

Time [seconds] Time [seconds] 

Categ. Family #inst. #opt avg. max. #opt avg. max. 

DIMACS brock 12 12 827.7 3,652.2 12 500.7 1,867.1 

C 7 3 9,263.2 27,660.5 3 11,689.1 34,936.7 

c-fat 7 7 0.05 0.1 7 0.03 0.1 

dsjc 7 5 17.5 86.2 5 22.9 112.3 

gen 5 5 0.1 0.1 5 0.4 1.1 

ham 6 5 0.1 0.1 5 5.0 24.5 

john 5 3 0.10 0.2 3 0.03 0.1 

keller 3 2 11.6 23.1 2 78.9 157.7 

MANN 4 4 90,361.5 361,440.5 4 242,661.6 970,637.5 

p_hat 15 14 1,215.8 16,289.6 14 1,082.2 14,453.0 

san 15 15 2.8 39.1 15 3.7 51.5 

86 75 75 

CSPLIB aim 48 47 133.5 1,459.7 20 215.8 1,620.4 

B 25 25 33.3 146.5 25 82.1 349.0 

comp 25 25 0.1 0.2 22 0.5 1.1 

D 25 25 51.7 858.4 22 18.3 191.5 

ehi 25 25 18.9 139.2 24 171.3 273.5 

geom 25 25 0.4 4.9 25 2.7 12.0 

lat 25 16 65.8 528.1 8 49.3 158.2 

RB2 25 24 153.0 1,514.6 22 64.4 662.5 

223 212 168 

MISCLIB evil 20 20 4,176.4 54,828.4 17 13,721.2 165,792.0 

mon 3 3 22,722.8 68,019.1 2 209.3 415.9 

vc 78 76 7,262.6 406,912.1 63 62.9 1,463.0 

sud 50 50 1.5 16.9 1 1.6 1.6 

151 149 83 

BHOSLIB frb30-15 5 5 0.1 0.1 5 0.3 0.4 

frb35-17 5 5 0.2 0.4 5 1.0 1.5 

frb40-19 5 5 1.0 2.9 5 3.3 5.8 

frb45-21 5 5 31.1 100.7 5 76.8 168.1 

frb50-23 5 5 612.8 2,534.4 5 1,400.6 5,932.0 

frb53-24 5 5 861.6 1,557.3 5 1,758.0 3,415.1 

frb56-25 5 5 19,907.5 53,642.3 5 45,209.2 121,379.9 

frb59-26 5 5 73,261.5 108,058.4 5 146,109.4 257,586.4 

frb100-40 1 0 tl – 0 tl –

41 40 40 

Total 501 476 366 
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= 1 , the value of the curves is equal to the percentage of in-

tances which the corresponding algorithm solves to optimality in 

ess time. At the right-end, i.e., the largest value of τ , each curve 

orresponds to the percentage of instances solved to optimality by 

he specific algorithm. Consequently, in the performance profile the 

est performance is achieved by those algorithms whose curves 

ppear highest in the chart, “wrapping” the other curves. 

According to Fig. 7 , the best performing algorithm is, clearly, 

liSAT , which is the fastest in slightly less than 90% of the in-

tances (left-end of the figure), and also solves the largest amount, 

.e., slightly over 90% (as shown by the intersection of its curve in 

he right-end) within the time limit. The performances of the other 

lgorithmic variants are consistent with the results reported in 

able 2 . Precisely, the filtering variant (no SATCOL ) performs sec- 

nd best, solving to optimality slightly over 80% of the instances, 

ollowed by the variant without filtering, which solves slightly over 

2% of the instances. Finally, the performance profile of the vari- 

nt without both components is dominated by the other 3 curves, 

hich appear on top in the chart. 

