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A B S T R A C T

Early diagnosis of brain tumors is critical for enhancing patient prognosis and treatment options, while accurate
classification and segmentation of brain tumors are vital for developing personalized treatment strategies.
Despite the widespread use of Magnetic Resonance Imaging (MRI) for brain examination and advances in
AI-based detection methods, building an accurate and efficient model for detecting and categorizing tumors
from MRI images remains a challenge. To address this problem, we proposed a deep Convolutional Neural
Network (CNN)-based architecture for automatic brain image classification into four classes and a U-Net-
based segmentation model. Using six benchmarked datasets, we tested the classification model and trained the
segmentation model, enabling side-by-side comparison of the impact of segmentation on tumor classification
in brain MRI images. We also evaluated two classification methods based on accuracy, recall, precision,
and AUC. Our developed novel deep learning-based model for brain tumor classification and segmentation
outperforms existing pre-trained models across all six datasets. The results demonstrate that our classification
model achieved the highest accuracy of 98.7% in a merged dataset and 98.8% with the segmentation approach,
with the highest classification accuracy reaching 97.7% among the four individual datasets. Thus, this novel
framework could be applicable in clinics for the automatic identification and segmentation of brain tumors
utilizing MRI scan input images.
1. Introduction

The most prevalent form of brain disease is brain tumors, which
are also the cause of brain cancer. In this kind of cancer, which is
deadly, and prompt, the diagnosis of brain tumors is critical (Arokia
Jesu Prabhu & Jayachandran, 2018). It is caused by an abnormal and
unregulated increase in the number of brain cells (Razzak, Imran, &
Xu, 2018). Brain tumors are classified in a variety of ways. One of the
most common types of classification is the division of brain tumors into
benign and malignant tumor types. Benign-type brain tumors form on
the inner side of the skull, but not in the brain tissue. Benign tumors
in the brain can occasionally be life-threatening. Meningiomas are a

∗ Corresponding author.
∗∗ Corresponding author.

E-mail addresses: atika.iit.ju@gmail.com (A. Akter), nazeela.stu2016@juniv.edu (N. Nosheen), sabbir.iit.ju@gmail.com (S. Ahmed),
mariom.stu2016@juniv.edu (M. Hossain), yousuf@juniv.edu (M.A. Yousuf), maabdullah@kku.edu.sa (M.A.A. Almoyad), fida.hasan@qut.edu.au (K.F. Hasan),
m.moni@uq.edu.au (M.A. Moni).

common kind of benign tumor (almost 30%). Meningiomas are slow-
growing tumors that make up about 85% of all cases. Meningiomas
are more frequently diagnosed in women than in men. They have a
good probability of being surgically removed as they rarely spread
to adjacent brain tissue. Although meningiomas can occasionally de-
velop into malignant tumors. Pituitary tumors originate in the pituitary
glands, and these glands govern hormones and physiological processes.
Pituitary tumors are noncancerous tumors that do not spread to other
organs. Although pituitary tumors seldom progress to cancer, the prob-
lems can lead to long-term hormone insufficiency and loss of vision.
Malignant tumor cells are abnormal cells that increase uncontrolled and
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irregularly. Normal tissues can be compressed, infiltrated, or destroyed
by these tumors. The most common variety of malignant brain tumors
is noted to be gliomas. Gliomas account for approximately 33% of all
brain tumors. They rarely develop in the spine or other organs of the
body, but they can develop quickly and can invade healthy tissues in
the surrounding area (Irmak, 2021a). Since brain tumors are a life-
threatening disease, initial detection of brain tumors can be fruitful in
saving a patient’s life by delivering optimal treatment. However, it can
take some time because a patient may need to undergo various brain
tumor diagnosis measures.

Machine learning can be advantageous in determining the presence
and type of brain tumors; however, additional human intervention
is necessary, as machine learning models are based on predictions.
In contrast, deep learning models can learn and detect features on
their own through neural networks, which is the ultimate goal of
incorporating the entire detection process in an automated way. Some
of the research works incorporated machine learning approaches into
their work. Mohamed Shakeel, Tobely, Al-Feel, Manogaran, and Baskar
(2019) employed a Near Infrared Imaging (IR) mechanism for detecting
brain tumors with a size of less than 3 mm (arbitrary random value) that
could not be detected using Computed Tomography (CT) or MRI scans.
They sent the thermal information via WSN. The feature vector, gray
level co-occurrence matrix, support vector machine (SVM), statistical
features, and backpropagation neural network are shown here. Sharif,
Li, Khan, and Saleem (2020) used a pre-trained Inception architecture
3 to extract features, and then the features were incorporated with
dominate Rotate LBP for superior texture analysis. The feature vectors
were optimized employing a particle swarm optimization algorithm,
and the softmax classifier performed the classification.

The majority of research papers utilized a segmentation strategy
with a binary classification focus on determining whether or not an
MRI contained a tumor. Segmentation methods are used before classi-
fication, but the classifier and segmentation datasets differ from each
other. These approaches add more error to classifier training since the
first model provides a probabilistic segmented tumor image, which
itself cannot have 100 percent accuracy. Again, none of the more recent
studies has demonstrated the effects of segmentation before classifica-
tion and the result of whole MRI because, biologically speaking, the
classification of tumors depends on their position in the human brain.

Deep learning networks have gained significant popularity in medi-
cal diagnosis due to their ability to efficiently process large volumes of
complex data, such as medical images, and accurately identify patterns
indicative of diseases (Islam et al., 2023; Suzuki, 2017; Talukder et al.,
2022). In recent years, numerous deep learning-based models have
been examined for brain tumor detection. Of these models, the Con-
volutional Neural Network (CNN) architecture has been predominantly
utilized, owing to its exceptional performance and flexibility. The CNN
model executes feature extraction and classification through various
training layers, which can be increased or decreased with respect to the
resultant performance (Islam, Hossain, Akhtar, Moni, & Hasan, 2022;
Yamashita, Nishio, Do, & Togashi, 2018). Regarding these aspects, in
this research, the CNN architecture is used. MRI images of brain tumors
are used as datasets because of their high-quality and non-ionizing
radiation properties. The conventional practice for segmenting tumor
areas is manual segmentation. However, it is exorbitant, exhausting,
and prone to inter-observer variability (Menze et al., 2014). As a result,
automated tumor segmentation is preferred, especially when dealing
with massive amounts of data and the need for constant tumor obser-
vation and pliable treatment planning. Due to the wide range of tumor
sites, forms, and architectures, effective automated tumor segmentation
is generally difficult (Naser & Deen, 2020). A U-Net architecture-based
model is created to segment the tumor portions and the model offers
segmented tumor areas for MRIs.

The following are the main contributions of the article:
2 
• A classification model for tumor MRI multiclassification has been
proposed and evaluated on four separate individual datasets and
two merged datasets that are the composite of these individual
datasets. The classification model was tested against 5 pre-trained
models.

• A segmentation model that accepts input MRIs and creates masked
pictures has been suggested. Although the model was trained
using a manually constructed mask from the Merged dataset 1,
it can also produce masks for other datasets.

• The typical strategy of doing segmentation first and then classi-
fication has been evaluated, and the results show that the clas-
sification approach with segmentation performs better by a very
small margin. Consequently, the classification may be performed
without even performing segmentation, which undoubtedly cuts
down on the time it takes to train two models (segmentation and
classification models).

• Merged dataset 1 has been manually masked with expert assis-
tance and consists of a large number of images divided into four
groups (glioma, meningioma, pituitary, and no tumor)

The rest of the paper is structured as follows: Section 2 includes a
comprehensive review of all datasets and techniques, including infor-
mation on single, merged, augmented, and segmented datasets, data
pre-processing, and classification and segmentation methods. Section 3
details the results as well as the additional training and validation
methods. Finally, the conclusion is appended in Section 4.

2. Literature review

Due to the significant contributions that deep learning models can
make to this topic, some pertinent articles have been extensively cov-
ered in this section.

Mohsen, El-Dahshan, El-Horbaty, and Salem (2018) have created
a Deep Neural Network (DNN) classifier integrated with principal
component analysis and discrete wavelet transform to classify MRIs
into 4 classes. Images were segmented using fuzzy C-means clustering.
Although they performed classification with a very small dataset of 66
brain MRIs. Özyurt, Sert, Avci, and Dogantekin (2019) implemented
a method to categorize brain tumors as malignant or benign using a
hybrid neutrosophic set-expert maximum fuzzy-sure entropy convolu-
tional neural network classification technique. A comparison carried
out for two classifiers, and Support Vector Machine (SVM) gave an
accuracy of 95.62%. However, they only classified tumors as benign
or malignant.

