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Workload consolidation is a phase in Cloud datacenter where tasks are allocated among the available
hosts in such a way that a minimal number of hosts is used and users’ need in terms of service level
agreement (SLA) is fulfilled. To achieve workload consolidation, hosts are divided among three groups
based on their utilization namely overloaded hosts, underloaded host and normal hosts. Detection of over
or underloaded host is a challenging issue. Most of the existing researchers propose to use threshold val-
ues for such detection. We believe that there is a scope of improvement in existing methods of deciding
underloaded hosts and subsequently taking off virtual machines (VMs) from them and placing them on
other hosts. In this research, we propose Host Utilization Aware (HUA) Algorithm for underloaded host
detection and placing its VMs on other hosts in a dynamic Cloud environment. We compare our proposed
mechanism with existing one and with empirical analysis; it is shown that our proposal results into shut-
ting off more number of hosts without compromising user’s workload requirement which leads to an
energy-efficient workload consolidation with minimal migration costs and efficient utilization of active
hosts.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Computing resources have becomemore powerful, cheaper, and
ubiquitously available than ever before with the rapid develop-
ment of computing and storage technologies and the extreme suc-
cess of the Internet. This technological shift has become the reason
for the realization of a new computing paradigm called Cloud Com-
puting. The Cloud computing model (Buyya et al., 2010) has
quickly exerted a pull on much of the user’s focus in recent years.
Mell and Grace (2011) define Cloud as a ‘‘model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction.” NIST further lists five essential characteristics of
Cloud computing namely (i) on-demand self-service, (ii) broad net-
work access, (iii) resource pooling, (iv) rapid elasticity or expan-
sion, and (v) measured service. In addition to these five essential
characteristics, the cloud community has extensively used the ser-
vice models to categorize the cloud services namely (a) Software as
a Service (SaaS), (b) Platform as a Service (PaaS) and (c) Infrastruc-
ture as a Service (IaaS), and four deployment models such as (1)
private, (2) community, (3) public and (4) hybrid. These Cloud ser-
vices and deployment models assist programmers having ground-
breaking thoughts but lack huge capital investment in computing
infrastructures to deploy their products in the real market. Cloud
work on the top virtualization technology by (Fox et al., 2009). Vir-
tualization creates virtual resources on the top of physical
machines. These virtual resources may include computing
resource, operating platforms, storage devices, main memory,
internet bandwidth etc. Virtual machine (VM) is an emulated
machine which provides the utility of offering resources in form
of platform, storage, compute or network. When a task is submit-
ted to Cloud for computation or for another purpose, the same is
served through one or more virtual machines created at Cloud
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Service Providers’ (CSP) premise. Hence, any job submitted to
Cloud is run under one or more VMs. Multiple logical VMs run
under a common server generally known as the host. There are
many hosts under a datacenter and one CSP may have several data
centers.

To respond to the rapid growth of customer demands for pro-
cessing power and storage, cloud providers like Amazon, Microsoft,
and Google are deploying a large number of data centers across the
world. The Cloud datacenters usually comprise of a great number
of well-configured and interconnected computing resources (Luo
et al., 2014) which consume a significant amount of electricity
for their functioning. Increase usage of Cloud computing has lead
to augmentation in electrical energy consumption by the huge
amount of servers in a large number of data centers. The survey
shows that the average energy consumption of a data center is
comparable to that consumed by 25,000 domestic usages (Kaplan
et al., 2008). This has attracted consideration of research commu-
nity in recent years. Reduction of energy consumption can be
achieved by switching idle physical servers to lower power states
(suspended or turned off) while still preserving customers perfor-
mance requirements. Out of many different mechanisms to
address the issue, workload/server consolidation and task schedul-
ing have been recognized as a few of the popular techniques.
Server consolidation works on the principle of minimizing active
servers in a data center without compromising the performance
of tasks and user requirement. Sleep/Wakeup has been identified
as one of the top classifications by (Brienza et al., 2016) in which
some of the servers are switched off when not in use to save energy
and are awakened whenever necessary. It has been seen that even
idle servers consume about 70% of peak power (Fan et al., 2007). In
a nutshell, proper distribution of existing tasks among available
servers may result into minimizing the active servers without com-
promising SLA with Cloud users.