We end the section reporting the impact of the components 

f CliSAT on the number of the recursive calls (steps) made 

y the algorithm during branching. The reduction of the number 

f steps is significant, and can go up to an order of magnitude. 

he average number of steps of CliSAT for this subset of in- 

tances is approximately 1 . 7 × 10 5 . On the other hand, the vari-
1019 
nt “no FiltCOL \FiltSAT ” explores 2 . 0 × 10 6 steps, the variant 

no SATCOL ” explores 9 . 4 × 10 6 steps and, finally, the variant “no 

oth” explores 1 . 8 × 10 7 steps. To avoid any distortion in the data, 

ue to time limits, we consider in the above reported averages only 

hose instances that are solved to proven optimality by all the vari- 

nts of CliSAT . 

.3. Comparison between CliSAT and MoMC over structured 

nstances 

We compare in detail the performance of CliSAT against the 

xact combinatorial BnB algorithm MoMC ( Li et al., 2017 ). MoMC is 

he most recent and successful SAT-based algorithm for the MCP 

o the best of our knowledge. In this section, we consider for com- 

arison purposes the 501 structured instance dataset described 

n Section 3.1 . The results obtained are reported in the Table 3 .

he tables show aggregated results by families for the categories 

datasets) DIMACS , CSPLIB , MISCLIB and BHOSLIB respectively, 

eporting the number of instances solved (#opt) and the average 

nd maximum times in seconds spent by the 2 algorithms to solve 

he instances to proven optimality. 

We fixed the time limit to 15 days for families of instances 

hich either had been consistently employed in the recent lit- 

rature for similar purposes, i.e., the DIMACS and BHOSLIB 
atasets, or we considered relevant, i.e., evil , mon and vc . For 
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Fig. 7. Performance profile of the main components of the algorithm CliSAT over the entire dataset of 501 instances. The time limit was fixed at 1800 seconds. 

Table 4 

Comparison between the algorithms CliSAT , LMC and MoMC over 290 uniform random 

graphs. In all the instances with more than 10,0 0 0 vertices, MoMC reported a memory prob- 

lem (indicated by “_”). 

Clique number ω(G ) Average time [seconds] 

| V | d(G ) #inst. min. av. max. CliSAT LMC MoMC 

150 0.7 10 16 16.5 17 0.06 0.02 0.05 

150 0.8 10 22 22.9 24 0.08 0.05 0.07 

150 0.9 10 35 37.1 41 0.10 0.09 0.10 

150 0.95 10 53 54.5 57 0.05 0.01 0.01 

200 0.7 10 18 18.2 19 0.12 0.13 0.17 

200 0.8 10 24 25.1 26 0.63 0.88 1.11 

200 0.9 10 39 40.7 42 3.56 6.11 3.73 

200 0.95 10 60 62.3 64 0.40 0.79 0.49 

200 0.98 10 91 94.7 98 0.05 0.02 0.02 

300 0.6 10 15 15.4 16 0.25 0.44 0.37 

300 0.7 10 20 20.2 21 2.02 3.52 5.03 

300 0.8 10 28 28.5 30 41.32 58.44 98.18 

500 0.4 10 10 10.7 11 0.13 0.19 0.23 

500 0.5 10 13 13.3 14 0.67 1.23 1.36 

500 0.6 10 17 17.0 17 9.09 17.20 12.86 

500 0.7 10 22 22.4 23 335.06 448.65 728.74 

500 0.99 10 261 266.2 276 0.06 0.68 0.65 

1000 0.2 10 7 7.5 8 0.09 0.10 0.17 

1000 0.3 10 9 9.2 10 0.40 0.61 0.78 

1000 0.4 10 12 12.0 12 3.54 6.27 5.15 

1000 0.5 10 15 15.0 15 80.13 148.89 113.47 

3000 0.1 10 6 6.4 7 0.31 0.42 0.98 

3000 0.2 10 9 9.0 9 4.41 4.90 5.19 

5000 0.1 10 7 7.0 7 1.31 2.11 3.18 

5000 0.2 10 9 9.1 10 62.87 51.18 59.90 

10,000 0.1 10 7 7.4 8 21.62 19.39 21.00 

15,000 0.1 10 8 8.0 8 126.10 74.81 –

20,000 0.1 10 8 8.0 8 549.11 221.58 –

30,000 0.1 10 8 8.0 8 5,565.21 1313.10 –
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xample, the evil family is interesting because, as mentioned in 

ection 3.1 , the creators claim it to be harder than BHOSLIB . For

he CSPLIB dataset and the Sudoku family ( sud ), the time limit 

as reduced to 1800 seconds for practical purposes. 

