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We illustrate testing measurement invariance in a second-order factor model using a
quality of life dataset (n = 924). Measurement invariance was tested across 2 groups
at a set of hierarchically structured levels: (a) configural invariance, (b) first-order
factor loadings, (c) second-order factor loadings, (d) intercepts of measured vari-
ables, (e) intercepts of first-order factors, (f) disturbances of first-order factors, and
(g) residual variances of observed variables. Given that measurement invariance at
the factor loading and intercept levels was achieved, the latent factor mean difference
on the higher order factor between the groups was also estimated. The analyses were
performed on the mean and covariance structures within the framework of the con-
firmatory factor analysis using the LISREL 8.51 program. Implications of sec-
ond-order factor models and measurement invariance in psychological research were
discussed.

Second-order factor models have been used in psychology over a wide variety of
domains, including the Big Five personality structure (DeYoung, Peterson, & Hig-
gins, 2002), quality of life (Gotay, Blaine, Haynes, Holup, & Pagano, 2002),
self-concept (Marsh, Ellis, & Craven, 2002; Marsh & Hocevar, 1985), psychologi-
cal well-being (Hills & Argyle, 2002), meaning and satisfaction in life (Harlow &
Newcomb, 1990), and HIV stigma (Berger, Ferrans, & Lashley, 2001). Sec-
ond-order models are most typically applicable in research contexts in which mea-
surement instruments assess several related constructs, each of which is measured
by multiple items. The second-order model represents the hypothesis that these
seemingly distinct, but related constructs can be accounted for by one or more
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common underlying higher order constructs. For example, in a recent application
in personality research, evidence suggests that measures of self-esteem, neuro-
ticism, locus of control, and generalized self-efficacy may all be accounted for by a
common higher order general factor, and after controlling for the general factor,
each trait has little additional ability to predict external criteria (Judge, Erez, Bono,
& Thoresen, 2002). In comparison to first-order models with correlated factors,
second-order factor models can provide a more parsimonious and interpretable
model when researchers hypothesize that higher order factors underlie their data.

Tests of measurement invariance are an important issue if the researcher wishes
to make group comparisons (e.g., Byrne & Watkins, 2003; Reise, Widaman, &
Pugh, 1993; Van de Vijver & Leung, 1997; Widaman & Reise, 1997). Meaningful
comparisons of statistics such as means and regression coefficients can only be
made if the measures are comparable across different groups. As one example, the
average height of Europeans (measured in meters) and Americans (measured in
feet) cannot be directly compared because the two groups are not measured in a
common metric.1 Most applications also assume that the groups are independent
and this is the case we consider in this article. Examples of groups on which com-
parisons are commonly made include gender, age, ethnicity, culture, and experi-
mental versus control groups.

Measurement invariance involves testing the equivalence of measured con-
structs in two or more independent groups to assure that the same constructs are
being assessed in each group. With continuous variables, the most frequently used
technique for testing measurement invariance is multiple group confirmatory fac-
tor analysis (CFA). The early statistical developments of this technique (e.g.,
Alwin & Jackson, 1981; Jöreskog, 1971), and the applications that followed, were
limited to the comparison of covariance structures. More recent work (Meredith,
1993; Widaman & Reise, 1997) has further developed the technique so that the
comparison of mean structures between the groups is also included. This addition
is important if investigators intend to go beyond a comparison of the covariance
structures in the groups and also compare the mean levels of the constructs, often a
question of considerable interest.

Although research examples that examine measurement equivalence across
groups considering both the covariance and mean structures are becoming increas-
ingly common (e.g., Kim, Brody, & Murry, 2003; Leone, Perugini, Bagozzi,
Pierro, & Mannetti, 2001; Li, Harmer, Acock, Vongjaturapat, & Boonverabut,
1997; Reise, Smith, & Furr, 2001), few examples exist that test measurement
invariance in second-order models. The few examples that do exist (e.g., Byrne,
1995; Byrne & Campbell, 1999; Marsh & Hocevar, 1985) do not go beyond exami-
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nation of the covariance structure. In this article we illustrate how to test measure-
ment invariance in multiple group models using the full mean and covariance
structures, based on techniques developed by Meredith (1993) and Widaman and
Reise (1997). Measurement invariance across groups at the configural, factor load-
ing, intercept, residual variance, and disturbance levels was tested using a sec-
ond-order factor model. Given an adequate level of measurement invariance, latent
factor mean differences between the groups were further tested. Our analyses were
performed within the framework of CFA by using the LISREL 8.51 program
(Jöreskog & Sörbom, 1999). Other structural equation modeling programs such as
Amos, EQS, Mplus, and MX can also be used to test measurement invariance.