Hosts running in a data center are classified into three cate-
gories based on their usage namely (i) overloaded hosts (ii) under-
loaded hosts and (iii) normal hosts. This classification is based on
host’s utilization, for instance, hosts with utilization more than a
certain value (commonly known as upper threshold) may be con-
sidered as overloaded hosts and similarly, hosts with utilization
less than a certain value (commonly known as lower threshold)
may be considered as underloaded hosts. All other hosts except
these two categories are considered as normal hosts. According
to (Barroso and Holzle, 2007), under the normal scenario, hosts
in a datacenter operate only at 10%–50% of their peak capacity
and these underloaded hosts become a reason for the waste of
electricity. Hence, it is required to reduce the energy consumption
Fig. 1. Workload consolidation. Before consolid
by enhancing hosts’ resource utilization in Cloud data centers
through workload consolidation. Fig. 1 shows an example to
understand workload consolidation.

Fig. 1 (Left) shows the status of workload before consolidation.
It is seen that all eight hosts are utilized with utilization varying
from 20% to 50%. Using the workload consolidation, we may shift
few workloads from one host to another in such a way that the
target host does not get overloaded. Fig. 1 (Right) shows the sta-
tus of the workload after consolidation. It depicts that we could
turn four hosts (3, 5, 6 and 7) into power saving mode leaving
four hosts (1, 2, 4 and 8) active with utilization ranging from
55% to 70%.

Overall, the process of workload consolidation includes (i)
selecting few VMs from overloaded hosts and trying to put them
on other hosts such that this source host becomes normal and
the target hosts do not get overloaded and (ii) selecting all
VMs from underloaded hosts and trying to put them on other
hosts such that target hosts do not get overloaded, and
switching-off these underloaded hosts if all VMs are successfully
migrated for the purpose of saving energy. In this research, we
aim to address the second category of underloaded hosts’ selec-
tion and vacating the VMs from them. We have carried out an
exhaustive literature survey of the techniques involving detec-
tion of underloaded hosts and subsequently vacating them. We
have identified that there is a scope of improvement in existing
methods of deciding underloaded hosts and subsequent VMs
placements on other hosts. In our work, we propose Host Utiliza-
tion Aware (HUA) algorithm for underloaded host detection and
placing its VMs on other hosts in a dynamic Cloud environment.
Unlike most of the existing mechanism, HUA computes lower
threshold which considers overall utilization of datacenter while
taking into account, utilization of all the active hosts in the data
center. HUA further predicts maximum number of hosts which
can be vacated based on total data center workload. We compare
HUA with the one proposed by (Beloglazov and Buyya, 2012)
and through experimental analysis; we show that HUA results
into shutting off more number of hosts without compromising
user’s workload requirement leading to an energy-efficient work-
load consolidation with minimal migration costs and efficient
utilization of active hosts.

The overall organization of this article is as follows. Section 2
summarizes the outcome of our literature survey. In Section 3,
we propose our method in form of algorithm. Section 4 depicts
experimentation setup, data sets, results generated and subse-
quent discussions. In Section 5, we conclude our research followed
by a list of references.
ation (left) and after consolidation (right).
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2. Related work

