
Bayesian Link Prediction with Deep Graph Convolutional Gaussian
Processes

Felix L. Opolka Pietro Liò
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Abstract

Link prediction aims to reveal missing edges
in a graph. We introduce a deep graph convo-
lutional Gaussian process model for this task,
which addresses recent challenges in graph ma-
chine learning with oversmoothing and overfit-
ting. Using simplified graph convolutions, we
transform a Gaussian process to leverage the
topological information of the graph domain.
To scale the Gaussian process model to larger
graphs, we introduce a variational inducing
point method that places pseudo-inputs on
a graph-structured domain. Multiple Gaus-
sian processes are assembled into a hierarchy
whose structure allows skipping convolutions
and thus counteracting oversmoothing. The
proposed model represents the first Gaussian
process for link prediction that makes use
of both node features and topological infor-
mation. We evaluate our model on multiple
graph data sets with up to thousands of nodes
and report consistent improvements over com-
petitive link prediction approaches.

1 INTRODUCTION

A large variety of real-world scenarios can be modelled
by signals that live on the nodes of a graph: from
biological networks to communication and social net-
works (Sen et al., 2008; Kersting et al., 2016). The
connective structure of these graphs is not necessarily
complete, hence a common task for statistical inference
is to infer missing links between nodes (Wang et al.,
2015). In a protein-protein interaction network, for
example, link prediction is used to suggest interactions
between proteins in a cell (Lei and Ruan, 2012).
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Recent work in this area (Kipf and Welling, 2016; Zhang
and Chen, 2018; Bojchevski and Günnemann, 2018) has
focused on methods with two key properties. Firstly,
these methods can predict missing links based on both
the graph structure itself and a signal in the nodes
of the graph, often referred to as the node features.
Secondly, these methods compute node embeddings
not only from isolated features of each node, but also
take into account features in the local neighbourhood
of each node, thus providing more context informa-
tion for predicting missing links. At the core of these
methods are usually neural networks equipped with pa-
rameterised graph convolution operations (Defferrard
et al., 2016; Kipf and Welling, 2017).

A number of recent works have investigated limitations
of neural networks fitted with graph convolutions (Li
et al., 2018; Wu et al., 2019b; Xu et al., 2018; Klicpera
et al., 2019; Rong et al., 2020). In particular, Rong
et al. (2020) have identified two key challenges for graph
convolutional networks. Firstly, graph convolutional
networks tend to overfit on smaller graphs or graphs
with few labelled nodes and edges, causing bad general-
isation performance. Secondly, while convolutions are
useful because they smooth the graph signal, meaning
nodes closer together in the graph take on more similar
values (e.g. hidden representations), applying too many
convolutions reduces the expressivity of the network,
making it unable to model variations within a node
neighbourhood; a problem referred to as oversmoothing.
The appropriate degree of smoothing depends on the
data set, however graph convolutional networks have
a rigid structure with a fixed number of convolutions
and are therefore unable to adaptively learn the most
suitable degree of smoothing.

We address both challenges with a new Bayesian graph
convolutional model building on non-parametric Gaus-
sian processes fitted by maximising the marginal likeli-
hood, thus making it more robust against overfitting.
In fact, our model does not require a validation set for
training. We achieve high expressivity by extending
the model to a deep Gaussian process constructed in a
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Figure 1: Visualisation of the derivation of the deep graph convolutional Gaussian process model. We start with a
regular Gaussian process f (a) operating solely on the node features that is oblivious to the graph structure. Each
node feature is treated as an observation on the Euclidean domain RD. This Gaussian process is transformed
using graph convolutions to yield a graph convolutional Gaussian process g over the nodes V of the graph (b).
Finally, a series of such graph convolutional Gaussian processes yields a graph convolutional Gaussian process r
over edges (c). Function values in (b) and (c) are expressed through the size of the nodes and the thickness of the
links respectively. Confidence intervals are sketched in lighter colours. A hierarchy of Gaussian processes from
(b) and (c) can be combined to form a deep Gaussian process for link prediction (d). K = 0, 1, 2 indicates the
number of convolutions this particular Node-GP or Link-GP applies to the incoming signal.

way such that the size of the pre-domain of the convolu-
tion operation is a property orthogonal to the number
of layers of the deep Gaussian process model. This
allows independently adjusting the degree of smooth-
ing and the model expressivity. We further introduce
hyperparameters that control the degree of smooth-
ing, which are learned directly from the data set using
type II maximum likelihood maximisation. Recent
results suggest link prediction tasks can benefit partic-
ularly from modelling multi-hop neighbourhoods (Yue
et al., 2019), making them particularly prone to over-
smoothing. Link prediction is therefore the main focus
of this work. Furthermore, many link prediction ap-
plications can naturally make use of the confidence
estimates output by our Gaussian process model. In
the aforementioned example of protein-protein interac-
tion prediction, the predictive uncertainty can be used
to prioritise which interactions to practically confirm
in a wet-lab experiment.

We derive the deep graph convolutional Gaussian pro-
cess for link prediction in three steps. In Section 4.1, we
define a graph convolutional Gaussian process model
over the nodes of a graph, referred to as Node-GP, by
transforming a Gaussian process defined on the Eu-
clidean domain with graph convolutions. It can be
trained to automatically fit the neighbourhood size of
the graph convolutions to the input graph. In Sec-
tion 4.2, we further adapt the resulting model over
nodes to a Gaussian process over pairs of nodes, thus
suitable for link prediction. We refer to this model
as Link-GP. We suggest a variational inducing point
method for link prediction that works by placing induc-
ing points on the nodes of an inducing graph. Finally,

in Section 4.3, we assemble multiple instances of Node-
and Link-GPs into a deep hierarchy. Each layer per-
forms convolutions with different neighbourhood sizes,
effectively de-coupling model expressivity and the de-
gree of smoothing and thus preventing oversmoothing.
In Section 5, we evaluate our model on six benchmark
data sets with up to thousands of nodes and edges, often
strongly outperforming neural network-based models.
We also assess the quality of the uncertainty estimates
as well as the data-efficiency of the model.

2 Background

2.1 Single-layer Gaussian Processes

A Gaussian process (Rasmussen and Williams, 2005)
models functions as samples from an infinite dimen-
sional multivariate normal distribution. The shape
of the functions are determined by the mean and co-
variance (or kernel) function of the process. When
modelling observed data D = (X,y) with input data
matrix X = [x1, . . . ,xN ]>, xi ∈ X and labels y ∈ RN
via Bayesian inference, we can use a Gaussian process
as the prior distribution over the latent function:

f(x) ∼ GP(m(x), kθ(x,x
′)), (1)

where m : X → R and kθ : X×X → R denote the mean
and covariance function respectively. The covariance
function kθ is commonly parameterised by a set of
hyperparameters θ.

When combined with a Gaussian likelihood p(yn|fn) for
each observation n = 1, . . . , N , the posterior p(f |y,X)
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is also Gaussian. Predictions for new data points can
then be made in a fully Bayesian fashion by marginal-
ising out the latent function f(x). Furthermore, the
marginal likelihood p(y) has a closed form solution and
can thus be used to optimise the kernel hyperparam-
eters θ, usually via gradient-based optimisation. For
our purposes, we set X = RD, hence X ∈ RN×D.