SECOND-ORDER FACTOR MODELS:
APPLICABILITY AND ADVANTAGES

Second-order models are potentially applicable when (a) the lower order factors
are substantially correlated with each other, and (b) there is a higher order factor
that is hypothesized to account for the relations among the lower order factors. For
example, to test whether there is a general intelligence factor that underlies a wide
range of specific intelligence-related abilities (Spearman, 1927), we can hypothe-
size that the specific abilities (which are each assessed by multiple items) are lower
order factors, and the general intelligence is a higher order factor, which accounts
for the commonality among the specific abilities. Statistical tests of the fit of a hy-
pothesized second-order factor normally require that four or more first-order fac-
tors are included in the dataset.2

A second-order factor model has several potential advantages over a first-order
factor model. First, the second-order model can test whether the hypothesized
higher order factor actually accounts for the pattern of relations between the
first-order factors. Second, a second-order model puts a structure on the pattern of
covariance between the first-order factors, explaining the covariance in a more par-
simonious way with fewer parameters (Gustafsson & Balke, 1993; Rindskopf &
Rose, 1988). Third, a second-order model separates variance due to specific fac-
tors from measurement error, leading to a theoretically error-free estimate of the
specific factors. The unique variance of each first-order factor that is not shared by
the common second-order factor represents the specific factors. These specific fac-
tors are represented by the disturbance of each first-order factor. Finally, sec-
ond-order factor models can provide useful simplification of the interpretation of
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tested for fit.



complex measurement structures such as multitrait–multimethod models (Eid,
Lischetzke, Nussbeck, & Trierweiler, 2003) and latent state–trait models (Steyer,
Ferring, & Schmitt, 1992).

MEASUREMENT INVARIANCE

Tests of measurement invariance examine whether the same construct has been
measured across different groups. Measurement invariance can be tested at differ-
ent levels and Meredith (1993) and Widaman and Reise (1997) described proce-
dures for testing a hierarchical series of models to establish measurement invari-
ance in first-order factor models. They developed a specific hierarchical structure
of the tests to maximize the interpretability of the results at each step of the hierar-
chy. Following a review of their work, we discuss additional tests that must be in-
cluded for a complete test of a second-order model.

First-Order Models

The most basic level of measurement invariance is configural invariance (Horn,
McArdle, & Mason, 1983). The central requirement is that the same item must be
an indicator of the same latent factor in each group; however, the factor loadings
can differ across groups. When this level of invariance is achieved, similar, but not
identical, latent variables are present in the groups (Widaman & Reise, 1997).

The second level of invariance is factor loading invariance. Factor loadings rep-
resent the strength of the linear relation between each factor and its associated
items (Bollen, 1989; Jöreskog & Sörbom, 1999). When the loading of each item on
the underlying factor is equal in two (or more) groups, the unit of the measurement
of the underlying factor is identical. Of importance, this level of invariance does
not require that the scales of the factors have a common origin. When this level of
invariance is met, relations between the factor and other external variables can be
compared across groups, because one unit of change in one group would be equal
to one unit of change in another. However, the factor means of the scale still cannot
be compared across groups, as the origin of the scale may differ. A commonly used
illustration is the measurement of temperature using the Kelvin scale in Group A
and the Celsius scale in Group B (Van de Vijver & Leung, 1997). The measure-
ment unit is identical in both groups but the origins of the scales are not. By sub-
tracting 273 from the temperatures in Celsius in Group B, temperature in Group B
will be converted into degrees Kelvin, which is used in Group A.