Robert et al. (2012) illustrated various power consumption esti-
mation models in servers, storage devices and network equipment.
Authors propose a three-step model that consisted of optimization,
reconfiguration and monitoring to save power. The authors
claimed that about 20% energy consumption could be saved if
the energy optimization policy could be guided by power con-
sumption prediction models. Nathuji and Schwan (2007) discussed
the issue of power management in virtualized data centers during
the early phase of Cloud emergence. Authors investigated a mech-
anism to unite power management mechanisms and policies with
the virtualization technologies to actively deploy in data centers. In
the mechanism, the resource manager is consisting of two compo-
nents such as local and global managers. The local manager is con-
sidered to be the guest OS’s power management strategies whereas
the global manager gathers information from local managers for
VM placement. But, the paper does not illustrate specific resource
management policy for the global manager. Verma et al. (2008)
observe the challenge of power-aware dynamic placement of
applications as a bin packing problem. Bins are considered to be
variable in sizes and costs. Live migration is used for VM migration
from one host to another at regular scheduling interval. But, the
authors do not talk about the SLA. Song et al. (2014) make use of
the virtualization for dynamic resource allocation according to
the workload’s requirements and optimize the number of active
hosts to achieve energy efficiency in the Cloud data center. A model
has been proposed for resource allocation based on relaxed on-line
bin packing problem and authors propose the variable item size
bin packing (VISBP) algorithm. VISBP can be operable of reasonable
size variation, as long as the classification (of VMs and PMs) rules
are kept. Authors claim better performance in hot spots’ migration
and load balance when compared to the existing algorithm. How-
ever, all PMs are considered homogeneous with unit capacity may
be the cardinal limitation of its application. Huang et al. (2013)
devise a sub-optimal dynamic SLA-aware resource allocation strat-
egy to achieve energy efficiency in Cloud computing. During the
first phase, authors propose a prediction mechanism using support
vector regressions (SVR) to estimate resource utilization consider-
ing SLA requirement. Later, using a genetic algorithm, resource re-
allocation mechanism is applied to determine user’s VM require-
ment. Authors claim to maintain SLA by satisfying QoS and
improve Cloud provider’s profit. However, the GA algorithm does
not converge to the local optimal solution with significant execu-
tion time. Beloglazov and Buyya (2010a) propose an idea of setting
up upper and lower utilization thresholds to identify over and
underloaded servers. If the host utilization exceeds the upper
threshold, authors propose migrating some VMs from this host to
reduce SLA violation (SLAV). In contrast, if the utilization falls
below the lower threshold, all VMs on this underloaded host is
to be migrated and the host is to be switched off to save energy
consumption. However, no specific technique or method has been
proposed for calculating upper and lower threshold. Beloglazov
and Buyya (2010b) propose a technique based on statistical analy-
sis of the VM utilization history for auto-adjustment of the utiliza-
tion thresholds. Authors propose equation to calculate lower
threshold while taking into consideration, factors such as host uti-
lization, number of hosts, the standard deviation of utilization and
probability intervals. However, the same authors, (Beloglazov and
Buyya, 2012) propose a simple approach of comparing relative host
utilization for detection of the underloaded host. This approach
searches for the host with minimum utilization in a data center
and tries to place all the VMs from this host to other host keeping
them not overloaded. If this is successfully accomplished, the orig-
inal host is switched to power saving mode and the process is
iteratively repeated till there is no further possible VM placement.
Extending the work of these researchers, (Horri et al., 2014) pro-
poses a technique to compute host utilization while considering
two factors namely (i) CPU utilization of the host and (ii) number
of VMs on it for the detection of the underloaded host. Further,
authors propose to assign dynamic weight to both of these factors.
VM-based dynamic threshold (VDT) is applied periodically.
Authors claim a significant reduction in a number of VM migration
and hence, reduction in SLA violation and energy consumption. Lin
et al. (2011) identify that peak-load-based static resource alloca-
tion schemes often result in the underutilization of computing
resources. To address the issue, authors propose a technique to
compute lower threshold by considering (i) maximum workload
and normal workload of a virtual machine (ii) rate of maximum
workload and normal workload (iii) current number of virtual
machines and (iv) threshold rate ranging between 0 to 1. In this
simple to implement scheme, authors claim to improve resource
utilization and reduce the user usage cost. Yang et al. (2014) pro-
pose a scheme based on load ratios to determine the number of
physical machines to be run or turned off. Authors calculate gross
occupied resource weight ratio (that is the ratio of workload to
physical capacity available). This ratio is compared with two
parameters namely (i) maximum tolerant occupied resource
weight ratio and (ii) minimum critical occupied resource weight
ratio. If gross occupied resource weight ratio is greater than (i)
and a number of running physical machine is less than the total
number of the physical machine then wake up a standby physical
machine to join the other running physical machines. If gross occu-
pied resource weight ratio is less than (ii) and number of running
physical machines is greater than 1 then select one of the running
physical machines with least load as the machine to be migrated
and move all VMs from this machine to other running physical
machines and shut it off.
3. Host Utilization Aware (HUA) Algorithm – our proposal