This formulation of Gaussian processes is limited in
two ways. Firstly, when the likelihood is not Gaussian,
as is the case for link prediction, neither the poste-
rior distribution nor the marginal likelihood have a
closed-form solution. Secondly, inference with a Gaus-
sian process requires the inversion of an N × N ma-
trix, which has complexity O(N3) and is thus infea-
sible for large data sets. Following Hensman et al.
(2015), both problems are commonly addressed by
approximating the intractable posterior with a vari-
ational posterior distribution evaluated at a small set
of pseudo-inputs Z = [z1, . . . , zM ]>, with zi ∈ X and
M � N . The function values u = [f(z1), . . . , f(zM )]>

at these inputs are referred to as inducing points
and are assumed to follow the same Gaussian pro-
cess prior distribution as the original outputs, which
means that p(u) = N (mz,Kzz), where [mz]i = m(zi)
and [Kzz]ij = kθ(zi, zj). Inference for a new input x∗

is now performed using the sparse Gaussian process
over the inducing points:

f(x∗)|u ∼ GP(k>zx∗K
−1
zz u, kθ(x

∗,x∗)−k>zx∗K
−1
zz kzx∗),

where kzx∗ = [kθ(z1,x
∗), . . . , kθ(zM ,x

∗)] and we use
m(x) = 0.

The variational distribution is chosen to be a multi-
variate Gaussian distribution q(u) = N (m,S). The
pseudo-inputs Z, as well as m and S are variational
parameters, which are optimised jointly with the kernel
hyperparameters θ by maximizing the Evidence Lower
Bound (ELBO) objective:

L(θ,Z,m,S) =

N∑
n=1

Eq(f(xn))[log p(yn|f(xn))]

−KL[q(u) ‖ p(u)]. (2)

The shape of this objective enables optimisation via
stochastic gradient descent, which reduces the memory
complexity of an individual update step, thus allowing
us to train on larger data sets.

2.2 Deep Gaussian Processes

The expressiveness of a single-layer Gaussian process
is constrained by its only kernel function. To overcome
this limitation, Damianou and Lawrence (2013) pro-
posed a deep Gaussian process model, which defines a
hierarchy of L layers, where each layer consists of a pre-
specified number of Gaussian processes, reminiscent of

the units in a neural network layer. The outputs of
processes in one layer act as inputs to the processes
of the next layer. The final layer consists of as many
Gaussian processes as there are outputs. Pseudo-inputs
and inducing points (Hensman et al., 2013) are used
in each layer to scale the model to large data sets.

The joint density of outputs Y ∈ RN×O, the intermedi-
ate latent function values Fl, and the inducing points
Ul is

p(Y,{Fl,Ul}Ll=1) =

N∏
i=1

p(yi|fLi )

L∏
l=1

p(Fl|Ul,Fl−1,Zl−1)p(Ul,Zl−1)

with pseudo-inputs {Zl}Ll=1 and F0 = X. Noise be-
tween layers is absorbed into the kernel.

2.3 Graph Convolutions

Graph convolutions are the result of an effort to gen-
eralise the parameterised convolution operations for
images (LeCun et al., 1999) to the domain of general
graphs (Bruna et al., 2014). The graph convolution
is applied to an input signal x ∈ RN lying on the do-
main of a graph G with N nodes and adjacency matrix
A ∈ RN×N (without self-loops). The convolution oper-
ator is formulated as a multiplication of the filter with
the input signal mapped to the spectral domain via the
Fourier transform. Analogously to the Fourier trans-
form on the Euclidean domain, the graph Fourier trans-
form is defined as the decomposition of a signal into the
eigenfunctions of the Laplace operator. On the graph
domain, this operator is given by the Laplace matrix
L = A−D, where D ∈ RN×N is the diagonal degree
matrix with Dii =

∑N
j=1Aij . To localise the convolu-

tion operation, the filter is commonly parameterised
with polynomials in the spectral domain (Defferrard
et al., 2016). We will use a variant of the graph convo-
lution operation to incorporate topological information
into the Gaussian process model.

3 RELATED WORK

Our work is closely related to the two fields of Gaussian
processes for graph-structured data and link prediction.

Gaussian processes for graph-structured data
have previously been studied under the term relational
learning. These methods have been applied to semi-
supervised classification of nodes in a graph, such as
the relational Gaussian process (Chu et al., 2007), the
mixed graph Gaussian process (Silva et al., 2008), or
the label propagation algorithm (Zhu et al., 2003a,b).
Inspired by graph neural networks, more recent work
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has developed Gaussian process models that explicitly
consider nodes together with node features in their local
neighbourhood. The graph Gaussian process described
by Ng et al. (2018) computes node representations by
averaging the node features of the 1-hop neighbourhood
and subsequently performing semi-supervised node clas-
sification. Unlike the graph convolutional Gaussian
process proposed here, it only considers 1-hop node
neighbourhoods, thus limiting the node neighbourhood
information accessible to the model. Recently, Gaus-
sian processes have also been used for predicting multi-
output signals on graphs (Zhi et al., 2020; Li et al.,
2020). The graph convolutional Gaussian process in-
troduced by Walker and Glocker (2019) employs graph
convolutions to produce representations of patches in
the graph and sums up these patches via an additive
Gaussian process model. Unlike the models described
so far, it is used for graph-level prediction such as im-
age or mesh classification. Existing Gaussian process
models for link prediction either do not include infor-
mation from node neighbours (Yu and Chu, 2008) or
do not consider node attributes (Lloyd et al., 2012),
which may restrict their predictive performance.

Link prediction models A common class of link
prediction methods are heuristic-based models, which
compute a heuristic for node similarity and output it
as the likelihood of a link, as explored systematically
by Zhang and Chen (2018). Other methods focus on
predicting links based on latent node features that are
derived from the graph structure. These include matrix
factorisation (MF) (Koren et al., 2009), the stochastic
block model (SBM) for link prediction (Airoldi et al.,
2008b), and the spring-electrical model for link predic-
tion (Kashinskaya et al., 2019). More recent approaches
such as DeepWalk (Perozzi et al., 2014), LINE (Tang
et al., 2015), and node2vec (Grover and Leskovec, 2016)
rely on random walks to produce node embeddings that
encode latent features and pair-wise comparison of the
embeddings to predict links. These approaches can also
be cast as matrix factorisation (Qiu et al., 2018). Nat-
urally, matrix factorisation methods do not consider
node features.

Another class of link prediction methods makes use
of neural networks. The Weisfeiler-Lehman Neural
Machine (WLNM) (Zhang and Chen, 2017) trains a
fully-connected neural network on adjacency matri-
ces. SEAL (Zhang and Chen, 2018) employs graph-
neural networks in a non-probabilistic setting. The
network operates on node features and hand-crafted
node labels that indicate a node’s role in its neighbour-
hood. Most similar to our model, the graph variational
auto-encoder by Kipf and Welling (2016) combines
probabilistic modelling and graph convolutions, thus
also considering neighbourhood information. It uses a

graph neural network (Kipf and Welling, 2017) as the
encoder and a dot product decoder. Newer variants
have been suggested more recently (Davidson et al.,
2018; Hasanzadeh et al., 2019). The graph2gauss model
by Bojchevski and Günnemann (2018) embeds nodes
as Gaussian distributions output by a graph convolu-
tional network. The embedding training ensures that
the distance between embeddings reflects the geodesic
distance of nodes on the graph.

The Gaussian process model proposed in the following
sections exhibits many of the individual strong points of
existing models. It considers both graph structure and
node features and incorporates local neighbourhood
information when inferring missing links. Moreover,
the Bayesian inference framework provides us with a
principled way of obtaining uncertainty estimates for
our predictions.