Sajid, Hussain, and Sarwar (2019) devised a method that imple-
mented a hybrid CNN with 2 path CNN and 3 path CNN using a patch-
based technique considering local and contextual information. Glioma
tumor regions are segmented using a patch-based approach. They
segmented tumors into Higher Grade Glioma (HGG) and Lower Grade
Glioma (LGG), but no classification was performed. Irmak (2021b) put
forward a model for classifying brain MRIs with Deep CNN and grid
search optimizer-tuned hyper-parameters with the motivation to build
three different models for the classification of tumors. Although their
second model, which classifies tumors into five classes, achieved less
accuracy 92.66% compared to the other two models.

Sultan, Salem, and Al-Atabany (2019) proposed an approach using
CNN architecture to classify brain MRIs into three distinct groups and
distinguish into different glioma grades. However, the dataset used
to distinguish glioma grades is smaller and should be evaluated on a
larger group of datasets. Havaei et al. (2017) proposed a two-pathway
CNN architecture that is capable of extracting local features along with
global features of the brain tumors concurrently. In the two-training
phase, the CNN base output is fed again into the CNN subsequently.
However, the architecture is required to be observed in large datasets
for efficiency in handling huge magnetic resonance imaging. Badža and

Barjaktarović (2020) introduced a CNN approach to classifying tumors
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into three classes: meningioma, glioma, and pituitary. Four evaluation
approaches have been used by aggregating two databases and two 10
ross-validation approaches. Both the 10 fold record and the subject-
ise cross-validation approach have been used on the original and
ugmented images for evaluation. Amin, Sharif, Yasmin, and Fernandes
2018) divided the input image into a number of patches and, using a
re-trained CNN model, the core pixel of each patch is calculated then
ombining all the predicted results. They classified the tumor into HGG
nd LGG with different tumor regions. They claimed that the average
rocessing time is only 5.02 s.

An automated deep multi-scale 3D CNN is recommended by Mzoughi
t al. (2020). Their proposed architecture may combine lower-weight
lobal and local contextual information. However, they classified the
umor into two subclasses of gliomas: HGG and LGG. Siar and Tesh-
ehlab (2019) proposed a strategy that used the ImageNet feature
xtraction model. Their model showed good performance on a first-
rder clustering algorithm and CNN softmax fully connected layer has
een devised to distinguish fat tissue and tumor tissue, which increased
ccuracy. Although no specific tumor type categorization has been per-
ormed; only benign or malignant tumors have been classified. Irsheidat
nd Duwairi (2020) implemented a CNN model which took MRI input
n grayscale mode and increased the dataset that made it fourteen times
arger than the initial size. The model predicted the presence or absence
f a tumor with an accuracy of 96.7% and 88.25% in validation and test
ata, respectively. Although they simply did a binary classification and
sed a smaller dataset to test their model. Ayadi, Elhamzi, Charfi, and
tri (2021) came up with a CNN model that included multiple layers to
lassify brain tumor MRIs as meningioma, glioma, and pituitary using
hree publicly available datasets. Figshare dataset, Radiopaedia dataset,
nd REMBRANDT dataset for comparison with the previous work.

Naser and Deen (2020) incorporated a deep learning strategy in
hich CNN relied on U-Net to segment regions affected by tumors. A

ransfer learning VGG-16 model and classifiers has been developed to
grade cancerous tumors. No independent dataset was available to com-
pare with for testing and a moderately small LGG data has been used for
validation. Nevertheless, only glioma tumors have been categorized as
LGG and HGG. Shahzadi, Tang, Meriadeau, and Quyyum (2018) used a
CNN based 3-D medical image classification cascading with Long Short
Term Memory (LSTM) to identify LGG and HGG. They utilized VGG-
16 for feature extraction and LSTM for glioma classification. Because
they employed a small number of samples and did not apply any data
augmentation techniques to expand the number of samples, their model
has lesser accuracy than other research.

Noreen et al. (2020) implemented two separate multi-level architec-
tures using Inception-v3 and DenseNet201 architectures with softmax
classifier. In these pre-trained architectures, features are extricated
from various modules and percolated through the softmax layer for
classification after the concatenation of the extracted features. The
super-resolution fuzzy c-means technique has been proposed by Özyurt,
Sert, and Avcı (2020) in tumor detection. The features were extracted
from the SqueezeNet architecture and then the extreme learning ma-
chine classification technique was performed. Anyway, tumors are
mainly divided into benign and malignant categories in their work (see
Tables 1 and 2).

A method based on the Resnet-50 was proposed by Öinar and
Yildirim (2020). The endmost five layers of the model are eliminated,
and eight additional layers are inserted as a substitute. However, the
type of tumor was not characterized and only a binary classification
has been implemented. A CNN of 22 layers is proposed to classify lung
cancer into five categories (Faruqui et al., 2021). Ghassemi, Shoeibi,
and Rouhani (2020) proposed a Generative Adversarial Network (GAN)
based model where a deep CNN is used as the discriminator for the
detection of fake images that are generated by the generative model and
a pre-trained CNN network is fine-tuned to perform as a classifier. The
input size was limited to 64 × 64 on account of some GAN restrictions.
3 
A new method in deep learning features, as well as a fusion of hand-
crafted features for brain tumor detection, was established by Saba,
Mohamed, El-Affendi, Amin, and Sharif (2020) where input images
went through segmentation employing the GrabCut algorithm. The
incorporated VGG-19 with Histogram of Oriented Gradients (HOG) and
Local Binary Patterns (LBP). In the end, multiple classifiers are used
for the classification. Between glioma and healthy brain images, clas-
sification is limited. Ahamed et al. (2021) developed a deep learning
approach for detecting covid-19 cases using chest CT scans and X-ray
pictures. Saouli et al. (2018) proposed an automatic incremental CNN
end-to-end for tumor segmentation in which they implemented deep
learning models entitled 2Cnet, 3Cnet, and EnsembleNet. EnsembleNet
is an integrated model of 2Cnet and 3Cnet. The model is only suitable
for the segmentation of MRIs. Aurna, Yousuf, Taher, Azad, and Moni
(2022) also used the ensemble technique to classify brain MRIs.

Chelghoum, Ikhlef, Hameurlaine, and Jacquir (2020) involved the
use of nine pre-trained CNNs namely ResNet-50, AlexNet, VGG-16,

esNet-101, GoogleNet (Szegedy et al., 2015), VGG-19, ResNet-18,
ENet, and ResNet-Inception-v2 for comparative analysis. However, all
odels have been implemented on a single data set. Swati et al. (2019)
sed the blockwise VGG-16 network centered on transfer learning and
ine-tuning to classify MRIs as: glioma, meningioma, and pituitary. The
odel went through a minimal pre-processing procedure and did not
se any of the hand-made features.

A segmentation approach employing a CNN was implemented fol-
owed by an extensive data augmentation strategy to classify multi-
raded brain tumors by Sajjad et al. (2019). Due to the small-scale
atasets, the segmented data have been augmented using eight different
ypes strategies, including various geometric transformations and noise
nvariances. Elazab et al. (2020) devised a model named GP-GAN,
hich predicts the growth of glioma tumors at an early stage using

tacked 3D GANs. Using a 3D U-Net architecture, this model’s generator
as created. GP-GAN was used in this study which presupposes that

umors would always grow. Furthermore, the shrinkage of tumors as a
esult of treatment is not taken into account in the method.

Hamghalam, Wang, and Lei (2020) used a multistage attention-GAN
o increase the contrast of the tumor image. In their work, tumors
re segmented into whole tumors, core tumors, and enhancing tumor
ortions. The high tissue contrast synthetic image takes a significant
mount of time to generate 27 ms. Due to the multistage architecture of
heir models, the computational complexity and number of parameters
ise as the number of regions of Interest (ROI) increases. Rezaei et al.
2017) gave out a conditional GAN approach for segmentation into
hree distinctive sub-regions namely the whole tumor, the core tumor,
nd the enhancing tumor region with different labels that are used
urther to evaluate the survival days of patients after tumor diagno-
is. Han et al. (2019) designed a model to detect brain metastases
t desired position using progressive growing of GAN and a highly
ough bounding box. They divided the image into smaller regions and
ried to predict the bounding box and achieved great sensitivity in
umor detection by working on random shapes rather than appropriate
egmentation, spontaneously at desirable positions and sizes. But they
ailed to achieve high sensitivity by adding more synthetic images.

. Datasets and methodology

The datasets have been utilized in accordance with the classification
nd segmentation methods. Four individual datasets and two merged
atasets are taken into consideration for classification. These individual
atasets are combined to form the merged datasets. One of these two
erged datasets is manually segmented to produce masks with the

ssistance of a specialist. The proposed segmentation model is trained
sing this masked dataset.

Data have undergone preprocessing steps. While data augmentation
s performed, certain pre-processing techniques like resizing, zooming,
ode filter, sobel filter, unsharp masking, and grayscale are used. Both
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Table 1
Recent research using deep learning for the classification and segmentation of brain tumor MRIs.

Ref. Contribution Limitations

Mohsen et al. (2018) Accomplished a DNN classifier integrated with PCA and DWT for categorizing tumors
into 4 classes. MRIs were segmented using the Fuzzy C-Means (FCM) clustering.