Most of the existing researchers as mentioned in Section 2 carry
out a common practice for identifying underloaded hosts by select-
ing the host with lowest utilization. Further, they try migrating all
VMs from the host and continue the process for next host if all VMs
can be migrated. This practice includes sorting all the hosts in
descending order based on their utilization. Consequently, host
with the least utilization is considered as the underloaded host
and proceed for taking off VMs from that host to other hosts in
such a way that the target hosts do not get overloaded. The process
is repeated till we find placements for the all the VMs of under-
loaded hosts. The major drawback of this existing mechanism is
that it does not take the total utilization (by all the hosts) of the
data center into consideration while (i) detecting underloaded
hosts and (ii) placing all the VMs from selected underloaded hosts
on other hosts. We further believe that the knowledge of all host
utilizations (i.e. overall workload in the data center) would help
us in proper selection of the host(s) to be vacated and subsequent
VM placement. Moreover, existing mechanisms incorporate a sim-
ple placement process where the selected VMs from least utilized
host are placed on other hosts without considering the target
host’s utilization. It may result in placing a VM on a target host
which was prospective to be vacated in near future which may lead
to more number of active hosts per data center and more number
of VM migrations in future.

Hence to overcome these challenges, we propose a novel mech-
anism to compute lower threshold which considers overall utiliza-
tion of datacenter while taking into account, utilization of all the
active hosts in the data center. We further predict a maximum
number of hosts which can be vacated based on the total workload
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of data center. The value of the predicted maximum number of
hosts which can be vacated is used to fetch the value of the lower
threshold. Subsequently, we divide all the available hosts into two
categories namely (i) hosts with utilization below the lower
threshold and (ii) host with utilization equal or higher than the
lower threshold. Consequently, we select VMs from host list of (i)
and try to place them on the host list of (ii) with minimum change
in the power consumption. Algorithm 1 depicts the steps for the
same.

Algorithm 1: Host Utilization Aware (HUA) Algorithm for
Underloaded Host Detection

1. Input: hostList, vmList, Output: vmAllocation
2. Add all overUtilizedHosts and switchedOffHost in exclude

HostListforFindingUnderUtilized
3. Add all overUtilizedHosts and switchedOffHost in exclude

HostListforFindingNewPlacement
4. hostList.sortIncreasingUtilization()

5. totalWorkLoadDatacenter WTOTAL 
Pi¼HTOTAL

i¼1
Ui where Ui is

Utilization of ith Host
6. Maximum number of hosts that can be evacuated HMAX 

HTOTAL � WTOTAL
Upper Threshold

7. Lower Threshold TLOWER HSORT [HMAX]
8. for each hosts with index in 1 to HMAX do
9. excludeHostListforFindingNewPlacement.add(Hi)
10. end for
11. hostNumberMinUtilization 1
12. while TRUE
13. if HTOTAL = excludeHostListforFindingUnderUtilized.size()
14. break
15. endif
16. if hostNumberMinUtilization does not belong into ex

cludeHostListforFindingUnderUtilized then
17. excludeHostListforFindingUnderUtilized.add(hostNum

berMinUtilization)
18. endif
19. if hostNumberMinUtilization does not belong into ex

cludeHostListforFindingNewPlacement then
20. excludeHostListforFindingNewPlacement.add

(hostNumberMinUtilization)
21. endif
22. for all vm in Host hostNumberMinUtilization do
23. vmUtil getVmUtilization

(vm, hostNumberMinUtilization)
24. minPowerDiff MAX
25. allocatedHost NULL
26. for each host in hostList do
27. if host belongs to excludeHostListforFindingNewPla

cement then
28. continue with next host
29. endif
30. if host has sufficient resources for vm then
31. If Uhost (after placement) > UpperThreshold then
32. continue with next host
33. endif
34. if Phost (after placement) - Phost (before placement)