4 METHODOLOGY

We introduce the deep graph convolutional Gaussian
process for link prediction (Link-DGP) in three steps.
(1) We describe a single-layer Gaussian process for
predictions over nodes (Node-GP). (2) Building on
Node-GP, we introduce a single-layer Gaussian process
for predictions over pairs of nodes (Link-GP), along
with an effective inducing point method. (3) We use
these two building blocks as Gaussian process units in
the layers of the deep Gaussian process model.

4.1 Gaussian process over nodes

We aim to define a Gaussian process kernel that is
capable of seizing the inductive bias of the domain
whose structure is given by an undirected graph G =
(V, E) with a set of vertices V, |V| = N , and a set of
edges E , |E| = E. The graph structure is equivalently
described by the adjacency matrix A without self-loops,
i.e. its diagonal entries are 0. Input data is given in
form of a signal X ∈ RN×D living on said domain.

In a non-probabilistic setting, adaptation to the graph
domain is commonly achieved by convolving the node
features using graph convolutions, as suggested by Kipf
and Welling (2017). Wu et al. (2019a) propose a sim-
plified form of the graph convolution

g = S̃KXw (3)

with weights w ∈ RD×1 and convolution matrix S̃ =
D̃−

1
2 ÃD̃−

1
2 , which is raised to the Kth matrix power.

Here, Ã = A + I is the adjacency matrix with added
self-loops and D̃ is the degree matrix of Ã. Intuitively,
multiplying with the convolution matrix computes hid-
den representations that are the weighted average of
the features of a node and the features of its immediate
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neighbours. Consequently, applying the convolution
matrix K times results in hidden representations com-
puted from the K-hop neighbourhood.

The probabilistic equivalent of the convolution model
in Equation 3 can be obtained by placing a multivari-
ate Gaussian prior on the weights w. Furthermore,
we can transform the input signal using a feature map
φθ : RD → H that maps inputs to a potentially infinite-
dimensional Hilbert space H and is parameterised by a
set of hyperparameters θ. By subsequently marginalis-
ing the weights w, we obtain an equivalent formulation
g = S̃Kf , where f ∈ RN×1 is normally distributed with
covariance matrix [K]ij = 〈φθ(xi), φθ(xj)〉H and we
assume f has zero mean. The simplified graph convo-
lution acts as a linear transformation on f , hence the
distribution of the resulting signal g is also Gaussian:

g ∼ N
(
0, (S̃K)K(S̃K)>

)
. (4)

Thus, g corresponds to a Gaussian process on the
domain whose structure is given by the graph G. The
covariance matrix K is computed by the node feature
kernel kθ : RD × RD → R.

Wu et al. (2019a) have demonstrated that applying
the convolution matrix S̃ to a non-probabilistic lin-
ear model acts as a smoothing device on the input
features, thus biasing the hidden representations to
vary less within a neighbourhood. The larger the ex-
ponent K of the convolution matrix, the stronger the
smoothing effect. We make a similar observation when
convolving a stochastic process: higher exponents K
lead to smoother functions being sampled from the
Gaussian process prior. We study this in more detail in
Appendix A. In both cases, applying the convolution
improves the inductive bias of the model under the
assumption that labels within a node neighbourhood
are more likely to be similar.

In practice, different tasks and data sets call for differ-
ent degrees of smoothing. Whereas for graph neural
networks, the number of convolutions has to be speci-
fied ahead of training, for the graph convolutional Gaus-
sian process we can take advantage of type II maximum
likelihood maximisation to select between the number
of graph convolutions to be applied. We achieve this
by smoothly interpolating in each convolution step
between the convolution matrix S̃ and the identity
matrix. The kth convolution matrix hence becomes
S̃k = λkS̃ + (1−λk)I, where λ = [λ1, . . . , λK ] ∈ [0; 1]K

are hyperparameters, subsequently referred to as the
convolution weights, which control to what degree the
convolutions should be applied. The final Gaussian
process prior thus becomes

g ∼ N
(
0, (S̃1 · · · S̃K)K(S̃>1 · · · S̃>K)

)
. (5)

We refer to the model as Node-GP and visualise it in
Figure 1 (b).

4.2 Gaussian process over pairs of nodes

The model described so far defines a Gaussian process
over the nodes of the graph G. In the following, we
describe how to transform such a Gaussian process
over nodes into a Gaussian process over node pairs
to predict potential edges between them. We further
introduce a variational inducing point approximation
for the intractable posterior.

A Gaussian process model over edges of an undirected
graph must operate on the domain of pairs of nodes
such that it is invariant to the order of the nodes within
the pair. Reminiscent of matrix factorisation, functions
over node pairs can be modelled by a matrix product

r(xi,xj) = L−
1
2

L∑
l=1

gl(xi)gl(xj)− L
1
2 k(xi,xj), (6)

where {gl}Ll=1 is a set of independent, identically dis-
tributed random variables with gl(x) ∼ GP(0, k(x,x′))
modelling functions over the nodes of the graph (Yu
and Chu, 2008). In the limit of L → ∞, r converges
to a Gaussian process over node pairs:

r(xi,xj) ∼ GP
(
0, c

(
(xi,xj), (x

′
i,x
′
j)
))
, (7)

with kernel c
(
(xi,xj), (x

′
i,x
′
j)
)

= k(xi,x
′
i)k(xj ,x

′
j) +

k(xi,x
′
j)k(xj ,x

′
i) according to Yu and Chu (2008, The-

orem 2.2). Crucially, the resulting Gaussian process
has the desired property that its kernel c is invariant
to the order of the nodes within a pair.

As we would like the link prediction Gaussian process
to incorporate neighbourhood information in its predic-
tions, we define the set of random variables {gl}Ll=1 in
Equation 6 to follow the graph convolutional Gaussian
process prior defined in Equation 5. This results in the
final formulation of the Link-GP model:

f(x) ∼ GP(0,K) (8)

g(x) ∼ GP(0, K̂ ≡ (S̃1 · · · S̃K)K(S̃>1 · · · S̃>K)) (9)

r(xi,xj) ∼ GP(0,C), (10)

with C(i,j)(i′,j′) = K̂ii′K̂jj′ + K̂ij′K̂ji′ .

As before, K is computed using the node feature kernel
kθ : RD×1 × RD×1 → R on the input node features.
We visualise the model in Figure 1 (c).

Variational inducing point approximation Pre-
dicting potential links between node pairs boils down
to a binary classification problem, which dictates a
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Bernoulli likelihood. This leads to an intractable pos-
terior distribution, which we will approximate with a
variational distribution. We will also use a set of M in-
ducing points to reduce the computational complexity
of inference (see Section 4.3 for a detailed discussion).
However, näıvely placing a set of of M inducing points
onto the signal domain RD×1 fails because of the func-
tional form of the kernel c, which is defined on the
domain of node pairs. Hence, we require inducing
edges that are represented by pairs of inducing points.
We solve this problem by constructing an inducing
graph Ḡ = (V̄, Ē) with |V̄| = N̄ and |Ē | = Ē and plac-
ing pseudo-inputs zi ∈ RD×1 on each of the N̄ nodes
in the inducing graph. Each pseudo-input represents a
node feature on the inducing graph.