Classified a very small dataset of 66 brain
MRIs.

Özyurt et al. (2019) Implemented a method to categorize brain tumors using a hybrid NS-EMFSE-CNN
classification technique. They acquired an accuracy of 95.62% by SVM.

No specific tumor type classification has been
carried out.

Sajid et al. (2019) Devised a method that implemented a hybrid CNN with 2 path CNN and 3 path
CNN using a patch-based technique considering local and contextual information.

Segmented MRIs of HGG and LGG and no
classification was performed.

Irmak (2021b) Put forward a model for classifying brain MRI images with Deep CNN and grid
search optimizer-tuned hyper-parameters with the motivation to build three different
models for the classification of tumors.

The second model achieved less accuracy
compared to the other two models.

Sultan et al. (2019) Offered an approach of using the CNN architecture for classifying brain MRIs into
three distinct groups and distinguishing in different glioma grades

The used dataset is smaller and must be
evaluated on a bigger group of datasets

Havaei et al. (2017) Proposed a CNN which is a two-path architecture that is capable of extracting local
features along with global features of the brain tumors concurrently.

Required to be observed on large datasets for
efficiency of handling huge MRIs.

Irsheidat and Duwairi (2020) A generic CNN was implemented which predicted the presence of a tumor or not
with an accuracy of 96.7% and 88.25% in validation and test data respectively.

A binary classification is performed and used a
smaller dataset to test their model.

Naser and Deen (2020) Incorporated a deep learning strategy in which CNN hinged on U-Net for segmenting
tumor affected regions. A transfer learning VGG-16 model and classifiers has been
developed to grade cancerous tumors.

No independent dataset was available to
compare with for testing and a moderately
small LGG data has been used for validation.

Öinar and Yildirim (2020) A method based on the Resnet-50 from CNN was proposed, The endmost five layers
of the model are eliminated, and eight additional layers are inserted as a substitute.

Only binary classification has been
implemented.

Han et al. (2019) Designed CPGANs to detect brain metastases at desired position using PGGANs and a
highly rough bounding box.

Failed to achieve high sensitivity by adding
more synthetic images.

Saouli, Akil, and Kachouri (2018) An end-to-end automatic incremental CNN was proposed for the segmentation of
tumors in which they implemented deep learning models entitled 2Cnet, 3Cnet, and
EnsembleNet using their proposed training strategy.

The model is solely suitable for the
segmentation of MRI.

Elazab et al. (2020) Devised the GPGAN, which predicts the growth of glioma tumors at an early stage
using stacked 3D GANs.

Presupposes that tumors would always grow
and the shrinking tumors as a result of
treatment are not taken into account.
Table 2
The descriptions for each layer in the proposed classification model have two blocks
and a total of 39 layers.

Block
No.

Layer name Layer
count

Filter
count

Filter size

Convolution 1 32 3 × 3
Maxpooling 1 2 × 2
Batch Normalization 1
Dropout 1

Block 1
Convolution 4 64 1 × 1, 3 × 3
Maxpooling 3 2 × 2
Batch Normalization 3
Dropout 1

Block 2
Convolution 4 128 1 × 1, 3 × 3
Maxpooling 3 2 × 2
Batch Normalization 3
Dropout 1

Convolution 2 128 5 × 5, 3 × 3
Maxpooling 1 128 2 × 2
Batch Normalization 1
Dropout 3
Flatten 1
Dense 3

the suggested model and pre-trained architectures have been employed
over the classification datasets separately and the models classify MRI
images into four classes individually. In Fig. 2, the complete working
model for classifying tumors is displayed. Fig. 2 shows that MRI images
are augmented, then the MRIs are sent out for preprocessing purposes.
After that, the MRIs are sent to the proposed model and transfer learn-
ing models separately to classify the images as glioma, meningioma,
pituitary, or no tumor. Two scenarios are taken into consideration, the
first in which the classification is done without the segmentation being
done first. And in the second scenario, segmentation is followed by
sending the MRIs to the classification models. Sending the segmented
MRI to the classification model minimizes computational complexity
and processing time since segmentation only extracts the tumored
4 
portion of an MRI. Fig. 1 illustrates the workflow of the proposed
methodology. A variety of metrics is used to compare the classifica-
tion performance of pre-trained and proposed models as well as the
performance of the segmentation model. Finally, the two methods of
classifying tumors while segmenting them and classifying them without
segmentation are compared.

3.1. Classification datasets

A total of four individual datasets have been outlined, and two
combinations of these datasets have been integrated to create two new
merged datasets. As a result, our work has been applied to a total
of six datasets (four individual and two merged datasets). The four
datasets are referred to as Dataset a, Dataset b, Dataset c, and Dataset d
throughout the paper. Merged dataset 1 and Merged dataset 2 are used
to refer to the two merged datasets respectively.

3.1.1. Dataset a
There are 3064 T1-weighted Contrast Enhanced-MRI images in this

dataset. The images are taken from 233 patients who have three types
of tumors: meningioma (708 slices), glioma (1426 slices), and pituitary
tumor (930 slices). This dataset has been widely used in most research
papers (Ayadi et al., 2021; Badža & Barjaktarović, 2020; Chelghoum
et al., 2020; Noreen et al., 2020; Sultan et al., 2019; Swati et al., 2019).
The data was gathered from Nanfang Hospital in Guangzhou, China,
and General Hospital, Tianjin Medical University in China between
2005 and 2010. The dataset is made publicly available by Cheng (2017).

3.1.2. Dataset b
This dataset comprises 3264 T1, T2, and fluid-attenuated inversion

recovery MRI images. The images are split up into two directories:
training and testing. Glioma, meningioma, pituitary, and normal brain
MRI are the four subclasses in each directory. Glioma (100 slices),
meningioma (115 slices), pituitary (74 slices), and no tumor (105 slices)
are all included in the testing directory. Glioma (826 slices), menin-
gioma (822 slices), pituitary (827 slices), and no tumor (395 slices) are
all listed in the training directory. The dataset is publicly available

by Bhuvaji (2020).
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Fig. 1. The suggested methodology’s workflow entails the selection of the dataset, MRI preprocessing, MRI segmentation, models shown for classification, MRI classification classes,
and ultimately results analysis over the findings.
3.1.3. Dataset c
This dataset includes a total of 10000 images of 3 classes of tumor

MRIs and MRIs with no tumor. There is glioma (2500 slices), menin-
gioma (2500 slices), pituitary (2500 slices), and MRIs with no tumor
(2500 slices). This dataset is also publicly available by Pradeep (2021).

3.1.4. Dataset d
There are a total of 4292 images in this dataset. The dataset is made

publicly available by Sherif (2020). The dataset is divided into two
5 
directories: training and testing. Each of these two directories contains
four subclasses of glioma, meningioma, pituitary, and no tumor. There
is glioma (1038 slices), meningioma (1318 slices), pituitary (1255 slices),
and normal brain MRIs (681 slices).

3.1.5. Merged dataset 1
This dataset is a combination of Dataset a and Dataset b. Glioma,

meningioma, pituitary, and normal brain MRIs are all included in



A. Akter et al. Expert Systems With Applications 238 (2024) 122347 
Fig. 2. The classification technique is depicted schematically, with MRIs segmented, and preprocessed before passing them to the proposed classification model and transfer learning
models.
the combined dataset. Because the number of normal brain MRIs is
low compared to the other three classes, normal brain MRIs have
been taken from the (Hamada, 2020) dataset. Hamada (2020) dataset
includes MRIs of normal and tumor-affected brain tissue. As a result,
the Merged dataset 1 contains a total of 7023 images. Glioma (1621
slices), meningioma (1645 slices), pituitary (1757 slices), and normal
brain MRIs (2000 slices) are included in the Merged dataset 1. The
sample images from this dataset are shown in Fig. 4(a). The dataset
is publicly available by Nickparvar (2021).

3.1.6. Merged dataset 2
The Merged dataset 2 has been created by combining the Merged

dataset 1 with Dataset c and Dataset d. As a result, this merged dataset
2 combines all four datasets used in our work (Dataset a, Dataset b,
Dataset c, and Dataset d) along with the dataset by Hamada (2020)
having normal tumor images. Glioma (5159 slices), meningioma (5465
slices), normal brain MRI (5181 slices), and pituitary (5512 slices) are
included in this dataset.

3.2. Augmented merged dataset

MRI images for 4 classes, glioma, meningioma, no tumor, and
pituitary, are contained in the Merged dataset 1, which is split into
two folders for training and testing. The number of images in every
class’s testing and training folder is not equal. In the event of training,
each tumor class has 5000 images, but in the event of testing, each
class contains 1000 images. Therefore, the merged augmented dataset
contains 24,000 images. Because the dataset comprises images of varied
sizes, they have been reduced in the augmentation stage to a constant
size of 256 by 256. Rotation, zooming, height and width shifting, shear-
ing, horizontal flipping and mode filling are the preprocessing methods
employed while augmenting the MRI images. To keep maximal features
in the images, the rotation, zooming, shifting, and shearing settings
have been modified for different classes of tumors in the training and
testing folders. It also includes augmenting the dataset such that it has
80% of images for training the model whereas 20% for testing and
validation (see Fig. 3).