The third level of invariance is intercept invariance. Intercepts represent the ori-
gin of the scale. In testing this form of invariance, intercepts of the measured vari-
ables are constrained to be equal across groups, in addition to factor loadings of the
latent variables. This level of invariance is required for comparing latent mean dif-
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ferences across groups (Widaman & Reise, 1997). When this level of invariance is
achieved, it means that scores from different groups have the same unit of
measurement (factor loading) as well as the same origin (intercept), and thus the
factor means can be compared across groups. Otherwise, it cannot be determined
whether any difference between groups on factor means is a true group difference
or a measurement artifact.

The fourth form of invariance is residual invariance. In testing this form of
invariance, the residual (uniqueness or measurement error3) associated with each
measured variable is constrained to be equal across groups, in addition to the load-
ings of the latent variables and the intercepts of the measured variables. When this
level of invariance holds, all group differences on the items are due only to group
differences on the common factors. Residual invariance, however, can be difficult
to achieve for a variety of reasons (see Widaman & Reise, 1997).

Within the hierarchy of tests advocated by Widaman and Reise (1997), mea-
surement invariance in first-order models can be tested at more advanced levels,
such as variance and covariance invariance. However, these more advanced levels
of invariance represent very stringent ideal standards that are extremely difficult to
fulfill. Thus, configural invariance, factor loading, intercept, and residual invari-
ance are the most commonly tested forms of invariance for first-order factor mod-
els. In some applications, arguments can be made for placing a greater emphasis on
testing of factor covariances and factor variances for invariance. Marsh (1994),
McArdle and Nesselroade (1994), Meredith (1993), and Widaman and Reise
(1997) discussed procedures and issues associated with such tests. However, factor
variances are not generally expected to be equal in different populations.

Second-Order Models

There are important additional aspects of testing measurement invariance of sec-
ond-order models. First, factor loading invariance must be tested for both the
first-order and second-order factors. Second, intercept invariance must be tested
for both the measured variables and first-order factors. The first-order factor
means are a function of the intercepts of the measured variables and the first-order
factor loadings and means; the second-order factor mean is a function of the inter-
cepts of the first-order factors, and second-order factor loadings and means.
Finally, in addition to testing the invariance of the residual variance of the observed
variables, the invariance of the disturbances (specific factors) of the first-order fac-
tors must also be tested. When this level of invariance is achieved, it means the dis-
turbances (specific factors, e.g., spatial ability in the case of intelligence) of the
lower order factors are equivalent across the groups.
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Latent Mean Difference Test

Multigroup CFA may also be used to test whether the latent factor means differ
across the groups. In a typical covariance structure model (Hoyle, 1991), the
covariance matrix is computed from deviation scores so that the means of all mea-
sured variables will be zero. As a result, the means of all latent constructs are as-
sumed to be zero. To test the latent construct mean differences, a combined mean
and covariance structure model must be used (Bentler, 1989; Bollen, 1989;
Sörbom, 1978). To estimate the difference between the factor means, one group is
usually chosen as a reference or baseline group and its latent means are set to zero.
The latent means of the other group, which actually represent the difference be-
tween the factor means in the two groups, are estimated. The significance test
(Wald or z test) for the latent means of the second group provides a test for signifi-
cance of the difference between the means of the two groups on the latent con-
struct4 (Aiken, Stein, & Bentler, 1994). In the following section, we illustrate the
test of measurement invariance and mean difference tests across two groups for a
second-order factor model of quality of life measurement in HIV patients.

METHOD

The factor structure of a 17-item health-related quality of life measurement from
the AIDS Time-Oriented Health Outcome Study (ATHOS) was examined.
ATHOS is a longitudinal observational database of people with HIV-associated ill-
ness cared for by community-based providers in the greater San Francisco, Los
Angeles, and San Diego areas. The measurement of quality of life is composed of
four subscales: cognition, vitality, mental health, and health worry. Items compris-
ing these subscales were derived from general health status scales (Stewart &
Ware, 1992). The full set of items is given in the caption for Figure 1. Items that
were reverse-coded are denoted by (R). Items were answered on a 5-point scale
ranging from 1 (all of the time) to 5 (never) so that high scores on the scale repre-
sent a high quality of life. We used the data from each participant’s initial measure-
ment following his or her enrollment in the study.