In our experiments, we obtain the inducing graph by
sampling from an Erdős-Rényi model (Erdös and Rényi,
1959) with Ē edges. We note that the exact topology of
the inducing graph is of little importance and we have
found that altering the type of random graph model
does not affect the predictive performance. Unlike the
input data, no graph convolutions are applied to the
inducing points, hence the inducing graph merely forms
the domain on which the inducing points lie. It is the
pseudo-inputs, i.e. the node features of the inducing
graph, which are optimised such that the inducing
edges are most informative for posterior inference of
missing links in the input graph.

The pseudo-inputs zi ∈ RD×1 on the nodes of the
inducing graph are placed onto the domain of f . As
the real input points, unlike the pseudo-inputs, are
subject to a graph convolution, we have to employ
inter-domain inference (Lázaro-Gredilla and Figueiras-
Vidal, 2009; van der Wilk et al., 2017) for predicting
missing links. The inter-domain covariance between a
node pair (xi,xj) of the input graph and a node pair
(zi′ , zj′) of the inducing graph is given by

C(i,j)(i′,j′) = [(S̃1 · · · S̃K)KXZ]ii′ [(S̃1 · · · S̃K)KXZ]jj′

+ [(S̃1 · · · S̃K)KXZ]ij′ [(S̃1 · · · S̃K)KXZ]ji′ . (11)

KXZ is computed using the node feature kernel kθ :
RD×1 × RD×1 → R applied to node features of the
input graph and the inducing graph.

4.3 Deep graph convolutional Gaussian
process

The model described by Equation 10 can readily be
used for link prediction tasks. However, higher model
expressiveness can be achieved by deep Gaussian pro-
cess models, thus more accurately capturing the map-
ping from node features and graph topology to linkage
information. The two Gaussian process models intro-
duced so far, the graph convolutional Gaussian process

over nodes (Node-GP) from Equation 5 and the graph
convolutional Gaussian process over links (Link-GP)
from Equation 10, will be used as units within the
deep Gaussian process layers. For a deep Gaussian
process with a total of L layers, we propose to use
Node-GP units in the first L− 1 layers followed by a
final layer consisting of a single Link-GP unit. The
first L − 1 layers are responsible for extracting node
representations and the final layer derives from these a
distribution over a pair of nodes. The hierarchy of the
deep Gaussian process is visualised in Figure 1 (d).

The posterior of the resulting deep Gaussian process is
intractable due to the highly non-linear kernel functions
and we thus resort to an approximation following the
variational framework introduced by Salimbeni and
Deisenroth (2017). The variational posterior is chosen
to be

q(rL,UL, {Gl,Ul}L−1l=1 ) = p(rL|UL; GL−1,ZL−1)

· q(UL)

L−1∏
l=1

p(Gl|Ul; Gl−1,Zl−1)q(Ul) (12)

with the Gaussian variational distribution q(Ul) =
N (Ul|ml,Sl) evaluated at the pseudo-inputs of each
layer. Crucially, the pseudo-inputs of the final layer
are placed on the domain of an inducing graph as de-
scribed above. The inducing points can be marginalised
to give the normal density q(rL, {Gl}L−1l=1 ). A more de-
tailed derivation of the variational approximation can
be found in Appendix G.

As for a single-layer Gaussian process, we can derive an
evidence lower bound (ELBO) to jointly optimise the
variational parameters {Zl,ml,Sl}Ll=1 and the kernel
hyperparameters θ:

L(θ, {Zl,ml,Sl}Ll=1) =
∑
eij∈T

Eq(rLij)
[
log p(yij |rLij)

]
−
L−1∑
l=1

KL[q(Ul) ‖ p(Ul; Zl−1)]. (13)

Here, T is the training set of node pairs and p(yij |rLij) is
a Bernoulli likelihood. The first expectation cannot be
evaluated analytically, again because of the non-linear
dependency between layers. However, the expecta-
tion can be approximated via Monte Carlo sampling
by drawing samples from q(gLi ), which can be imple-
mented efficiently by drawing samples from a standard
normal distribution and applying the reparameterisa-
tion trick (Rezende et al., 2014; Kingma et al., 2015)
with the mean and variance of q(rL, {Gl}L−1l=1 ) in each
layer, starting from the first and propagating the sam-
ples through the hierarchy. Due to its form, the ELBO
lends itself well to maximisation using stochastic opti-
misation.
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Metric Data SC SBM GP LAGP GAE VGAE SEAL G2G Link-DGP

AUC

USAir 74.22 ±3.11 94.85 ±1.14 79.45 ±3.29 82.78 ±2.31 90.26 ±1.41 91.30 ±1.47 96.62 ±0.72 91.26 ±0.56 97.37 ±0.62

Router 68.79 ±2.42 85.65 ±1.93 60.84 ±3.43 61.45 ±3.80 74.41 ±1.76 75.84 ±2.69 95.36 ±1.19 73.30 ±2.77 97.32 ±0.53

Power 91.78 ±0.61 66.57 ±2.05 83.80 ±1.15 67.17 ±1.85 75.28 ±3.06 79.23 ±1.73 76.88 ±0.75 90.42 ±0.40 97.72 ±0.70

Yeast 93.25 ±0.40 91.41 ±0.60 81.30 ±1.14 85.38 ±1.80 93.07 ±0.94 94.15 ±1.05 97.89 ±0.24 95.74 ±0.11 98.02 ±0.33

Cora 84.60 ±0.01 63.18 ±2.08 57.33 ±1.78 58.84 ±1.38 91.00 ±0.02 91.40 ±0.01 92.76 ±0.36 90.38 ±0.66 98.09 ±0.25

Citeseer 80.50 ±0.01 58.64 ±2.93 61.39 ±2.16 51.28 ±3.43 89.50 ±0.04 90.80 ±0.02 90.59 ±0.21 92.26 ±0.50 98.72 ±0.34

AP

USAir 78.02 ±2.92 95.08 ±1.10 69.82 ±3.15 84.02 ±2.10 91.09 ±1.94 92.43 ±1.75 96.80 ±0.55 91.08 ±0.84 97.31 ±0.52

Router 73.53 ±1.47 84.67 ±1.89 58.17 ±3.50 63.51 ±3.98 81.42 ±1.76 82.39 ±2.50 95.32 ±1.47 79.61 ±1.28 96.85 ±0.51

Power 91.00 ±0.58 65.48 ±1.85 83.80 ±1.15 67.45 ±1.63 76.17 ±4.15 81.78 ±2.00 80.99 ±0.91 92.42 ±0.40 97.62 ±0.70

Yeast 94.63 ±0.56 92.73 ±0.44 74.56 ±2.34 86.12 ±1.76 94.13 ±0.89 95.07 ±0.86 98.31 ±0.24 96.51 ±0.17 98.28 ±0.26

Cora 88.50 ±0.00 64.32 ±1.65 58.40 ±1.94 60.86 ±1.52 92.00 ±0.03 92.60 ±0.10 94.04 ±0.29 91.99 ±0.62 97.73 ±0.48

Citeseer 80.50 ±0.01 63.29 ±2.74 64.64 ±3.37 52.38 ±4.04 89.90 ±0.05 92.00 ±0.02 92.61 ±0.15 93.01 ±0.62 98.16 ±0.67

Table 1: Experimental results for the Link-DGP model compared to a number of baselines in terms of area under
the ROC curve (AUC) and average precision (AP). Results are reported with their standard deviation over 10
data splits and the highest mean in each row is highlighted in bold.