3.3. Segmentation dataset

The merged dataset 1 has been manually segmented because the
Merged dataset 1 contains MRIs from four different classes. As after
the MRIs have been segmented, they will be forwarded to a classifica-
tion model where they will be divided into four categories: pituitary,
glioma, and meningioma and no tumor. Four individuals manually
segmented the MRIs of the four classes. Before segmentation, an ex-
pert with a medical background examines the MRIs. For each MRI,
6 
four individuals create four mask images. Then the masked MRIs are
provided back to the expert. Out of the four masks, the expert selects
the one that is closest and then makes the required corrections. There
is a corresponding generated mask that exists for every MRI. Example
images of this dataset are shown in Fig. 4(b).

3.4. Data preprocessing

Image resizing, RGB to grayscale conversion, unsharp masking,
and sobel filtering (Vincent & Folorunso, 2009) are some of the pre-
processing techniques that have been used for MRI images. The MRIs
are downsized to the size of 160 × 160 × 3 in the preprocessing
stage. They are transformed to grayscale using the weighted average
approach, which reduces its dimension to 160 × 160 × 1. Unsharp
masking with a radius of 100 pixels is applied to the grayscale MRI.
Then the MRIs are subjected to the sobel filter.

3.4.1. Weighted average method
Eq. (1) is representing the grayscale weighted average, Y

𝑌 = 0.299 × 𝑅 + 0.587 × 𝐺 + 0.114 × 𝐵 (1)

In Eq. (1), R, G, and B are integers with values ranging from 0 to 255
that indicate red (R), green (G), and blue (B).

3.4.2. Unsharp masking
Unsharp masking is a versatile and strong technique for improving

image sharpness. A lower radius adds smaller-scale detail by affecting
the size of the edges to be enhanced or the width of the edge rims. The
threshold determines how much of a brightness shift will be sharpened.
A blurred image is subtracted from the original MRI, which is referred
to as an unsharp masking algorithm. An unsharp or blurred image is
created by spatial filtering the original image using a Gaussian low-pass
filter.

3.4.3. Sobel filter
A basic 3 × 3 convolution is used in sobel filter. Separation of the

sobel kernels is an additional optimization option. It is designed to op-
erate on first-order derivatives. It computes the MRI’s first derivatives
individually for the 𝑋 and 𝑌 axes.

3.5. Classification models

A pre-trained model is a saved model that has already been trained
on datasets to perform a certain job. Since ImageNet includes 1000
classes, pre-trained models have been taught to handle a wide range of
tasks. It takes less time and effort to create the architecture of a model
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Fig. 3. Dataset distribution for classification includes four individual datasets (Datasets a, b, c, and d), two merged datasets (Merged Dataset 1 combines three datasets, and Merged
Dataset 2 combines Merged Dataset 1 and Datasets c and d).
Fig. 4. (a) Sample images from Merged dataset 1 where MRIs are from four classes named: Glioma, Meningioma, No Tumor, and Pituitary. (b) Sample images from the segmentation
dataset where images with the corresponding masks are generated manually.
that has already been trained. As the classification models, five pre-
trained architectures have been used. Pre-trained architectures include
VGG16 (Simonyan & Zisserman, 2015), VGG19 (Simonyan & Zisserman,
2015), EfficientNet B0 (Tan & Le, 2019), and EfficientNet B7 (Tan
& Le, 2019), ResNet152V2 (He, Zhang, Ren, & Sun, 2016). The pre-
trained models are shown in Fig. 6. Along with the pre-trained models,
a proposed classification methodology has also been presented. Fig. 7
shows the proposed classification model.
7 
3.5.1. VGG16
VGG16 is an extensively applied convolutional neural network. This

has achieved a lot of appeal in the research because of its straightfor-
ward methodology and the fact that pre-trained weights were publicly
available online, allowing new tasks to be fine-tuned in the simplest
way possible. VGG16 has 16 convolutional layers and is well-liked
for its relatively consistent architecture. 5 maxpooling layers, 2 fully
connected layers, and 1 softmax layer make up the architecture in
addition to the convolutional layers. For classification, a flatten layer, 2
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Fig. 5. Input MRIs are preprocessed before being sent into the classification model and preprocessing methods are used during augmentation too.

Fig. 6. Pre-trained architectures incorporated in this work, (a) Modified VGG16, (b) Modified VGG19, (c) Modified ResNet152V2.
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batch normalization layers, 1 dropout with the dropout rate of 25%, and
2 dense layers are substituted for fully connected layers and softmax
layer in the modified VGG16 shown in Fig. 6(a), which accepts input
of size 160 × 160.

3.5.2. VGG19
One of the VGG (Simonyan & Zisserman, 2015) architectures,

GG19, has 16 convolutional layers, 5 maxpool layers, 3 fully connected
ayers, and 1 softmax layer. The modified VGG19 architecture is made
p of these convolutional and max pooling layers. And the fully
onnected layers and softmax layer are replaced with 6 layers that are
rganized as flatten, batch normalization, dense, dropout layer with a
ropout rate of 25%, and finally a dense layer to classify MRIs into
our classes. Fig. 6(b) depicts the modified architecture that has been
ailored for MRI classification.

.5.3. EfficientNet B0
In order to maximize accuracy and floating-point calculations, the

esearchers used a multi-objective neural network search to create
fficientNet B0 (Tan & Le, 2019). EfficientNet B0 to EfficientNet B7 has
een developed using B0 as a baseline model, and they have achieved
he highest level of accuracy on ImageNet while being significantly
ore efficient than its rivals. There are 237 layers in EfficientNet B0. To

lassify MRIs using modified EfficientNet B0 architecture, the flatten,
atch normalization, dense, batch normalization, dropout layer with a
ropout rate of 25%, and lastly, a dense layer have been added.

.5.4. EfficientNet B7
EfficientNet B7 (Tan & Le, 2019) is a convolutional neural network

hat uses compound coefficients for the uniform scaling of width,
eight, and resolution. The scaling technique of EfficientNet B7 in-
ariably and systematically enlarges the dimension of the network and
esolution with a series of predefined scaling coefficients. Although in
tandard practice, these factors are arbitrarily adjusted. There are 813
ayers in EfficientNet B7. In the modified EfficientNet B7 architecture,
he flatten, batch normalization, dense, batch normalization, dropout
ayer, and finally a dense layer have been integrated into the base
fficientNet B7, and the input size is also taken into consideration to
e 160 × 160 in this case.

.5.5. Resnet152𝑉 2
ResNet (He et al., 2016) has become a game changer because it

fficiently and considerably trains deep neural networks. ResNet op-
rates on building deeper networks than conventional simple networks
hile determining the optimal amount of layers. These residual net-
orks may get accuracy from far more depth and are simpler to tune.
efore Resnet152V2, training operations for a deep neural network was
hallenging for vanishing gradient problem. The Resnet152V2 has 564
ayers in all. The modified Resnet152V2 design adds 6 extra layers to
he basic Resnet152V2 architecture shown in Fig. 6(c).

.5.6. Proposed classification model
Fig. 7 shows the classification model that has been proposed. The

odel comprises 39 layers with two blocks between the input and
utput layers. The output layer predicts MRIs as glioma, meningioma,
ituitary, or no tumor. The input image is processed via convolution
ayers, activation functions followed by the convolutional layers used
o select the features, max-pooling, batch normalization, and dropout
ayers. Dropout layers are employed to prevent overfitting. To forecast
he output, the dense layers and softmax layers are utilized.

The first layer provides information about the input size. The input
RI size to the model is 160 × 160. Following that is the convolution

ayer. A convolutional layer is operated by performing a convolution
peration on the original image and the kernel. A 2D convolutional
ayer employs a number of filters, with the kernel moving horizontally
r vertically over the image in a given number of steps known as strides.
9 
he filter size for the convolution layer in between input and the first
lock is 3 × 3 with 32 filters. After the convolution layer, a maxpooling
ayer is added with a pool size of 2 × 2. The maxpooling layer is used to
ownsample the image. Maxpooling is used to discard less significant
ata while simultaneously addressing the issue of overfitting. After the
ooling layer, the batch normalization and dropout layer (dropout rate
5%) are added.

The architecture of the two blocks in the model is identical, with the
xception that the first block uses 64 filters while the second block uses
28 kernels. Each of the blocks has 3 paths. Each path has a distinct
ernel size for the convolution layers, which is 1 × 1, 3 × 3. For the
axpooling operation, a 2 × 2 kernel is utilized, and one of the three
athways has a dropout layer added with a 25% dropout rate. Paths
uarantee that layers are applied at the same level. To make the model
ider rather than deeper and to reduce the computing complexity of

he model, layers with varying kernel sizes are used at the same level.
he three paths each extract a different set of characteristics that are
hen combined at the end of each block.