According to Table 3 , CliSAT consistently outperforms 

oMC solving more instances than its counterpart or spending 

ess time, on average, when both algorithms solve the same 

umber of instances to proven optimality. It is worth mentioning 

hat there is no family in which MoMC solves more instances 
1020 
han CliSAT . In detail, CliSAT solves within the time limit 75 

IMACS instances out of a possible 86, 212 CSPLIB instances out 

f a possible 223, 149 MISCLIB instances out of a possible 151 

nd 40 out of the 41 instances of the BHOSLIB dataset. Overall, 

t is able to solve to proven optimality 476 instances out of a pos- 

ible 501. In contrast, MoMC solves the same number of instances 

s CliSAT from the DIMACS and BHOSLIB datasets, but its 

erformance drops to 168 instances from MISCLIB , and 83 from 

SPLIB . Altogether, MoMC manages to solve within the time limit 
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66 instances out of the possible 501, i.e., 110 instances less than 

liSAT . 
One possible explanation for the difference in the number of 

nstances solved from the CSPLIB dataset, and also the evil and 

ud families ( MISCLIB ), is the pruning ability of the new filtering 

omponent of CliSAT . This is because, in these instances, there is 

ore probability of finding (κ + 1) -partite branching nodes in the 

hallow levels of the tree. 

Also from the reported results in the Table, and comparing in- 

tances of similar size, the evil family is much harder to solve 

han the BHOSLIB dataset for MoMC , in accordance with what is 

laimed in the literature, see Szabó & Zaválnij (2019) . However this 

s not the case for CliSAT , which manages to solve the 20 evil 
nstances within the time limit. CliSAT also outperforms MoMC 
n the BHOSLIB dataset, e.g., it is more than twice as fast in the 

nstances from the family frb59-26 . With respect to the 50 Su- 

oku instances, the difference in performance in favour of CliSAT 
s even more acute, solving all the instances in an average time 

f 1.5 seconds, whereas MoMC is able to solve just one instance. 

n addition, Table 2 clearly shows that the filtering component of 

liSAT is the major cause of its good performance on the sud 
amily. 

To end the section, we highlight that even though CliSAT 
utperforms MoMC in most of the families, there are exceptions. 

pecifically, in the (hard) families brock and p_hat from the 

IMACS dataset, MoMC significantly outperforms CliSAT . The 

rock family is very sensitive to initial pre-processing, so it is 

ifficult to relate the poor performance of CliSAT on this family 

ith its algorithmic components. In the case of p_hat , the com- 

uting performance of CliSAT is reasonably close to MoMC . The 

ther 2 cases in which MoMC outperforms CliSAT are the fam- 

ly c-fat and 3 instances of the family john . These are easy in-

tances solved by both algorithms in less than 1 second, and there- 

ore not representative enough, in our opinion, to draw any conclu- 

ion. 

.4. Comparison between CliSAT , MoMC and LMC over uniform 

andom instances 

We also compare the algorithms CliSAT and MoMC , together 

ith the algorithm LMC ( Jiang et al., 2016 ) designed for sparse 

raphs, over a set of 290 Erdös-Rényi random G (n, p) graphs of 

ifferent sizes ( n = | V | ranging from 150 up to 30,0 0 0) and edge

ensities (see Table 4 for the specific density values tested). These 

niform random graphs are created according to a given proba- 

ility (equal to the desired edge density value) of existence of an 

dge between any pair of vertices, and are commonly used for test- 

ng clique algorithms; precisely, the testbed employed is the same 

s the one used in San Segundo et al. (2016c) , extended with the

amilies G (20 , 0 0 0 , 0 . 1) and G (30 , 0 0 0 , 0 . 1) . For each of the 29 dif-

erent classes of random graphs considered, we run 10 instances 

ith similar features. All instances were solved to optimality by 

oth algorithms within the time limit, with the exception of the 

nstances from the families n ≥ 15 , 0 0 0 , for which MoMC reported

 memory problem in all 10 cases. 