Skip-connections The oversmoothing problem in
graph neural networks has demonstrated the impor-
tance of decoupling the expressivity of a model, usually
specified by its number of layers, and the number of
convolutions it applies to the graph signal (Xu et al.,
2018; Fey, 2019). This allows increasing the expres-
siveness of a model by increasing the number of layers
without oversmoothing the signal due to an excessive
number of convolutions. At the same time, applying
stronger smoothing can be achieved without adding
additional complexity in the form of another layer. In
the deep graph convolutional Gaussian process model,
we achieve this by allowing to skip convolutions in each
layer. In each Node-GP layer, the Gaussian process
units are split into Kmax + 1 groups with an equal
number of units, where Kmax is the maximum number
of convolutions. A Node-GP in group k = 0, . . . ,Kmax

then performs exactly k convolutions. As a result,
units in subsequent layers receive inputs with varying
degrees of smoothing. We use automatic relevance de-
termination (ARD) kernels in all layers, such that the
model can learn to use outputs of Node-GP units with
the most suitable degree of smoothing, thus effectively
allowing the model to skip convolutions that restrict
the expressiveness of the graph signal too much. As
an extreme example and following the leftmost path in
the hierarchy in Figure 1 (d), a graph signal that has
been subject to zero convolutions can reach the final
Link-GP unit, which can then prioritise convolutions
using the convolution weights (cf. Equation 5).

Scalability Deep Gaussian process models can be
computationally challenging as they require inverting
and multiplying large matrices. Using sparse Gaussian
processes in each layer and a variational approximation,
as described in Sections 2.2 and 4.2 reduces the compu-
tational complexity from O(N3) to O(MN2), where N
is the number of observations and M is the number of
inducing points. Furthermore, it enables optimisation
in mini-batches, thus allowing us to operate on multiple

smaller matrices rather than one huge matrix. To train
with a mini-batch on the graph domain, we need to
extract the subgraph that contains all nodes required
for performing K graph convolutions, i.e. the K-hop
neighbourhood around each edge’s incident nodes in the
mini-batch. As a consequence, the subgraph size, and
thus the size of the matrix that needs to be inverted in
one parameter update step, grows exponentially in the
exponent K of the convolution matrix: O(dKmax). To
reduce the computational cost further, we suggest em-
ploying neighbourhood sampling, as initially proposed
by Hamilton et al. (2017). This gives us full control
over the trade-off between computational speed and
the amount of neighbourhood information available for
each prediction.

5 EXPERIMENTS

We apply our method on six benchmark data sets with
and without node features. USAir (Batagelj and Mrvar,
2006), Router (Spring et al., 2004), Power (Watts and
Strogatz, 1998), and Yeast (von Mering et al., 2002)
come without node features, whereas Cora and Cite-
seer (Sen et al., 2008) have node features included.
Those data sets were chosen because of their diverse
set of properties. They cover both smaller and larger
graphs, ones with and without node features, and come
from different application domains. A more detailed
overview of their properties is given in Appendix B.

Comparison to existing methods We compare
the performance of our proposed deep Gaussian pro-
cess model (Link-DGP) to a number of competitive
link prediction methods: spectral clustering (SC), the
stochastic block model (SBM) proposed by Airoldi
et al. (2008a), a vanilla Gaussian process that op-
erates on the domain of concatenated node features
(GP), the link-analysis Gaussian process (LAGP) intro-
duced by Yu and Chu (2008), the graph autoencoder
in its non-probabilistic (GAE) and variational (VGAE)
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Figure 2: Prediction performance in terms of AUC for different fractions of training edges available.
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Figure 3: Prediction performance of the model when rejecting samples with high predictive variance. The
prediction of the model is only considered if its predictive variance is below a certain threshold. As the variance
threshold increases and fewer low-confidence samples are rejected, we expect the model performance to decrease.

form (Kipf and Welling, 2016), SEAL (Zhang and Chen,
2018), and the graph2gauss (g2g) model (Bojchevski
and Günnemann, 2018). Our deep Gaussian process
model will use L = 4 layers and up to K = 2 convolu-
tions. All experiments are performed with the typical
setup for link prediction with 10% test edges and un-
der equivalent conditions including for the baselines.
The results for SC and the SBM (except for Cora and
Citeseer) are as reported by Hasanzadeh et al. (2019).
Further details on the experimental setup can be found
in Appendix C.

The results of our experiments are shown in Table 1. We
find that Link-DGP outperforms all other methods in
terms of area under the receiver operating characteristic
curve (AUC) on all data sets, often by a large margin.
It also performs at least on par with all other methods
in terms of average precision (AP) on all data sets.
The results demonstrate that Link-DGP is a powerful
non-parametric method for link prediction with an
inductive bias suitable for a range of domains. The
vanilla Gaussian process performs surprisingly well on
some of the data sets but there is a clear benefit of
added expressivity and inductive bias with Link-DGP.
Similarly, Link-DGP performs noticeable better than
the shallow link analysis Gaussian process (LAGP),
which does not aggregate neighbourhood information.
We also perform an ablation study on the number of

layers and the effect of skip connections with results
reported in Appendix D.

Unlike the baseline models, Link-DGP performs
Bayesian inference of the parameters instead of com-
puting point estimates, which comes with the benefit
of a partial protection against overfitting and the avail-
ability of confidence estimates. On the other hand, this
naturally leads to longer training times. However, even
for the largest data set, the run time stays below 2
minutes per epoch.

Data efficiency Non-parametric Bayesian methods
often tend to perform better compared to parametric
models, for example neural networks, under conditions
of reduced labelled data. Each parameter in a neural
network needs to be learnt using maximum likelihood
estimation (MLE), which leads to overfitting, especially
when few observations are available. We verify that
this assumption holds for Link-DGP, which despite its
complexity, only requires relatively few non-variational
parameters to be estimated using MLE. For each layer,
those are the ARD weights, the convolution weights,
and the hyperparameters of the node feature kernel.
In Figure 2, we plot the model performance in terms
of AUC for different percentages of edges available
during training, under otherwise equivalent training
conditions.
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As expected, model performance tends to drop as less
training data is made available. Yet, the Link-DGP
model maintains its edge over the baseline models on all
data sets for all training set sizes. Moreover, the perfor-
mance decreases comparatively slowly as the number
of training edges decreases, confirming the suitabil-
ity of Bayesian non-parametric methods for low-data
environments.

Quality of confidence estimates A key merit of
Bayesian inference using Gaussian process is the avail-
ability of predictive variance estimates, i.e. the variance
of the distribution q(yij) =

∫
p(yij |rLij)q(rLij) drLij . We

examine the suitability of the predictive variance as a
measure of certainty in a prediction by allowing the
model to reject samples it predicts with high variance
(i.e. low certainty). If the uncertainty estimates are
well calibrated, performance should increase as we ex-
clude the samples predicted with higher uncertainty.
We visualise the results for four data sets in Figure 3
and find, as expected, that as the variance threshold
increases and therefore fewer samples are rejected due
to their high predictive uncertainty, the model per-
formance starts to drop to the numbers reported in
Table 1. The results for all data sets can be found in
Figure 6 of Appendix F.