Two convolution layers with filter sizes 5 × 5 and 3 × 3 filter
izes are integrated between the second block and the output layer.
n additional maxpool layer with a 2 × 2 filter size is added after

he convolution layer. Then dense layers, dropout, flatten, and batch
ormalization are included. The dropout rate for the latter two layers
s 50 percent. Dropout layers are introduced to speed up the training
rocess. The dense layer is followed by softmax. The dense layer’s
utput is delivered to the softmax activation function. The softmax
ctivation function is used to calculate the relative probabilities of
aving a certain type of tumor. The proposed model enables 2, 051, 872
orth of parameters to be trained.

.6. Hyper parameters for proposed classification model

A lot of trial and error is required when tuning the hyper-parameters.
hile the model is being trained, these hyper-parameters act as con-

rols that may be changed. It is determined what these hyperparameters
hould be set at in order to achieve the optimum results. The number
f layers, neurons, optimizer, input and output activation functions,
atch size, number of epochs, and the loss function have been taken
nto account as model hyperparameters.

Adaptive Moment Estimation (Adam) (Kingma & Ba, 2017) is cho-
en as optimizer. When dealing with complex problems requiring a lot
f data or factors, this strategy is incredibly effective. And this strategy
lso uses minimal memory. In Adam, for a specific iteration (t), moving
verages are dependent on the parameters: exponential decay rates for
he first-moment and second-moment estimates which are denoted by
1 and 𝛽2 respectively, and gradient (gt). Eq. (2) represents the bias
orrection formula for moving averages.

�̂� =
𝑝𝑡

1 − 𝛽𝑡1
, 𝑞𝑡 =

𝑞𝑡
1 − 𝛽𝑡2

(2)

In Eq. (2), 𝑝𝑡 and 𝑞𝑡 represents first and second moment vector respec-
tively. The weights and biases are updated accordingly. In order to find
the best parameter configuration, the suggested model uses the Grid
Search technique. All conceivable parameter combinations are tested
using grid search.

The output layer uses softmax for multi-classification while the hid-
den layers employ the Rectified Linear Unit (ReLu) activation function.
Eq. (3) and Eq. (4) represent ReLu and Softmax activation functions,
respectively.

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3)

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp(𝑥𝑖)

∑

𝑗 exp(𝑥𝑗 )
(4)

In Eq. (3), any negative input causes the function to return 0, while any
positive value 𝑥 causes it to return that value. As a result, it generates an



A. Akter et al. Expert Systems With Applications 238 (2024) 122347 
Fig. 7. The proposed classification model, which consists of 39 layers and includes two blocks, classifies MRIs into four classes: Glioma, Meningioma, No Tumor, and Pituitary.
Table 3
Hyperparameters of the proposed classification model.

Hyperparameters Values

Number of trainable parameters 2,051,872
Optimizer Adam
Searching strategy Grid search
Output layer activation function Softmax
Hidden layer activation function ReLu
Batch size 64
Number of epochs 100
Loss function Categorical cross entropy

output whose range is from 0 to infinite. In Eq. (4), the values from the
output layer’s neurons are represented by the 𝑥. The non-linear function
is represented by the exponential. After normalizing, these values are
divided by the total of exponential values and then transformed into
probabilities.

For the purpose of multi-classification in the proposed model, the
categorical cross-entropy loss function has been employed. The proba-
bility for each class is provided by this loss function and is an excellent
indicator of how easily two discrete probability distributions can be
distinguished from one another.

Eq. (5) denotes the loss formula of the cross-entropy.

𝐶𝐸𝐿𝑜𝑠𝑠 = −
𝐶
∑

𝑖
𝑔𝑡𝑖 ∗ log(𝑠𝑖) (5)

In Eq. (4), the score and ground truth are denoted by 𝑠𝑖 and 𝑔𝑡𝑖
respectively for each class 𝑖 in 𝐶.

The batch size is fixed at 64 and the epoch number is 100. Table 3
represents the hyperparameters utilized in the proposed model.

3.7. Segmentation model

Ronneberger, Fischer, and Brox (2015) established the U-Net struc-
ture . U-Net has been widely exploited for image segmentation in the
medical field and has also shown competitive performance. The pro-
posed segmentation model is based on U-Net. The U-Net architecture
is divided into two paths: downsampling and upsampling. This model is
made up of two networks: encoder and decoder. The encoder network
has 2D convolutional layers in a total of five convolution blocks. For 2D
convolutional layers, the number of filters is 32, 64, 128, 256, and 512.
Following these convolutional layers, the batch normalization layer,
the activation function (ReLu), and the dropout layer are employed to
reduce overfitting. For a total of four upsampling blocks, the decoder
network contains transposed convolutional layers. Using a stride size
10 
of 2,2 for the transposed convolutional layers, the spatial dimension
is widened. Each of the upsampling blocks has corresponding encoder
block output concatenated, convolutional layers, ReLu activation func-
tion, batch normalization layer, and dropout layer. Fig. 8 illustrates the
architecture. The image’s context is captured via the downsampling
route. The standard stack of convolutional and maxpooling layers is
all that is used for the downsampling procedure. The second method
also called the upsampling path, is symmetric expanding and allows
for exact localization using transposed convolutions.

The model’s first convolution layer of the model accepts the input
of 160 × 160 × 3. This convolution layer produces an output with a
volume of 160 × 160 × 32 by using 32 kernels of size 3 × 3. Because the
padding is equal to 1 and is maintained, the size of the output feature
maps matches that of the input feature maps. Initializing the weights of
the kernels uses a uniform distribution in the proposed segmentation.
The area in the input volume that a certain feature extractor or kernel
encompasses at a given time is known as the receptive field or context.
The pooling process takes place between two layers in order to make
the feature map smaller and transmit fewer parameters through the
model. In the suggested model, the first max pooling layer uses a
feature map with a size of 160 × 160 × 32 and produces a feature
map with a size of 80 × 80 × 32. In this instance, the pool size is
2 × 2. This procedure is carried out to keep the features that best
capture the MRI’s context. In this manner, the pooling procedure in
the downsampling route reduces the MRI size. The size of the MRI
decreases as the network deepens, while the receptive field expands at
the same time. The number of kernels is increasing at each stage of the
downsampling process to extract increasingly intricate features from
the input MRI. The image is upsampled in the upsampling layer using
the transposed convolution approach. The feature map is routed via
a 2 × 2 deconvolutional layer with strides equal to 2. It is transmitted
through two 3 × 3 convolutional layers, much like in the downsampling
path, and is sequentially concatenated with the prior feature map.
The aforementioned procedure is continued until an image of size
160 × 160 × 32 is obtained, at which point a 1 × 1 convolution layer
is applied to produce an output of size 160 × 160 × 3. The detailed
description for each layer of the proposed segmentation model is given
in Table 4.

The corresponding MRI and mask are used by this model from
the manually masked segmentation dataset. For each of the four MRI
classes to which the data set corresponds, the U-Net model will be
trained.

3.8. Hyper parameters for segmentation model

The optimizer, input and output activation functions, loss func-
tion, batch size, number of epochs, training-validation splitting, and
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Fig. 8. The suggested segmentation model is based on the U-Net architecture and contains a downsampling and an upsampling route that accepts input MRIs and outputs a
segmented mask image.
early-stopping patience have all been taken into account as model
hyperparameters for the proposed segmentation model.

The optimizer used is Adam (Kingma & Ba, 2017). ReLu activation
functions are used with convolution in the hidden layers of the model.
The last convolution layer that generates the output makes use of the
sigmoid activation function.

The segmentation model’s last layer has a binary cross-entropy loss
function and a sigmoid activation function. The proposed segmentation
model makes use of the binary cross-entropy loss function, which
measures the divergence between the ground truth MRI masks and the
predicted masks. The ground truth masks are the manually segmented
mask of the merged dataset 1 in this case. The training approach used
a grid search technique to identify the best parameter values for each
combination of hyperparameters.

The batch size in the segmentation model is 32, and 200 epochs are
taken into account. The proportion between training and validation
is 80% and 20%. Early stopping patience is maintained at 100. The
hyperparameter values are represented in Table 5.

3.9. Classification approaches

Two categorization methods were suggested by the methodology
used in this research.

The first approach extracts the MRI from the dataset and sends it for
preprocessing shown in Fig. 5. Pre-processing in the augmentation stage
also applies to MRIs. The classification of MRIs into the four groups of
glioma, meningioma, no tumor, and pituitary is then carried out by
both the proposed model and the pre-trained networks. In this method,
segmentation is not done before the classification goal.
11 
The conventional approach is to first segment the image before
sending it to be classified. As segmentation only pulls features from
the MRI of the areas with the tumor. Time and computational cost
are reduced if only the tumored area of the MRI is supplied to the
classification model, rather than the entire image. Consequently, in the
second method, the MRIs are delivered to the classification model after
being segmented into tumor sections.