< minPowerDiff then
35. minPowerDiff Phost (after placement) - Phost

(before placement)
36. allocatedHost host
37. endif
38. endif
39. end for
40. if allocatedHost– NULL then
41. if allocatedHost does not belong to excludeHos

tListforFindingUnderUtilized then
42. excludeHostListforFindingUnderUtilized.add

(allocatedHost)
43. endif
44. migrationMap.add(vm, allocatedHost)
45. else
46. break // Not all VMs can be reallocated from the

host hence further reallocation stands cancelled
47. endif
48. end for
49. hostNumberMinUtilization 

hostNumberMinUtilization + 1
50. end while

In, Host Utilization Aware (HUA) Algorithm, first we add all overuti-
lized hosts and switched-off hosts in the lists namely excludeHos
tListforFindingUnderUtilized and excludeHostListforFindingNewPlace
ment to skip them from subsequent searching leading to efficient
computation cost. Then, we calculate a maximum number of hosts
to be vacated (HMAX) based on the total workload of datacenter
which can be calculated from the utilization of all active hosts.
Subsequently, with the help of HMAX, we come up with a lower
threshold value (TLOWER). We use this value to search an
underutilized host and we can exclude the host having its
utilization lower than TLOWER for VM Placement too. Next, we select
the lowest utilized host and try to migrate all its VM to another
host. During placement of VM, we make sure that whether the
target host has enough resources to accommodate the new VM or
not and the target host does not get overloaded after placing the
new VM(s). Upon satisfying above conditions, we select those hosts
for new placement which results into minimum increase in power
consumption after placement. Further, we verify whether all the
VMs of underloaded host get a suitable host for placement or not.
If yes, then we migrate all VMs and turn off the host. The process
is repeated for next underutilized host till further placement
possible.

4. Performance assessment

4.1. Experimentation testbed

To evaluate our proposed mechanism, it is required to be tested
on large scale datacenter implementation of Cloud under the
dynamic workload. But, as it is intricate to accomplish such
requirement on an actual Cloud infrastructure, the CloudSim
toolkit (Calheiros et al., 2014) has been selected as a simulation
environment. CloudSim has been one of the efficient simulation
environments for the factors such as virtualized resource manage-
ment and modeling, energy consumption and account modeling,
workload dynamism, VM migration and SLA computations (Patel
and Patel, 2016).

For our experimentations, the testbed configurations are men-
tioned in Table 1 for 800 heterogeneous hosts half of which are
HP ProLiant ML110 G4 servers (Type 1), and the other half consists
of HP ProLiant ML110 G5 servers (Type 2). The frequency of the
servers’ CPUs is mapped onto MIPS ratings: 1860 MIPS each core
of the HP ProLiant ML110 G5 server, and 2660 MIPS each core of
the HP ProLiant ML110 G5 server. Each server is modeled to have
1 GB/s network bandwidth. Table 2 describes VM configurations.



Table 1
Specifications of Hosts.

Name MIPS RAM (MB) Bandwidth (Gb per sec) Core/Processing Elements Number of Hosts

Type 1 HpProLiantMl110G4Xeon3040 1860 4096 1 2 400
Type 2 HpProLiantMl110G5Xeon3075 2660 4096 1 2 400

Table 2
Specifications of Virtual Machines.

MIPS Core/Processing Elements RAM (MB) Bandwidth (Mb per sec) Number of VM (Total:1052)

Type 1 2500 1 870 100 263
Type 2 2000 1 1740 100 263
Type 3 1000 1 1740 100 263
Type 4 500 1 613 100 263

Table 3
Power Consumption (Watts) at different load levels.

Host 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HpProLiantMl110G4Xeon3040 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HpProLiantMl110G5Xeon3075 93.7 97 101 105 110 116 121 125 129 133 135
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All the VMs are single-core, each VM type: High-CPU Medium
Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000 MIPS,
3.75 GB); Small Instance (1000 MIPS, 1.7 GB); and Micro Instance
(500 MIPS, 613 MB). Initially, the VMs are allocated according to
the resource requirements defined by the VM types.