6 DISCUSSION

We can identify multiple reasons for the performance
improvements with Link-DGP. Firstly, it benefits from
using both graph structure and node features in a node
neighbourhood (compare Link-DGP and LAGP in Ta-
ble 1). Secondly, we find evidence that computing prob-
abilistic embeddings for nodes greatly improves link
prediction performance (compare Link-GP and Link-
DGP-2 in Table 3 of Appendix D). Furthermore, the
non-parametric nature of the model and the Bayesian
inference scheme provide partial protection against
overfitting (see Figure 2). Finally, adapting the degree
of smoothing is beneficial on certain data sets (com-
pare Link-DGP-4-no-skip and Link-DGP in Table 3 of
Appendix D).

In summary, we have proposed a novel Bayesian link
prediction model based on deep Gaussian processes
that makes use of both the node features and the graph
topology. As such, our main contribution is a powerful
prior for the topology of attributed graphs, that is
suitable for completing a partial graph structure, i.e.
predicting missing links. We have demonstrated that
it fulfils many requirements we expect from a Bayesian
link prediction method: strong predictive performance,
high data efficiency, and well calibrated confidence
estimates.
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Supplementary Material:
Bayesian Link Prediction with Deep Graph Convolutional Gaussian

Processes

A KERNEL ANALYSIS

To obtain a better understanding of the effect of the simplified graph convolutions applied to the Gaussian process,
we examine the prior covariance of g between two nodes for the case that all convolution weights have been set to
1:

[S̃KKS̃K ]ij =
∑

k∈NK(i)
∪{i}

∑
l∈NK(j)
∪{j}

[S̃K ]ik[S̃K ]ljKkl. (14)

Here, NK(i) refers to the K-hop neighbourhood of node i. We note that given the definition of the convolution
matrix (cf. Equation 5), the coefficients [S̃K ]ik and [S̃K ]lj lie in the interval [0, 1]. Furthermore, for a fixed K, the

jth entry of the ith row of S̃K is non-zero if and only if j is in the K-hop neighbourhood of i. Therefore, for larger
K, more entries of S̃K will be non-zero, as the size of the neighbourhood increases, yet every individual entry
will be smaller because elements in [0, 1] are being multiplied. As a result, as we increase K, more but smaller
terms are summed in Equation 14, leading to the covariance to be spread across neighbourhoods of different sizes
more equally. We confirm this empirically by choosing a random node in the input graph as the central node and
plotting the average covariance of nodes at different geodesic distances. We observe that as K is increased, the
differences between the average covariance values start to shrink. The result is visualised in Figure 4.

We expect a graph function for which the covariance between two distant nodes is higher to vary less from node
to node compared to a function that has low covariance for distant nodes. Hence, we expect the function to be
smoother as measured by the Dirichlet norm

‖g‖2G =
1

2

N∑
i,j=1

aij(gi − gj)2 = g>Lg, (15)

where L = D −A is the graph Laplacian. This agrees with the result of Wu et al. (2019a), who have shown
that simplified graph convolutions act as a low pass filter, thus smoothing the graph signal. In Figure 5, we plot
the average Dirichlet norm for functions sampled from the described Gaussian process prior for varying K. As
expected, the smoothness of the sampled functions increases for larger K. We have found these observations to
generalise well across data sets.

B DETAILED DATA SET INFORMATION

Our method is evaluated on six data sets: the USAir (Batagelj and Mrvar, 2006) data set of US airline connections,
the Router (Spring et al., 2004) data set describing Internet Service Provider topology, the Power (Watts and
Strogatz, 1998) data set describing the western US grid network, the Yeast (von Mering et al., 2002) data set
containing the protein-protein interaction network for yeast, and the Cora and Citeseer data sets (Sen et al.,
2008) containing citation networks of scientific publications. More detailed statistics about the data sets can be
found in Table 2.

C DETAILED EXPERIMENTAL SETUP

We use the typical technique for computing the data set split into training and test set by randomly selecting
10% of edges as test edges and removing them from the graph. We then randomly select an equal number of
node pairs that are not connected by an edge as negative test samples. The remaining edges are used for the
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0 2 4 6 8

10−2

100

number of convolutions K

co
va

ri
a
n

ce
va

lu
e

d = 1 d = 2 d = 3

d = 4 d = 5

Figure 4: Average covariances between nodes of varying
geodesic distance. We randomly pick a node i in the
graph of the Yeast data set (for details, see Section 5.1).
We then construct 5 disjoint sets of nodes that have
geodesic distance of exactly d = 1, . . . , 5 from i and
compute the covariance between node i and the nodes
in each set, averaged over the nodes within the same
set. We plot this mean covariance value for different
numbers of convolutions K. We use an RBF-kernel as
the node feature kernel with lengthscale and variance
set to 1.0. We find that as K increases, the mean
covariance values grow closer together, indicating that
the covariance spreads more equally over the graph.
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Figure 5: Average Dirichlet norm of 5,000 functions
sampled from the graph convolutional Gaussian process
prior for varying number of convolutions K. We use the
graph and node2vec features of the Yeast data set (for
details, see Section 5.1) and an RBF-kernel as the node
feature kernel. Its lengthscale and variance are set to
1.0. For larger K, the average Dirichlet norm decreases,
indicating that the sampled functions are smoother.

Data # nodes # edges avg. deg. node feat.

USAir 332 2,126 12.81 no
Router 5,022 6,258 2.49 no
Power 4,941 6,594 2.67 no
Yeast 2,375 11,693 9.85 no
Cora 2,708 5,429 4.01 yes
Citeseer 3,327 4,732 2.84 yes

Table 2: Description of the data sets used in our experiments including the number of nodes, number of edges,
average node degree, and availability of node features.

training set and we again select and equal number of pairs of unconnected nodes as negative training samples.
Note that we do not require a validation set as model selection will be performed based on the maximum ELBO
(cf. Equation 14) achieved on the training set. For the data sets that come without node features (cf. Table 2),
we generate them using the node2vec embedding generation algorithm introduced by Grover and Leskovec (2016)
using the same setup as in Zhang and Chen (2018).

For all models and data sets we report the mean and standard deviation of the model performance for 10 different
random seeds. Seeds influence the data set split and the parameter initialisation in case of the neural network
baselines.

All experiments were run on a shared cluster of Nvidia P100 GPUs with 16GB of GPU memory each.

SBM For the stochastic block model (SBM), the results for all data sets except Cora and Citeseer were reported
by Hasanzadeh et al. (2019) who use the code provided by Aicher et al. (2014) with 12 latent groups. We follow
the same setup to obtain results for Cora and Citeseer.

Neural network baselines For the variational graph auto-encoder and the graph2gauss model, we use the
implementation provided by the authors with K = 2 convolutions and otherwise the hyperparameters described
in the paper. Both can be used without a validation set, which is the option we choose for our evaluation.
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Single-layer Link-GP The following training settings apply to the single-layer Link-GP as evaluated in the
ablation study in Appendix D. In all, experiments, we set the maximum number of convolutions to K = 2. A

random inducing graph with |V̄ | = |V |
8 nodes and |Ē| = 2|V̄ | edges is drawn from an Erdős-Rényi model (Erdös

and Rényi, 1959). The pseudo-inputs are initialised with K-means on the node features of the training data set.
For the node feature kernel, we use a constant mean function and an radial basis function (RBF) kernel with
automatic relevance determination (ARD), defined as

k(x,x′) = ν exp

(
−1

2

D∑
d=1

(xd − x′d)2

l2d

)
. (16)

Its variance ν is initialised to 1.0 and its lengthscales ld are initialised to either 1.0 or 2.0 and the results of the
model achieving a higher ELBO on the training set are reported. The convolution weights λ1 and λ2 are initialised
to 0.5 and 0.3 respectively. For the data sets that come without node features, we use node2vec embeddings of
size 128, following Zhang and Chen (2018). For parameter optimisation, we use the Adam optimiser (Kingma
and Ba, 2015) with a learning rate of 0.001. We train our models for up to 1000 epochs with a batch size of 128
edges and stop training early if there is no improvement in ELBO over 100 epochs.