4. Results

The experiments are divided into a number of sections, including
comparisons and individual outcomes. Each DL model’s effects have
been examined independently, taking performance into account for
each epoch. For training and testing, a total of 6 classification datasets
were used. Among those, 4 are individual datasets (Dataset a (Cheng,
2017), Dataset b (Bhuvaji, 2020), Dataset c (Pradeep, 2021), Dataset
d (Sherif, 2020)), and 2 are merged datasets (Merged dataset 1 and
Merged dataset 2). One segmentation dataset has been employed, which
includes a custom mask for the Merged dataset 1 mentioned before. Five
transfer learning models, including the neural network that has been
proposed, are trained and tested on all of the classification datasets.
And a different segmentation model, has been used throughout the
studies. The results of data augmentation and comparison between the
results of segmentation in brain tumor classification are also presented
separately.

4.1. Experimental setup

The experiment has been run on both cloud services like google
colab and using personal computing devices. Since the scope of the
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Table 4
The description for each layer of the proposed segmentation model based on the U-Net
architecture having downsampling and upsampling paths.

Layer
No.

Layer name Filter
count

Filter
size

Dropout
rate

Layer 1

Convolution+ReLu 32 3 × 3
Batch Normalization
Dropout 10%
Maxpooling 2 × 2

Layer 2

Convolution+ReLu 64 3 × 3
Convolution+ReLu 32 3 × 3
Dropout 20%
Batch Normalization
Maxpooling 2 × 2

Layer 3

Convolution+ReLu 128 3 × 3
Convolution+ReLu 64 3 × 3
Batch Normalization
Dropout 20%
Maxpooling 2 × 2

Layer 4

Convolution+ReLu 256 3 × 3
Convolution+ReLu 128 3 × 3
Batch Normalization
Dropout 20%
Maxpooling 2 × 2

Layer 5

Convolution+ReLu 512 3 × 3
Convolution+ReLu 256 3 × 3
Batch Normalization
Dropout 30%

Layer 4

Conv2DTranspose 128 2 × 2
Convolution+ReLu 256 3 × 3
Convolution+ReLu 256 3 × 3
Batch Normalization
Dropout 20%

Layer 3

Conv2DTranspose 64 2 × 2
Convolution+ReLu 128 3 × 3
Batch Normalization
Dropout 20%
Convolution+ReLu 128 3 × 3
Batch Normalization

Layer 2

Conv2DTranspose 32 2 × 2
Convolution+ReLu 64 3 × 3
Batch Normalization
Dropout 20%
Convolution+ReLu 64 3 × 3
Batch Normalization

Layer 1

Conv2DTranspose 32 2 × 2
Convolution+ReLu 32 3 × 3
Batch Normalization
Dropout 10%
Convolution+ReLu 32 3 × 3
Batch Normalization

Convolution+ReLu 3 1 × 1

Table 5
Hyperparameters of the proposed segmentation model.

Hyperparameters Values

Number of trainable parameters 4,162,499
Batch size 32
Number of epochs 200
Optimizer Adam
Hidden layer activation function ReLu
Output layer activation function Sigmoid
Early stopping patience 100
Training/validation split 80/20%
Loss function Binary cross entropy

experiment is quite huge, which includes executing multiple transfer
learning and proposed neural networks on a variety of classification
and segmentation datasets, simultaneously running them was crucial.
Neural networks are built using python 3.9 with several packages such
as Tensorflow, Sklearn, Numpy, and more.
12 
4.2. Performance metrics

Accuracy is considered as a significant evaluation metric for clas-
sification purposes. Precision indicates how much a classifier can be
trusted when it indicates that an instance belongs to the positive class.
A high precision rating indicates that there are very few false positives,
and the classifier is very strict in the criteria for classifying something
as positive. The ratio of all instances properly classified in the positive
class to the total number of real members of the positive class is defined
as recall. In other words, it indicates how many of the total number of
positive instances are classified properly. A metric for sensitivity and
specificity is called ROC AUC. The ROC is a graph that depicts the
relationship between True Positive Rate (TPR) and False Positive Rate
(FPR). The resultant score, known as the ROC AUC score, is the area
under this ROC curve and broadly illustrates how well the model can
predict classes.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 )

(7)

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

(8)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
(𝑇𝑁 + 𝐹𝑃 )

(9)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

(10)

𝑃𝑅 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

(11)

𝑃𝑅 = 𝐹𝑃
(𝐹𝑃 + 𝑇𝑁)

(12)

𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 (13)

𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅 (14)

The terms TP, TN, FP, and FN in equations refer to the number
of true positive predictions, true negative predictions, false positive
predictions, and false negative predictions, respectively.

The F1 score, also known as the F-measure, is specified as the har-
monic mean of recall and precision and has been used as a classification
evaluation metric. It is a statistical measure of a model’s accuracy. It is
mathematically represented as follows:

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

(15)

Dice coefficient, dice loss, binary cross entropy dice loss and Inter-
section Over Union (IOU), recall, and precision has been considered as
the evaluation metrics for the segmentation performance metrics. IOU
also referred to as the Jaccard Index, is the area of overlap between the
ground truth and the predicted segmentation and is divided by the area
of union between the ground truth and the predicted segmentation.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝐼𝑛𝑑𝑒𝑥 =
𝐴𝑟𝑒𝑎𝑂𝑓𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎𝑂𝑓𝑈𝑛𝑖𝑜𝑛

(16)

4.3. Effect of augmentation

Data augmentation plays an important role in the case of an imbal-
anced dataset or a lower quantity of data. Since brain tumor MRI data
are hard to find and labeling these data requires an expert opinion,
the amount of data along with the number of datasets are pretty rare.
To observe the effect of augmentation, Merged dataset 1, which was
created by concatenating three individual datasets and had imbalance,
ie: with different amounts of class-wise MRI, were passed through
several operations to create and augmented datasets. These operations
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Fig. 9. Line charts showing suggested classification model validation accuracy, F1
core, and AUC vs epochs using Merged dataset 1 and Augmented Merged dataset
. (a) The chart showing the validation accuracy comparison for these two datasets (b)
he validation F1 score comparison (c) the validation AUC comparison.

nclude rotation, zooming, height and width shifting, shearing, horizon-
al flipping, and mode filtering. To show the effect of augmentation,
he accuracy of the epoch-wise validation, the F1 score, and the AUC
f the augmented and non-augmented data set are depicted in Fig. 9(a),
ig. 9(b) and Fig. 9(c) respectively. All of these figures represent
imilar trends and values while having more oscillations in the case of
ugmented data. Especially for validation accuracy Fig. 9(a) augmented
esults are a little below the non-augmented ones, with additional
luctuations or drops. The validation F1 score shown in Fig. 9(b) and
UC in Fig. 9(c) were almost identical epoch-wise with slight changes

or AUC values in some epochs, and to our surprise, there is not much
istinction between the augmented datasets and non-augmented ones,
ven in the last epochs the results of augmentations have deteriorated.
ince the 5 merge augmentation has almost the same results that are
ot included in the section.
 B
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.4. Impact of datasets in our proposed classification model

The proposed model has been tested and validated on all the indi-
idual datasets and merged datasets. Throughout the study, test sets
ad been kept constant to ensure clear comparisons. This part of the
xperiment is concerned with the effect of different datasets in our
roposed models. To represent that effect, a handful of line charts and
confusion matrix for each dataset’s validation part are given.

The proposed model has been trained and tested for 100 epochs. The
ine graph in Fig. 10(a) illustrates the training and validation accuracy
nd AUC over the epochs for Dataset a. Since the proposed model is
eployed for the classification task, AUC is given since it represents
he separability of tumor classes. The highest validation accuracy is
6.73 percent with a training accuracy of 99.83 percent. On the other
and, both the training and validation AUC are quite high at 99.99
nd 99.56 percent respectively. The training validation trends for both
f these metrics are quite similar, with some minor oscillations. The
ext Fig. 10(b) showcases the confusion matrix for the testing data
here the actual vs the predicted value is given. Only a few glioma
nd meningioma were misclassified, although these numbers are very
ow compared to the correct classification.

Similarly, for Dataset b, epoch-wise accuracy, and AUC curve have
een illustrated in Fig. 11(a), which has a slight difference between
he training and validation results. Since this dataset was imbalanced,
ithout the augmentation process, there was some deviation in each
poch, although the fluctuations were minimal. The maximum training
ccuracy is 99.93 percent and the AUC is 99.99 percent whereas
he validation AUC fell down to 88.85 percent. In Fig. 11(b) the
orresponding validation confusion matrix is given.