For power consumption by a host, we make use of real data of
power consumption provided by SPECpower benchmark
(SPECpower benchmark, 2008) which has been listed in Table 3.
The power consumption by servers can be accurately described
by a linear relationship between the power consumption and
CPU utilization. As can be seen from the table that even at low uti-
lization, the host consumes a significant amount of power. Hence it
is required to turn off such kind of hosts, when not in use.

Workload traces are taken from real dataset provided as part of
the CoMon project, a scalable monitoring infrastructure for Plane-
tLab (Park and Pai, 2006). The data collected are from slice-centric
daemon showing resource consumption per slice. The type of data
collected is context number (numeric userid for the slice), transmit
and receive rates for the past 1 and 15 min, number of processes,
physical and virtual memory consumption, overall CPU and mem-
ory utilization, and slice name. Most nodes have on the order of 50
slices running at a time. In our research, we mostly use the overall
CPU utilization which taken at the interval of 5 min for more than
thousand VMs from servers located across more than 500 places
around the globe. For our experimentation, we have chosen the
dataset taken on March 3rd 2011 comprising of 1052 VMs. These
1052 VMs are of type 1, type 2, type 3 and type 4 as mentioned
in Table 2.

4.2. Simulation results

Table 4 depicts the simulation results of our proposal. Our pro-
posal (HUA) is compared with existing approach mentioned in
Beloglazov and Buyya (2012).

With the intention of comparing the efficiency of HUA algo-
rithm with that of existing one, we use several metrics to assess
the performance namely energy consumption, number of VM
migration, Service Level Agreement Violation (SLAV), SLA perfor-
mance degradation due to migration (PDM), SLA time per active
host (SLATAH), overall SLA violation, average SLA violation and
number of host shutdowns. Energy consumption by the hosts of
a data center is one of the performance metrics. Energy consump-
tion is calculated according to the power consumption of host as
mentioned in Table 3. Another metric is the number of VM migra-
tions initiated during VM placement after selection of VM from the
underutilized host. An SLA violation caused during workload con-
solidation phase is described in terms of SLAV which is calculated
based on SLATAH and PDM. SLATAH is defined as the percentage of
time, during which active hosts have experienced the CPU utiliza-
tion of 100%. The overall performance degradation due to VMs
migrations is measured in terms of Performance Degradation due
to Migrations (PDM).

We have used various combinations of VM selections policies
and overloaded host detection methods. VM selections policies
include maximum utilization (MU), maximum correlation (MC),
minimum migration time (MMT) and random selection (RS). Over-
loaded host detection techniques comprise median absolute devi-
ation (MAD), interquartile range (IQR), local regression (LR),
robust local regression (LRR) and Static Threshold (ST). The value
of safety parameter (s) is adjusted to control energy consumption
and SLA violation. The system consolidates VMs based on the value
of s. The low value of s results into less energy consumption but the
higher level of SLA violations caused by the consolidation and vice
versa. Hence, it is required to address the tradeoff between energy
consumption and SLA violation.

We have simulated various combinations of the host overload-
ing detection techniques (MAD, IQR, LR, LRR and ST) and VM selec-
tion techniques (MU, MC, MMT and RS) for existing and proposed
an approach of underloaded host detection and subsequent place-
ment. Following Figs. 2–7 depict the assessment of metrics men-
tioned as above. Fig. 2 depicts the status of the number of host
shutdown after VM placement from underloaded hosts. It can be
seen that the proposed method outperforms to increase the num-
ber of host shutdown (around 67%). This is due to the fact that
unlike existing method which only considers the factor of power
consumption, the proposed method also considers the exclusion
of hosts which are estimated to be vacated in near future during
VM placement. This results into better workload balancing which
evacuates more number of hosts. Proposed method tries to make
best possible utilization of a minimum number of the host while
attempting to allocate a maximum number of jobs to the active
hosts. As energy consumption is directly proportional to the num-
ber of active host in a datacenter, increase in the number of host
shutdown would result into reduction in energy consumption.
Fig. 3 illustrates the status of energy efficiency, which has been
improved by average 12.59%. To achieve this improvement in



Table 4
Simulation Results.