Link-DGP For hyperparameters and training settings that the single-layer Link-GP and the deep Link-DGP
have in common, we use the same values, except where noted otherwise. In particular, the variance ν and
lengthscales ld of all kernels are always initialised to 1.0. Each hidden layer of the Link-DGP consists of 33
Gaussian process units. A single sample from q(fLi ) is used to approximate the likelihood term of the ELBO (cf.
Equation 14) during training and 50 during testing. Further model details follow the approach by Salimbeni and
Deisenroth (2017). In particular, the mean functions of hidden layers are initialised to linear maps m(X) = XW.
If the number of input dimensions of the layer is less or equal to the number of output dimensions, the (potentially
zero-padded) identity matrix is used for W. If the number of input dimensions is greater than the number of
output dimension, W is the PCA mapping with as many eigenvectors as the output dimensionality of the layer.
Inducing means ml are initialised to 0 and inducing variances Sl to the identity matrix, scaled by 10−5 for hidden
layers.

To improve scalability, we sample nodes from the neighbourhoods of the nodes incident to the target edge, which
will then form the domain of the convolution operation (Hamilton et al., 2017). We sample up to 20 distinct
1-hop neighbours and up to 10 distinct 2-hop neighbours.

Deep Gaussian processes often require training with a cold posterior for the first few epochs, referring to training
with a scaled down KL-term in Equation 14. We initially optimise the ELBO without the KL-term until the
training likelihood has decreased by 10% compared to its value after the first epoch and then increase the
KL-scaling term from 0.0 to 1.0 over 100 epochs using x5 for interpolation. We use a learning rate of 0.01 during
all of training. For improved training stability we clip the gradients during the update step to the average gradient
magnitude during the first 20 epochs.

Vanilla Gaussian process For the Gaussian process operating on the concatenated node features we use
the same training setting as for the single-layer Link-GP. The Gaussian process prior uses an RBF kernel with
automatic relevance determination and with lengthscales initialised to 1.0. The number of inducing points matches
the number of inducing nodes used for the Link-GP. The pseudo-inputs are initialised using K-means on the
vectors obtained when concatenating each pair of features of the nodes incident to each training edge.

D ABLATION STUDY

Number of Gaussian process layers We compare the performance of a single-layer Link-GP model defined
in Equation 12 with the deep Gaussian process Link-DGP model defined in Section 4.3 with a varying number of
Node-GP layers. The Link-DGP-3 model has 2 Node-GP layers followed by a final Link-GP layer. The training
settings for the single-layer Link-GP model closely follow those for its deep Gaussian process equivalent and are
described in detail in Section C. All deep Gaussian process models use the same training settings, naturally with
the exception of the number of layers.

The results of the comparison can be found in Table 3. We find that both in terms of AUC and AP, deeper
models tend to perform better. In particular, the biggest improvement is usually observed when moving from the
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Metric Data Link-GP Link-DGP-2 Link-DGP-3 Link-DGP-4 no-skip Link-DGP-4

AUC

USAir 96.58 ±0.78 97.50 ±0.64 97.53 ±0.67 96.76 ±0.83 97.37 ±0.62

Router 81.79 ±1.69 96.02 ±0.73 96.92 ±1.05 96.15 ±2.01 97.32 ±0.53

Power 83.31 ±1.07 96.00 ±1.14 97.01 ±1.26 97.70 ±0.78 97.72 ±0.70

Yeast 97.09 ±0.32 97.56 ±0.27 97.77 ±0.16 97.74 ±0.28 98.02 ±0.33

Cora 89.37 ±0.94 97.25 ±0.85 97.98 ±0.16 98.06 ±0.09 98.09 ±0.25

Citeseer 67.54 ±2.10 97.73 ±0.31 99.07 ±0.28 99.21 ±0.31 98.72 ±0.34

AP

USAir 97.28 ±0.57 97.28 ±0.68 97.44 ±0.59 97.73 ±0.91 97.31 ±0.52

Router 86.34 ±1.22 95.46 ±0.64 96.34 ±1.18 95.59 ±1.66 96.85 ±0.51

Power 86.59 ±0.74 96.02 ±1.00 96.86 ±1.19 97.57 ±0.73 97.62 ±0.70

Yeast 97.82 ±0.22 97.97 ±0.24 98.14 ±0.18 98.10 ±0.21 98.28 ±0.26

Cora 88.77 ±1.61 96.38 ±1.29 97.80 ±0.17 97.47 ±0.55 97.73 ±0.48

Citeseer 70.18 ±1.53 97.42 ±0.57 98.78 ±0.63 98.98 ±0.56 98.16 ±0.67

Table 3: Performance of the single-layer Link-GP and the multi-layer Link-DGP with varying numbers of layers
and with and without skip-connections in terms of area under the ROC curve (AUC) and average precision
(AP). All results are reported with their standard deviation over 10 runs and the results with the highest mean
in each column are highlighted in bold.

shallow Gaussian process model to the 2-layer deep Gaussian process model. For example, for the Power data set,
the Link-GP model achieves an AUC of 83.31, whereas the Link-DGP-2 model achieves 96.00, which increases
to 97.72 as more layers are added. The results indicate that using a hierarchy of Gaussian processes drastically
improves the inductive bias of the model and additional layers tend to improve the performance further.

Non-convolutional Deep Gaussian process We also evaluated a deep Gaussian process model operating on
concatenated node features, but found that it fails to converge, which we conjecture is due to its weak inductive
bias and lack of suitable constraints on the kernel.

Removing skip-connections We also evaluate the Link-DGP-4 model without skip connections between
layers. We still use the same number of Gaussian process units in each layer however all units perform the full
number of K convolutions. The results in Table 3 indicate that Link-DGP with skip-connections always performs
as least as good as its variant without skip-connections except for the Citeseer data set. On the Router data set
the drop in AUC from removing skip-connections is particularly pronounced. The ablation study suggests that
the full Link-DGP model achieves overall the most consistent strong performance across data sets.

E BROADER IMPACT

Societal impact We present a methodological study that is not directly linked to a specific application. This
means its results can also be applied in a range of real-world scenarios with dangerous negligence or even malicious
intent. This is particularly precarious when making predictions on a network of people for example to infer
connections between people, which could have negative consequences for them.

Environmental impact We also note that Gaussian processes perform Bayesian inference to obtain well
calibrated confidence estimates and partial protection against overfitting rather than compute point estimates of
parameters. This naturally has a higher computational demand, which could result in higher energy usage and
potentially higher CO2 emissions.

F ADDITIONAL EXPERIMENTAL RESULTS

The results of the experiments studying the quality of the confidence estimates of the Link-DGP model as
described in Section 5 are shown in Figure 6.
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Figure 6: Prediction performance of the model when rejecting samples with high predictive variance. The
prediction of the model is only considered if its predictive variance is below a certain threshold. As the variance
threshold increases and fewer low-confidence samples are rejected, we expect the model performance to decrease.