Again in Fig. 12(a), the same as previously, the accuracy and AUC
urve is illustrated, while Fig. 12(b) delineated the confusion matrix
or Dataset c. Similar to other single datasets there were some ups
nd downs in the validation curves, as training progressed, and the
aximum results were quite high, as the training and validation AUC

re 99.9% and 96.88% respectively. Again in the confusion matrix, the
orrect classifications are way higher than the false ones. Dataset d also
ollows a similar pattern to Dataset c which is shown in Fig. 13(a) and
ig. 13(b). Fig. 13(a) shows similar oscillations, although they stabilize
t the end, and the validation AUC has the value of 0.9688. On the
ther hand, Fig. 13(b) depicts the confusing matrix for Dataset d.

.5. Classification comparison on two merged datasets

To better understand the impact on performance datasets, two
erged data sets were also validated in the proposed model. Fig. 14(a)

nd Fig. 14(b) demonstrate the validation confusion matrix for the
erged dataset 1 and Merged dataset 2. Since the merged dataset is

lightly imbalanced, there were differences in the count of separate
lasses, however, most of the predicted classes are as can be seen in
ig. 14(a). Comparably, in Fig. 14(b), there are only a few misclassi-
ications, in total 103, compared to the correct classification which is
round 4214.

The comparative analysis of various evaluation metrics for differ-
nt transfer learning models and the proposed model is illustrated in
igs. 9 to 19. The first comparison is done on the Merged dataset
, where training and testing accuracy of the proposed model along
ith VGG16, VGG19, Resent152v2, EfficientNet B0, EfficientNet B7 is
iven. Although a lot more transfer learning models have been tested
or this purpose, the models mentioned above predicted surprisingly
ell, sometimes on par with the proposed model, compared to others.
ig. 15(a) represents the comparisons of training metrics, where the
roposed model achieved an astonishing 99.8 percent accuracy and F1

scores. The results of VGG16, Resent152v2, and EfficientNet B0 are also
uite similar, reaching the 99 percent mark. In contrast, in the case of
he accuracy of the tests in Fig. 15(b) and the F1 score, EfficientNet
0 comes down to 97 percent. Again, for testing metrics, the proposed
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Fig. 10. Graph showing training and validation accuracy and AUC comparison for Dataset a of the proposed classification model (b) The confusion matrix for Dataset a showing
the number of actual and predicted images for each class of the proposed classification model.

Fig. 11. (a) Line chart comparing training and validation accuracy and AUC for the proposed classification model on Dataset b. (b) Dataset b’s confusion matrix displays the
number of actual and predicted images for each class of the proposed model.

Fig. 12. (a) Graph comparing training and validation accuracy and AUC for Dataset c of the proposed classification model. (b) The confusion matrix for Dataset c shows the
number of actual and predicted images for each class.
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Fig. 13. (a) Graph showing training and validation accuracy and AUC comparison for Dataset d of the proposed classification model (b) The confusion matrix for Dataset d
showing the number of actual and predicted images for each class of the proposed classification model.
Fig. 14. Confusion matrix illustrating the number of actual and predicted MRIs following application of the proposed classification model. (a) Merged dataset 1, (b) Merged dataset
2.
model achieved a higher value than any other model, at a value of
98.7%, which is also very close to train accuracy, provided the fact
that the model was well trained. The recall, precision, and F1 score
were also quite similar to accuracy, ranging from 98.7 to 98.8 percent.

Fig. 16 shows the accuracy of training and validation and AUC
for the proposed model and the best transfer learning model from the
previous comparison-VGG16, which indicates that the proposed model
suffers from less oscillation than the VGG16 model. Also, the training
and validation accuracy are almost close to each other, so there might
not be any overfitting or underfitting issues.

Since we have also created a separate augmented dataset from the
Merged dataset 1, another bar chart is given in Fig. 17 to showcase val-
idation performance comparisons, where our proposed model performs
better than the other models in terms of results. The proposed model
achieved validation accuracy and F1 score of 96.7 percent, and 99.1
percent AUC.

Again in Fig. 18(a) and Fig. 18(b) training and testing evaluation
are given to create comparisons among models for Merged dataset 2.
Similarly in the comparison of the Merged dataset 1, the models achieve
15 
almost similar results in training; however, VGG19 and EfficientNet B7
perform significantly worse than the proposed model which resulted
in an accuracy of 99.9 percent. Although in validation performance,
the proposed model outclasses the other models, with accuracy and
a F1 score of 97.6 percent, where all transfer learning models have
these values less than or equal to 95 percent. Fig. 19 represents another
epoch-wise line chart comparing the VGG16 model performance with
the proposed model. Similar to Fig. 16, there were only minor fluc-
tuations in the learning process of the proposed model. Although the
proposed model has a lot fewer parameters than the transfer learning
models, it performs better in terms of both training and validation.

4.6. Overall classification performance analysis

As the proposed model has been trained and tested overall 6
datasets, the performance metrics value on all these datasets are exam-
ined thoroughly in this section. Table 6 shows the proposed model’s
performance metrics on all these datasets. All of these parameters,
including the values of accuracy, recall, precision, F1 score, FPR, TPR,
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Fig. 15. Performance metrics for 5 transfer learning techniques vs the proposed
approach (a) For the situation of training Merged dataset 1, where the metrics values
are relatively near (b) For validation of Merged dataset 1, where the proposed model
outperforms.

Fig. 16. Graph comparing training and validation accuracy and AUC for the proposed
classification model to VGG16 for Merged dataset 1.

False Negative Rate (FNR), True Negative Rate (TNR), sensitivity,
and specificity, have been taken into account. Table 6 represents ten
statistical metrics on different datasets for our proposed models. On
Dataset b and Dataset d there are a few false negative predictions which
result in lower recall and sensitivity in terms of performance. This
might be due to fewer images in these datasets since the false-positive
rate is lower. However, in the case of merging these four datasets, the
number of increased images and balancing each class balance the FPR
and FNR problem.
16 
Fig. 17. Comparison of the proposed model with 5 transfer learning models on
Augmented Merged dataset 1, where proposed models surpass.

Fig. 18. Metrics of performance for 5 transfer learning approaches against the
suggested methodology (a) For the training Merged dataset 2 condition, where the
metrics values are pretty close (b) For the validation Merged dataset 2 situation, where
the proposed model outperforms.

4.7. Segmentation result analysis

To separate the tumor portion from brain MRI images, a custom-
made U-Net was also trained on the segmentation dataset. Fig. 20
illustrates the output of the proposed segmentation model for different
classes in the dataset with the ground truth image.

The input MRI and the predicted mask generated for Dataset d using
the proposed segmentation model are shown in Fig. 21. The graphic
demonstrates how the model conveniently segments the tumor sections
from the input MRI.

The segmentation model was also tested using a variety of statistical
methods and image similarity measurements. Fig. 22(a) and Fig. 22(b)
represent training and validation precision and cross-entropy loss over
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Table 6
Statistical Analysis of the Performance Metrics for the Proposed Model Considering All Datasets.

Performance
metrices

Dataset a Dataset b Dataset c Dataset d Merged
dataset 1

Merged
dataset 2

FPR 0 7.02 0.79 3.14 0.43 0.71
FNR 6.32 21.06 2.39 9.44 1.29 2.61
TPR 93.67 78.9 97.6 90.5 98.7 97.3
TNR 100 92.9 99.2 96.8 99.5 99.2
Accuracy 96.7 89.4 97.7 95.2 98.7 97.6
Recall 93.6 78.9 97.6 90.5 98.7 97.6
Precision 100 78.9 97.7 90.5 98.8 97.6
F1 Score 96.7 78.9 97.7 90.5 98.7 97.6
Sensitivity 93.6 78.9 97.6 90.5 98.7 97.3
Specificity 100 92.9 99.2 96.8 99.5 99.2
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Fig. 19. Graph comparing training and validation accuracy and AUC for the proposed
classification model to VGG16 for Merged dataset 2.

Table 7
Performance Metrics for the proposed segmentation model.

Performance metrics Values

Dice Coefficient 0.89
Dice Loss 0.10
Binary cross entropy Dice loss 0.79
Intersection Over Union (IOU) 0.81

200 epochs for the segmentation model. Both loss values are quite low,
close to 0.1 and the precision is above 90 percent. There were almost
o fluctuations in the training process.

Fig. 23 represents the statistical and similarity measure for the
alidation data, the validation cross-entropy loss is 6.6%, with 98.4
ercent precision, and the recall is 71%.

From Table 7, the values of performance metrics are noted as the
ice coefficient value is 0.89, the Jaccard index (IOU) is 0.81, dice loss
nd binary cross entropy dice losses are 0.10 and 0.79 respectively.