According to Table 4 , CliSAT also outperforms MoMC in this 

estbed (not taking into account families where a memory prob- 

em is reported). In detail, CliSAT is faster than MoMC (on av- 

rage) in 23 families out of a possible 29. The bigger differences 

n favour of CliSAT occur in the dense graphs of order 300 and 

00. For example, CliSAT is more than twice as fast in the classes 

 (300 , 0 . 8) and G (500 , 0 . 7) than its counterpart. From the table, it

an also be observed that the difference in performance between 

oth algorithms becomes less acute as the order of the graphs in- 

rease for those families with n ≥ 10 0 0 (densities ≤ 0 . 5 ). On the

ther hand, LMC outperforms CliSAT (and MoMC ) in the large 
1021 
raphs with 0.1 density, i.e., n ≥ 15 , 0 0 0 , also scaling much bet-

er as the size of the graphs increase. This is consistent with the 

act that LMC is designed precisely for large and massive graphs 

ith small densities. LMC is also the fastest in some small easy in- 

tances, possibly because of CliSAT ’s initial pre-processing phase 

see Section 2.5 ). 

.5. Comparison with algorithms designed for sparse real-world 

raphs 

As mentioned in the introductory section, the algorithm 

liSAT is tailored to solve hard dense graphs of small and 

edium order, i.e. | V | ≤ 25 , 0 0 0 . Existing algorithms for sparse

arge and massive real-world graphs, such as, e.g., Hespe et al. 

2020) ; Jiang et al. (2016) ; San Segundo et al. (2016b) ; Walteros

 Buchanan (2020) (see also the introductory section), exploit the 

pecific topology of such networks, e.g. the fact that the clique 

umber is usually “close” to the graph’s degeneracy γ (G ) . We recall 

hat the degeneracy γ (G ) of a graph G (also known as the graph’s

 -core ) is the maximum integer such that a subgraph G 

′ of G exists

ith minimum degree δ(G 

′ ) greater or equal than γ (G ) . It follows

hat γ (G ) + 1 is an upper bound on the clique number ω(G ) of

he graph. Such algorithms rely heavily on kernelization , i.e., a pre- 

rocessing stage (typically) in which the original input network is 

eplaced by a smaller network called a kernel , and other reduction 

echniques inspired in the vertex cover problem, see, e.g., Hespe 

t al. (2020) , that are employed in the nodes of a combinatorial 

ranch-and-reduce tree. 

The aim of this section is to establish an approximate (not 

xhaustive) performance comparison between CliSAT and the 

tate-of-the-art algorithms for real-world graphs. For this purpose, 

e have selected the algorithms LMC ( Jiang et al., 2016 ), dOmega 
 Walteros & Buchanan, 2020 ) and BBMCSP ( San Segundo et al., 

016b ). The 3 algorithms employ some form of kernelization, but 

hile dOmega is of the type branch-and-reduce, BBMCSP and LMC 
re branch-and-bound algorithms that employ kernelization during 

re-processing. 

Table 5 reports results over 27 real-world networks with less 

han 150,0 0 0 vertices: 22 networks are taken from the DIMACS10 , 
NAP and Social Networks collections and 5 from other 

ources (all the instances are available at the network repository 

ttp://www.networkrepository.com/ ). Specifically, the dataset con- 

ains all the instances with less than 150,0 0 0 vertices reported in 

iang et al. (2016) and a subset of those reported in San Segundo 

t al. (2016b) ; Walteros & Buchanan (2020) . In the latter case, the 

eal-world graphs with less than 150,0 0 0 vertices are all relatively 

asy. The table shows the number of vertices and edges, the de- 

eneracy ( γ (G ) ), the clique number( ω(G ) ) and the time spent by

he 4 algorithms for the 27 instances reported. In all the tests, the 

ime limit was fixed at 7200 seconds. The | V | < 150 , 0 0 0 constraint

s motivated by the memory requirements of CliSAT , which are 

oo large for massive graphs since it stores the full adjacency ma- 

rix in memory to operate efficiently with vertex neighbourhoods 

sing bitmasks. 