The 5-item cognition subscale assesses day-to-day problems in cognitive func-
tioning of which the patient would be aware. The 4-item vitality subscale assesses
the energy–fatigue continuum (Stewart, Hays, & Ware, 1992). The 5-item mental
health subscale is designed specifically to measure psychological distress and
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well-being. The 3-item health worry subscale measures the extent to which health
problems cause people to worry or be greatly concerned about their health (Stewart
et al., 1992).

For ease of presentation, we limited our sample to participants for whom com-
plete data were available on all items. The sample size was 924; 84% were White
and 95% were male. For the purposes here, participants were classified into two in-
dependent groups based on their working status. Working status represents an im-
portant categorical distinction that we expected to be related to well-being, partic-
ularly in this sample of HIV/AIDS patients. People classified in the working group
(n = 476) reported working full time or working part time. All other responses (un-
employed, laid off, or looking for work; disabled and no longer working; retired;
keeping house; or other) were coded as the nonworking group (n = 448).

It was hypothesized that there was a second-order factor structure for the qual-
ity of life instrument, with cognition, vitality, mental health, and health worry as
the lower order factors, and global quality of life as the higher order factor (Ware,
Davies-Avery, & Brook, 1980). This structure is depicted in Figure 1.

ANALYSIS OF THE DATA

Tests for the factor structures of the overall quality of life measurement, for its
invariance across working and nonworking groups, and for the latent mean differ-
ences were based on the analysis of mean and covariance structures, within the
framework of CFA. Analyses were conducted using the LISREL 8.51 program
(Jöreskog & Sörbom, 1999) and maximum likelihood estimation procedures.
Maximum likelihood procedures were used because initial examination of the data
did not show evidence of excessive nonnormality (skewness: Mdn = –.32, range =
–.71 to .07; excess kurtosis: Mdn = –.29, range = –.44 to .08).

The analysis followed two major stages. First, measurement invariance was hi-
erarchically tested at each of the levels: configural invariance, invariance of the
factor loadings, invariance of the intercepts, and invariance of residual variances
(Meredith, 1993; Widaman & Reise, 1997). Following the logic of Widaman and
Reise (1997), the disturbances of the first-order factors were also tested, tests that
are unique to the second-order models. Second, given that both factor loadings and
intercepts were invariant, the mean differences on the higher order latent factor
were tested.

Specification of the Hypothesized Model

The hypothesized second-order factor model presented in Figure 1 was specified
in the following way: (a) each item would have a nonzero loading on the first-order
factor (cognition, vitality, mental health, disease worry) that it was designed to
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FIGURE 1 Measurement model for the second-order factor model of quality of life. Note.
Items with acronym in parentheses. Items that were reverse coded are denoted with (R). (a)
Cognition subscale: “Have difficulty reasoning and solving problems?” (diffeas); “React
slowly to things that were said or done?” (sloact); “Become confused and start several actions at
a time?” (confused); “Forget where you put things or appointments?” (forget); “Have difficulty
concentrating?” (diffconc). (b) Vitality subscale: “Feel tired?” (tired); “Have enough energy to
do the things you want?” (R) (enrgtic); “Feel worn out?” (wornout); “Feel full of pep?” (R)
(peppy). (c) Mental health subscale: “Feel calm and peaceful?”(R) (atpeace)? “Feel down-
hearted and blue?” (feelblue); “Feel very happy”(R) (happy); “Feel very nervous?” (nervous);
“Feel so down in the dumps nothing could cheer you up? (down). (d) Disease worry subscale:
“Were you afraid because of your health?” (afraid); “Were you frustrated about your health?”
(frust); “Was your health a worry in your life?” (healthwry). Second order factor: Quality of life
(QOL)—High scores indicate high quality of life.



measure and a zero loading on each of the other first-order factors; (b) error terms
associated with each item would be uncorrelated; and (c) all covariance between
each pair of the first-order factors would be explained by a higher order factor—
which we term global quality of life. In LISREL, all first-order factor loadings
were defined as LYs, and all second-order factor loadings were defined as GAs.
The annotated LISREL computer script is available at http://psych.asu.edu/peo-
ple/faculty/swest.html.