Policy with Safety
Parameter

Energy Consumption
(kWh)

Number of VM
Migration

SLAV
(%)

SLA PDM (%) SLATAH
(%)

Overall SLA
Violation (%)

Average SLA
Violation (%)

Number of host
shutdowns

MAD-MC-2.5 Existing 12.21 2062 0.0107 0.14 7.48 0.14 10 772
HUA 10.67 2900 0.00612 0.12 5.05 0.13 10.42 1285

MAD-MU-2.5 Existing 12.41 2121 0.01084 0.14 7.58 0.14 10 787
HUA 13.56 4122 0.01117 0.13 8.76 0.16 10.7 1541

MAD-MMT-2.5 Existing 12.28 2069 0.01038 0.14 7.41 0.14 10 769
HUA 10.58 2868 0.00602 0.12 5.04 0.13 10.31 1270

MAD-RS-2.5 Existing 12.13 2012 0.01066 0.14 7.47 0.14 10 763
HUA 9.56 2340 0.01012 0.15 6.78 0.16 10.5 1124

IQR-MC-1.5 Existing 12.23 2075 0.01074 0.14 7.51 0.14 10 770
HUA 10.76 2961 0.00619 0.12 5.15 0.13 10.41 1288

IQR-MU-1.5 Existing 12.43 2133 0.01092 0.14 7.59 0.14 10 789
HUA 13.66 4213 0.01159 0.13 9.04 0.16 10.7 1547

IQR-MMT-1.5 Existing 12.27 2064 0.01031 0.14 7.39 0.14 10 769
HUA 10.65 2897 0.00626 0.12 5.1 0.13 10.42 1276

IQR-RS-1.5 Existing 12.13 2033 0.01091 0.14 7.58 0.14 10 763
HUA 9.13 2322 0.01095 0.16 7.03 0.17 10.86 1081

LR-MC-1.2 Existing 12.2 2066 0.0107 0.14 7.49 0.14 10 771
HUA 10.65 2855 0.00589 0.12 5.02 0.13 10.48 1282

LR-MU-1.2 Existing 12.37 2097 0.01071 0.14 7.53 0.14 10 786
HUA 13.45 3984 0.01017 0.12 8.39 0.16 10.81 1532
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Fig. 2. Number of host shutdown.
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energy consumption, it is obvious to shut down more hosts (which
was improved by 67% as mentioned in Fig. 2). And to shut down
more host, workload needs to be properly consolidated in a mini-
mum number of hosts by the requirement of number of VMmigra-
tions. Hence, in our case, VM migration is increased to 45.58%.
Fig. 4 depicts the number of VM migrations. However, as shown
in Fig. 5, SLA Violation (SLAV) is reduced in our case which has
been improved by 18.77%. The metric SLAV is computed from (i)
SLA performance degradation due to migration (PDM) (Fig. 6 and
(ii) SLA violation Time per Active Host (SLAT AH) (Fig. 7). As shown
in Fig. 6, PDM has been improved by 6.40% whereas SLAT AH has
been improved by 12.35%. Our experimental results show that
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Fig. 7. SLA violation Time per Active Host (SLAT AH).
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HUA is efficient in deciding underloaded hosts and subsequently
vacating more number of hosts resulting in saving in energy con-
sumption while maintaining SLA violation.
5. Conclusion

Underloaded host detection is one of the important phases in
workload consolidation process. In this research, we have surveyed
existing methods to calculate lower threshold value which is used
for detection of the underloaded host. Existing methods calculate
lower threshold value based on sorted utilization of available
hosts, however, they do not consider the entire scenario of total
workload across the datacenters. To overcome the issue, we have
proposed a novel technique, Host Utilization Aware (HUA) Algo-
rithm for underloaded host detection, for predicting a maximum
number of hosts which can be vacated by computing lower thresh-
old that considers overall utilization of datacenter. Our experimen-
tal results have proved that HUA is efficient in deciding
underloaded hosts and subsequently vacating more number of
hosts resulting in saving in energy consumption while maintaining
SLA violation. In future, the proposed technique can be extended
from simulation setup to real-time data center environment with
other variable factors.
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