According to Table 5 , CliSAT is outperformed by at least one 

f the other 3 algorithms in 25 out of the 27 instances, be- 

ng the fastest in the two smallest instances bio-human-gene1 
nd bio-human-gene2 . Nevertheless, CliSAT solves all the in- 

tances within the time limit, whereas BBMCSP and dOmega are 

nable to solve one instance each. Besides the two smallest in- 

tances, CliSAT also performs similarly to the best algorithm 

MC in the instance bio-mouse-gene , performs better than 

BMCSP in 2 instances and better than dOmega in 5. The re- 

orted results also show that LMC is the best algorithm for this 

ataset, and that kernelization is an effective technique specially 

http://www.networkrepository.com/
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Table 5 

Performance comparison of the algorithm CliSAT with 3 state-of-the-art algorithms designed for real-world networks, over a set of 27 instances with | V | < 150 , 0 0 0 . The 

symbol tl indicates that the time limit of 7200 seconds was reached. 

LMC BBMCSP dOmega CliSAT 

Source Name | V | | E| γ (G ) ω(G ) Time [seconds] Time [seconds] Time [seconds] Time [seconds] 

Misc. bio-human-gene2 14,340 9,027,024 1902 1300 87.5 2524.4 102.5 5.2 

Misc. bio-human-gene1 22,283 12,323,680 2047 1335 224.9 tl 210.0 40.8 

SNAP p2p-Gnutella24 26,518 65,369 5 4 0.0 0.0 0.0 0.1 

SNAP Cit-HepTh 27,769 352,285 37 23 0.0 0.1 0.3 0.2 

DIMACS10 delaunay_n15 32,768 98,274 4 4 0.0 0.0 0.0 0.2 

SNAP Cit-HepPh 34,546 420,877 30 19 0.0 0.2 0.2 0.2 

Misc. sc-TSOPF-RS-b2383-c1 38,120 16,115,324 655 7 6.3 3.7 106.8 6.0 

DIMACS10 cond-mat-2005 40,421 175,691 29 30 0.0 0.0 0.0 0.2 

DIMACS10 fe-body 45,087 163,734 6 6 0.0 0.0 0.0 0.3 

Biolog. bio-mouse-gene 45,101 14,461,095 1045 561 87.8 4141.4 2375.6 94.9 

DIMACS10 t60k 60,005 89,440 2 2 0.0 0.0 0.1 0.5 

DIMACS10 wing 62,032 121,544 3 3 0.0 0.1 0.0 0.5 

DIMACS10 delaunay_n16 65,536 196,575 4 4 0.0 0.1 0.1 0.6 

Misc. rec-movielens 71,567 9,991,339 531 29 15.0 75.0 tl 70.2 

SNAP soc-Epinions1 75,879 405,740 67 23 0.1 0.2 0.6 0.9 

DIMACS10 fe-tooth 78,136 452,591 7 5 0.0 0.2 0.3 1.1 

Social soc-Slashdot0902 82,168 504,230 55 27 0.0 0.2 0.4 1.1 

Misc. ia-enron-email-dynamic 87,273 297,456 53 33 0.0 0.1 0.2 26.1 

Social soc-BlogCatalog 88,784 2,093,195 221 45 1.5 3.9 186.5 236.8 

DIMACS10 fe_rotor 99,617 662,431 8 5 0.1 0.3 0.4 2.5 

Social soc-buzznet 101,163 2,763,066 153 31 1.1 3.2 43.0 10.1 

Social soc-LiveMocha 104,103 2,193,083 92 15 0.4 2.1 4.0 4.3 

DIMACS10 598a 110,971 741,934 8 7 0.1 0.5 0.3 2.3 

Social soc-wiki-conflict 118,100 2,027,871 145 25 0.5 1.3 7.4 47.1 

DIMACS10 delaunay_n17 131,072 393,176 4 4 0.0 0.2 0.1 2.4 

DIMACS10 fe-ocean 143,437 409,593 4 2 0.0 0.2 0.2 2.9 

DIMACS10 144 144,649 1,074,393 9 7 0.1 0.7 0.6 4.6 
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hen applied to the instances with millions of edges such as, e.g., 