G VARIATIONAL APPROXIMATION FOR LINK-DGP

In this Section, we provide more details on the variational approximation of the posterior briefly described in
Section 4.3. We assume the joint distribution of our models factorises as

p
(
y, r,

{
Gl
}L−1
l=1

)
=

 ∏
eij∈E

p(yij | rij)


︸ ︷︷ ︸

likelihood p(y | r)

p(r |GL−1)

L−1∏
l=1

p(Gl |Gl−1)︸ ︷︷ ︸
Deep GP prior

, (17)

where G0 = X ∈ RN×D and y = [yij , . . .]
> ∈ RE , r = [rij , . . .]

> ∈ RE , Gl ∈ RN×Kl

and K0 = D. Here,
p(yij | rij) = Ber(yij | rij) is a Bernoulli likelihood, r is assigned a Link-GP prior as defined in Equation 11, and
Gl
k is assigned a Node-GP prior as defined in Equation 10. For scalability, we introduce inducing points and add

them to the joint, resulting in the extended joint

p
(
y, r,uL,

{
Gl,Ul

}L−1
l=1

)
= p(y | r)p(r |uL,GL−1)p(uL)

L−1∏
l=1

p(Gl |Ul,Gl−1)p(Ul), (18)

where uL follows the same Link-GP prior as r and Ul follows the same Node-GP prior as Gl. The posterior
distribution over the latent variables has no analytical solution and we therefore approximate it with a variational
posterior, which we choose as

q
(
r,uL

{
Gl,Ul

}L−1
l=1

)
= p(r |uL,GL−1)q(uL)

L−1∏
l=1

p(Gl |Ul,Gl−1)q(Ul) (19)

with q(uL) = N (mL,SL) and q(U) =
∏K
k=1N (ml,k,Sl,k) with variational means ml ∈ RM l

and variational

covariances Sl ∈ RM l×M l

, where M l is the number of inducing points in layer l. This setup allows us to find the
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evidence lower bound (ELBO) to the intractable marginal likelihood

log p(y) = log

∫∫∫∫
p
(
y, r,uL,

{
Gl,Ul,

}L−1
l=1

)
dr duL

{
dGl, dUl

}L−1
l=1

≥
∫∫∫∫

q
(
r,uL,

{
Gl,Ul

}L−1
l=1

)
log

p
(
y, r,uL,

{
Gl,Ul

}L−1
l=1

)
q
(
r,uL, {Gl,Ul}L−1l=1

) dr duL
{

dGl, dUl
}L−1
l=1

=

∫∫∫∫
q
(
r,uL,

{
Gl,Ul

}L−1
l=1

)
log

p(y | r)(((((((
p(r |uL,GL−1)p(uL)

∏L−1
l=1 ((((((((

p(Gl |Ul,Gl−1)p(Ul)

(((((((
p(r |uL,GL−1)q(uL)

∏L−1
l=1 ((((((((

p(Gl |Ul,Gl−1)q(Ul)
dr duL

{
dGl, dUl

}L−1
l=1

=

∫∫
q
(
r,
{
Gl
}L−1
l=1

)
log p(y | r) dr

{
dGl

}L−1
l=1

+

∫∫
q(uL)

L−1∏
l=1

q(Ul) log
p(uL)

∏L−1
l=1 p(Ul)

q(uL)
∏L−1
l=1 q(Ul)

duL
{

dUl
}L−1
l=1

= Eq(r) [log p(y | r)]−KL[q(uL) ‖ p(uL)]−
L−1∑
l=1

KL[q(UL) ‖ p(UL)]. (20)

The marginalised variational distribution, which is required to compute the likelihood term of the ELBO, is given
by

q
(
r,
{
Gl
}L−1
l=1

)
=

∫∫
q
(
r,uL,

{
Gl,Ul

}L−1
l=1

)
duL

{
dUl

}L−1
l=1

=

∫∫
p(r |uL,GL−1)q(uL)

L−1∏
l=1

p(Gl |Ul,Gl−1)q(Ul) duL
{

dUl
}L−1
l=1

=

∫
p(r |uL,GL−1)q(uL) duL ·

L−1∏
l=1

∫
p(Gl |Ul,Gl−1)q(Ul)

{
dUl

}L−1
l=1

.

We continue deriving expressions for the two remaining factors separately. For the first one, we obtain∫
p(r|uL,GL−1)q(uL) duL

=

∫
N
(
r|m(GL−1) + α(GL−1)>(uL −m(ZL−1)),

k(GL−1,GL−1)− α(GL−1)>k(ZL−1,ZL−1)α(GL−1)
)

· N
(
uL|mL,SL

)
duL

=

∫
N
(
r|m(GL−1) + α(GL−1)>(ur −m(ZL−1)),

k(GL−1,GL−1)− α(GL−1)>k(ZL−1,ZL−1)α(GL−1)
)

· N
(
m(GL−1) + α(GL−1)>(ur −m(ZL−1))|
m(GL−1) + α(GL−1)>(m−m(ZL−1)),

α(GL−1)>SLα(GL−1)
)

dur

= N
(
r|m(GL−1) + α(GL−1)>(m−m(ZL−1)),

k(GL−1,GL−1)− α(GL−1)>k(ZL−1,ZL−1)α(GL−1) + α(GL−1)>SLα(GL−1)
)

= N
(
r|m(GL−1) + α(GL−1)>(m−m(ZL−1))︸ ︷︷ ︸

:=µ̃L(GL−1)

,

k(GL−1,GL−1)− α(GL−1)>(k(ZL−1,ZL−1)− SL)α(GL−1)︸ ︷︷ ︸
:=Σ̃L(GL−1)

)
, (21)
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where α(GL−1
i ) = k(ZL−1,ZL−1)−1k(ZL−1,GL−1

i ) and we colour-coded the mean and covariance of each normal
distribution for visual clarity. To get from line 3 to line 4 we have used the fact that∫

N (x|µ1,Σ1)N (µ1|µ2,Σ2) dµ1 = N (x|µ2,Σ1 + Σ2). (22)

Analogously, a similar expression can be found for the second factor

L−1∏
l=1

∫
p(Gl |Ul,Gl−1)q(Ul)

{
dUl

}L−1
l=1

=

L−1∏
l=1

N
(
Gl|m(Gl−1) + α(Gl−1)>(m−m(Zl−1))︸ ︷︷ ︸

:=µ̃l(Gl−1)

,

k(Gl−1,Gl−1)− α(Gl−1)>(k(Zl−1,Zl−1)− Sl)α(Gl−1)︸ ︷︷ ︸
:=Σ̃l(Gl−1)

)
(23)

and we therefore obtain the marginalised variational distribution

q
(
r,
{
Gl
}L−1
l=1

)
= N

(
r | µ̃L(GL−1), Σ̃L(GL−1)

) L−1∏
l=1

N
(
Gl | µ̃l(Gl−1), Σ̃l(Gl−1)

)
. (24)

The first term in the ELBO in Equation 20 is intractable and, as proposed by Salimbeni and Deisenroth (2017),
we therefore opt to approximate it by sampling from the further marginalised variational distribution q(r). This
can be achieved via the reparameterisation trick: For a sample from q(Gl

i), we draw a sample εli ∼ N (0, I) and
transform it to a sample Ĝl

i ∼ q(Gl
i) via

Ĝl
i = µ̃l(Gl−1

i ) + εli � Σ̃l(Gl−1
i ). (25)

To obtain samples r̃ ∼ q(r), this step is repeated for each layer in the deep Gaussian process, propagating samples
through the hierarchy.
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