.8. Effect of segmentation

Another comparison is made between segmented and non-segmented
lassification. Since segmentation significantly reduces the size of the
ata, the overall time of classification models is reduced. Fig. 24
llustrates the validation results of different classification models in a
egmented tumor image created from a Merged dataset 1. The proposed
odel achieved 99 percent accuracy, 98.7 percent F1 score and 99.6

percent AUC for segmented tumor classification. Compared to the
proposed model, the best transfer learning model is Resnet152v2 with
a validation accuracy of 96 percent, which is lower than the proposed
model. In terms of the effect of segmentation, Fig. 25 describes the
difference between segmented and non-segmented tumor classification.
The statistical metrics are quite similar, varying only by 1 percent
o the utmost. The proposed models achieved 98.8 percent validation
ccuracy with the segmentation process, while without segmenting the
 a

17 
tumor portion from the MRIs, they achieved 98.7 percent validation
accuracy. The time needed to train the classification model without
segmentation was 21 min 66 seconds, compared to the segmentation
process, which requires a total time of 58 minutes 33 seconds. Since
in the second approach two models, one U-Net for segmentation, and
one classification model are needed to train, it had a higher training
time. However, in case of just classification after segmentation, the
time reduces to only 13 minutes, which is 40% lower than the previous
approach.

4.9. Comparison with state-of-the-art papers

A number of State-of-the-Art studies have been compared to the
proposed work. Glioblastoma and glioma classes are binary classified
by Rajinikanth, Kadry, and Nam (2021). This study seeks to categorize
tumors using a segmentation approach. Whereas our segmentation
classification accuracy is 98.8%, their classification accuracy is 98%.

ith our suggested model’s segmentation strategy, the accuracy is
reater. In addition, our suggested model has an accuracy of 98.7%
hen classifying tumors into four unique classes without segmenting

he MRI data. Using a combination of CNN and AlexNet models, Badjie
nd Ülker (2022) conducted binary classification between normal MRIs
nd tumor MRIs. Although their model classified the MRIs with greater
ccuracy, they did not segment the MRIs. This was a concern of
ur research because it compares how the MRIs are classified with
nd without segmentation. Maqsood, Damaševičius, and Maskeliūnas
2022) proposed a 17-layer deep neural network design for segmen-
ation. They developed a Multiclass SVM to divide MRIs into three
ategories (glioma, meningioma, and pituitary). In their instance, the
eature selection procedure for classifying tumor MRI takes a while.

oz̀niak, Siłka, and Wieczorek (2021) proposed a correlation learning
echanism that combines CNN with classic architecture. This model

chieves an accuracy of 95.09% on Dataset a, which is lower than
n our instance because the accuracy of the proposed model is 97.7%
n an individual dataset. And both with and without conducting the
egmentation process, the merged datasets offer superior accuracy. The
uthors of paper Khan et al. (2022) created a technique for detecting
nd classifying brain tumors. The approach uses a saliency map and is
ased on a deep learning feature optimization strategy. Although the
uggested model has a few stages, its greatest accuracy is 95.94%.

The proposed model is compared to several existing classification
odels in relation to Dataset a. As a result, all of the papers in Table 8

onducted MRI image multiclassification and classified the images as
lioma, meningioma, pituitary, or no tumor. Proposed model and other
tate-of-the-art papers comparison on Dataset a is shown in Fig. 26.

Ayadi et al. (2021) also implemented a CNN approach and achieved
n accuracy of 94.74%. Ghassemi et al. (2020) proposed a GAN model
here a deep convolutional neural network is used as a discriminator

or the detection of fake images that are generated by the generative
odel and a pre-trained CNN network is fine-tuned to perform as

he classifier for brain tumor classifications and the model achieved

n accuracy of 95.6%. Ismael and Abdel-Qader (2018) combined the
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Fig. 20. The proposed segmentation model’s projected mask and growth truth comparison, which is based on the U-Net architecture and accepts input MRIs and outputs segmented
mask image.
Fig. 21. Predicted mask generated from input MRI using proposed segmentation model for classification Dataset d.
Table 8
Comparison among proposed model and State of The Art papers considering the Dataset a.

Ref. Year Method Accuracy
(Percentage)

Woz̀niak et al. (2021) 2021 CNN with classic architecture 95.09
Ayadi et al. (2021) 2021 CNN 94.74
Ghassemi et al. (2020) 2020 GAN+CNN 95.6
Badža and Barjaktarović (2020) 2020 CNN 96.56
Swati et al. (2019) 2019 AlexNet, VGG16, VGG19 94.82
Sultan et al. (2019) 2019 CNN 96.13
Pashaei, Sajedi, and Jazayeri (2018) 2018 CNN 93.68
Ismael and Abdel-Qader (2018) 2018 Neural Network 91.9
Afshar, Mohammadi, and Plataniotis (2018) 2018 Capsule Network 86.56
Proposed Model Deep CNN 96.7
18 
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Fig. 22. The proposed segmentation model’s training and validation (a) precision vs. epoch (b) loss vs. epoch comparison, where the validation precision and loss both nearly
match their respective training curves.
Fig. 23. Comparison of training and validation performance measures (loss, recall, and
accuracy) for the proposed segmentation model.

Fig. 24. Validation performance comparison of proposed classification model with 5
transfer learning methods after segmenting tumor MRIs using the proposed segmen-
tation model and transferring them to the classification model on Merged dataset
1.

2D DWT and 2D gabor extraction methods for feature extraction, the
features were fed to a traditional neural network and achieved an
accuracy of 91.9%. Afshar et al. (2018) employed a capsule network
on segmented tumor regions to address CNN’s shortcomings related to
the loss of active features at the specific location in the subsampling
layers and poor training results regarding small datasets. Pashaei et al.
(2018) proposed a method that extracts features of brain tumors using
CNN and further classifies the obtained features into three classes of
tumors such as meningioma, glioma, and pituitary tumors using kernel
extreme learning machines. With an accuracy of 96.7%, the proposed
classification model beats the results of the research described above
using Dataset a.
19 
Fig. 25. Proposed classification model validation performance metrics comparison for
Merged dataset 1 when tumor MRIs are segmented using the proposed segmentation
model and when they are not segmented.

Fig. 26. Comparison of classification accuracy with proposed model and other State
of The Art researches on Dataset a.

5. Discussions

This research provides a comprehensive comparison of several tu-
mor classification algorithms. First, the influence of datasets was eval-
uated on different accessible datasets to determine whether it had any
effect on classification. Because the size and output classes of these
datasets (Dataset a, Dataset b, Dataset c, and Dataset d) vary, the find-
ings were fairly disparate. However, the proposed strategy produced
some promising results where dataset c showed the highest accuracy
with 97.7%. The suggested model was then trained and validated in
two data sets (Merged dataset 1 and Merged dataset 2) developed
by combining existing ones. There are three types of tumor MRI in
these datasets, with normal MRIs. And Merged dataset 1 showed an
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Fig. 27. The whole classification process including the segmentation technique is shown, including the input MRI, input mask, generated mask, tumor area, actual class, and
predicted class.
accuracy of 98.7% which is higher than both of the merged datasets.
The model was then compared with several transfer learning models
to demonstrate that, even without a huge number of parameters, the
proposed model matches or outperforms the transfer learning models in
most circumstances. The effect of segmentation was then demonstrated
by training and validating both segmented and non-segmented MRIs.
The findings clearly illustrate that, whereas segmentation requires two
steps of model training, classification obtained equivalent or even
superior results in less time. The segmentation classification approach
showed an accuracy of 98.8%. So, if training time has no influence on
the application, segmentation can improve classification performance.
However, if a minor variation in performance is not a problem, the
suggested model may predict fairly well without any segmentation
with an accuracy of 98.7%. The input MRIs, input mask, predicted
mask from the segmentation model, predicted tumor area, and finally
the percentage of prediction of the tumor MRIs identified from the
classification model, which uses segmented MRIs before completing
the classification, are presented in Fig. 27. As shown in the Figure,
the classification model with segmentation detects normal MRIs with
99.96% accuracy, glioma and meningioma classes with 100% accuracy,
and pituitary tumors with 87.94% accuracy.

6. Conclusion

Early identification of brain tumors can be crucial in saving lives as
they can be extremely harmful and even deadly. This study proposes
an automated classification strategy for a rapid, early, and accurate
diagnosis to prevent disastrous consequences. A deep CNN model was
used to classify brain MRIs into four groups: glioma, meningioma, no
tumor, and pituitary. An accurate and automatic segmentation model
was applied to segment brain MRIs from the original input MRIs. Effec-
tive automated tumor segmentation can be challenging due to the wide
variety of tumor locations, shapes, and structures. For segmenting the
tumor sections, a U-Net architecture-based model was developed. The
classification techniques were found to be not significantly different
whether segmentation was used or not. However, non-segmentation
classification reduced the time required by the classification model.
20 
The impact of dataset augmentation was also studied. The classification
model was evaluated across multiple datasets and with five pre-trained
models. Furthermore, the proposed model outperformed the pre-trained
models as well as state-of-the-art articles. The segmentation approach
also generated a more accurate segmented mask, allowing for the suc-
cessful segmentation of every MRI image from any dataset. However,
our proposed model could be more useful if we have more real-life MRI
data for the segmentation and training of the model.
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