oc-BlogCatalog , rev-movielens and soc-buzznet . 
The reduction techniques employed by dOmega in the search 

ree are less effective when the gap between the graph’s degener- 

cy and its clique number is large (with the exception of the two 

mallest graphs). In contrast, the algorithms BBMCSP and LMC are 

ess affected by this gap, possibly because they rely more on typ- 

cal maximum clique techniques employed for small and medium 

ense graphs. 

.6. Comparison with additional MCP exact approaches 

In order to provide a broader picture of the performance of 

liSAT , we provide a comparison against integer linear program- 

ing (ILP) formulations, solved by a general purpose ILP solver, 

nd 3 additional effective combinatorial branch-and-bound algo- 

ithms from the literature. 

Let x v be a binary variable taking value 1 if and only if vertex 

 ∈ V (G ) belongs to the maximum clique. The natural ILP formula-

ion for the MCP reads as follows: 

(G ) = max 
∑ 

u ∈ V 
x u (9a) 

 u + x v ≤ 1 , ∀ (u, v ) ∈ E (G ) , (9b) 

 u ∈ { 0 , 1 } , ∀ u ∈ V (G ) . (9c) 

The objective function (9a) corresponds to the total number 

f vertices of the maximum clique. Constraints (9b) impose that 

t most one vertex from each pair of non-adjacent vertices is 

elected. It is well known that the linear programming (LP) re- 

axation of this formulation provides a very weak upper bound 

| V | / 2 . In line with what is typically done in the literature to

trengthen Constraints (9b) , we consider a collection C of inde- 

endent sets of the graph G , covering all the pairs of non-adjacent 
1022 
ertices { u, v } ∈ E (G ) . We therefore can replace Constraints (9b) by:

 

u ∈ I 
x u ≤ 1 , ∀ I ∈ C . (10) 

onstraints (10) impose that no more than a single vertex is se- 

ected from each independent set I ∈ C . Different heuristic proce- 

ures can be used for creating C ; we employ the one proposed in

ettinelli, Cacchiani, & Malaguti (2017) . 

We use the IBM CPLEX Optimizer version 12.8, one of the 

tate-of-the-art commercial solvers, to tackle the ILP model (9) en- 

anced by Constraints (10) . According to extensive preliminary ex- 

eriments, these constraints have a positive impact on the perfor- 

ance of the solver. The solver also generates several additional 

alid inequalities of type (10) (as well as several other families 

f general purpose valid inequalities) during the execution of its 

ranch-and-cut scheme to further strengthen the LP relaxation of 

he formulation. For a fair comparison against the branch-and- 

ound algorithms, the solver is run in single-thread mode (with 

efault parameters). We denote this methodology to solve the MCP 

ased on an ILP formulation as CPLEX in the remainder of this 

ection. 

We now briefly introduce 3 additional combinatorial branch- 

nd-bound algorithms for the MCP from the literature that are 

ested in this work: 

• IncMC2 ( Li et al., 2018a ): An incremental SAT-based solver 

in the lines of MoMC , but which was developed some time 

earlier. 
• BBMCX ( San Segundo et al., 2015 ): An incremental SAT-based 

solver, denoted infrachromatic (see also Section 1.2 ), whose 

reasoning scheme is restricted to determining (a subset of) 

conflicting independent sets of cardinality 3. The algorithm 

also employs a similar bit-encoding as CliSAT to represent 

the graph and sets of vertices in memory. 
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Fig. 8. Performance profile of the algorithm CliSAT and other 6 state-of-the-art algorithms over the entire dataset of 501 structured instances. The time limit is fixed at 

1800 seconds. 

Fig. 9. Box plots of the performances of CliSAT and other 6 state-of-the-art algorithms over the entire dataset of 501 structured instances. The time limit is fixed at 

1800 seconds. 
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• CLIQUER ( Östergård, 2002 ): To the best of our knowledge, 

the first successful exact MCP solver that employs the Rus- 

sian Doll Search (RDS) branching scheme. 

Fig. 8 shows the performance profile (see Dolan & Moré, 2002 ) 

f the 3 algorithms described above plus CPLEX , together with 

liSAT , MoMC and LMC , over our 501 structured instance dataset. 

ccording to Fig. 8 , the best performing algorithm is, clearly, 

liSAT , which is the fastest in more than 63% of the instances 

left-end of the figure), and also solves the largest amount, i.e., 

lightly over 90% (as shown by the intersection of its curve in the 

ight-end). The algorithms MoMC and IncMC2 are the second best 

erformers according to the figure, MoMC solving to optimality 2 

ore instances (343) than its counterpart IncMC2 (341); this rep- 
1023 
esents slightly more than 63% of the 501 dataset in both cases. 

he fourth performer is CPLEX , which initially solves around 18% 

f the instances, and shows the best slope as τ increases, solving 

ore than 64% of the instances to optimality. The worst perform- 

ng solvers according to the figure are BBMCX , which solves more 

han 51% of the instances and, finally, LMC and CLIQUER , which 

anaged to solve slightly over 33% and 24% of the instances re- 

pectively. 

We end the section by showing in Fig. 9 the computing time 

oxplots of the 7 algorithms. The figure plots the time (in seconds 

nd logarithmic scale) spent by each algorithm through their quar- 

iles. Precisely, each box represents the first (lower) and third (up- 

er) quartiles, and the line separating both quartiles is the median 

f the reported CPU time distribution; the lines extending verti- 
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ally from the boxes (known as whiskers ) indicate the variability 

utside the upper and lower quartiles. Outside the whiskers, the 

utliers (heterogeneous results) are plotted as individual points. 

he numbers in the top row (header #OPT) show the number 

f instances solved to proven optimality within the time limit of 

800 seconds by each of the algorithms. Fig. 9 evidences the supe- 

ior computing times of CliSAT , and is consistent with the results 

eported in the performance profile. It solves the largest amount 

f instances within the time limit (453), and presents the best me- 

ian, which is slightly below 1 second. 

. Conclusions and future work 

In this paper we present a very efficient combinatorial branch- 

nd-bound exact algorithm CliSAT for the maximum clique prob- 

em. CliSAT combines all the recent state-of-the-art techniques 

ith two new bounding procedures: (i ) a filtering phase which 

xploits the notion of (κ + 1) -partite branching nodes, i.e., nodes 

hat are associated to a (κ + 1) -partite graph and which require 

recisely a (κ + 1) -clique to improve the incumbent solution; 

ii ) a partial maximum satisfiability-based procedure that prunes 

ranching candidate vertices grouped according to independent 

ets, instead of individually. Our implementation has been ex- 

ensively tested over a dataset of more than 700 instances from 

he literature, where it outperforms the state-of-the-art algorithms 

ometimes by several orders of magnitude. 

A number of conclusions may be drawn from the tests. To be- 

in with, empirical evidence suggests that the two new bounding 

echniques presented do not dominate each other and that the fil- 

ering phase of CliSAT is more effective in those instances where 

he gap between the chromatic number and the clique number is 

small”. Another conclusion is that, contrary to what is suggested 

n the recent paper entitled Why is Maximum Clique Often Easy 

n Practice? ( Walteros & Buchanan, 2020 ), the problem remains 

ery hard in practice, as witnessed by the instances that could not 

e solved to proven optimality by any of the algorithms tested. 

learly, further breakthroughs will be required to solve these very 

ard instances. An open question is whether these breakthroughs 

ill come in the form of new heuristics for partial maximum sat- 

sfiability or in some other form. Another open question is the im- 

act that the incremental branching scheme of CliSAT has on the 

ffectiveness of its filtering phase. Intuitively, it would seem that 

ncremental branching favours the appearance of (κ + 1) -partite 

ranching nodes in the shallow levels of the branch-and-bound 

ree, which, in turn, might be pruned with higher probability by 

he filtering phase of CliSAT . 
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