Identification of the model is required for estimation in CFA. A model is identi-
fied if there is a unique numerical solution for each of the parameters (Ullman,
2001). There are two approaches that are typically used to identify the scale of
measurement models: One is to fix one of the factor loadings (marker variable) to a
value of 1 for each factor, and the other way is to fix the variance of each factor to 1,
which standardizes the factor loadings within each group. It is possible for the fac-
tor loadings to be invariant even though the true factor variances differ in the two
populations (see Cudeck, 1989; Meredith, 1993). We used the marker variable
strategy for ease of interpretation. The central issue facing this strategy is which in-
dicator should be chosen as the marker variable. In cases in which an indicator
variable is available that is measured in a clear metric (e.g., income in dollars,
weight in kg), this variable should normally be chosen as the marker. Or, if an indi-
cator is known from prior research to be invariant across populations, it is also a
good choice for the marker variable. In this case we had no basis for choosing a
marker so we arbitrarily designated the first indicator of each construct to be the
marker. We also explored the use of alternative marker variables and found no ma-
terial differences across solutions.5 We used the same strategy with the sec-
ond-order factor loadings. The fit statistics for each model are presented in Table 1,
and the unstandardized factor loadings corresponding to the baseline configural
model (Model 1) are presented in Figure 2, Panel A for the working group and
Panel B for the nonworking group.

Testing Invariance Across Groups:
Comparative Model Testing

Incomparing the fit ofhypothesizedmodels, chi-square tests andgoodness-of-fit in-
dexes are used. The chi-square test assesses the magnitude of the discrepancy be-
tween the sample and fitted covariance matrices. A significant test result indicates a
poor fit. However, moderate discrepancies from normality in the data also lead the
chi-square test to reject the model (West, Finch, & Curran, 1995). Also, when the
samplesize is large,asmalldiscrepancyfromthemodel thatmaybeofnopracticalor
theoretical interest can lead the chi-square test to reject the model. Consequently, we
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480 TABLE 1
Summary of Fit Statistics for Testing Measurement Invariance of Second-Order Factor Model of Quality of Life

SRMRb

Model
ComparisonModela χ2 df RMSEA Working Non-working CFI ∆χ2 ∆df

Model 1
configural invariance

742.60 230 .07 .04 .06 .95 — — —

Model 2
first-order factor loadings invariant

757.16 243 .07 .05 .07 .95 2 vs. 1 14.56 13

Model 3
first- and second-order factor loadings invariant

758.31 246 .07 .05 .06 .95 3 vs. 2 1.15 3

Model 4
first- and second-order factor loadings and
intercepts of measured variables invariant

838.45 259 .07 .05 .06 .94 4 vs. 3 80.14* 13

Model 5
first- and second-order factor loadings, and
intercepts of measured variables and first-order
factors invariant

891.83 262 .07 .06 .07 .93 5 vs. 4 53.38* 3

Model 6
first- and second-order factor loadings,
intercepts, and disturbances of first-order
factors invariant

930.60 266 .08 .07 .07 .93 6 vs. 5 38.77* 4

Model 7
first- and second-order factor loadings,
intercepts, disturbances of first-order factors,
and residual variances of measured variables
invariant

1106.61 283 .08 .07 .08 .91 7 vs. 6 176.01* 17

Note. RMSEA = root mean squared error of approximation; SRMR = standardized root mean square residual; CFI = Comparative fit index.
aN = 924; 476 vs. 448. LISREL reports a separate SRMR for each group. The SMSRs for each group can be weighted by the group’s sample size to form an

overall weighted mean SRMR.
*p < .001
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FIGURE 2 Results of the second-order factor model: Unstandardized solution. (A) Working
group; (B) nonworking group. Note. For the working group, the R2 for the first-order factors
were cognition (.48), vitality (.60), mental health (.90), and disease worry (.61). For the
nonworking group, the R2 for the first-order factors were cognition (.37), vitality (.48), mental
health (.88), and disease worry (.72).



also report three fit indexes that showed good performance in a simulation study by
Hu and Bentler (1998). The root mean squared error of approximation (RMSEA;
Steiger, 1990) is a measure of the estimated discrepancy between the population and
model implied population covariance matrices per degree of freedom. Browne and
Cudeck (1993) suggested that values of the RMSEA of .05 or less indicate a close fit,
and .08 or less indicate adequate fit. The standardized root mean square residual
(SRMR; Hu & Bentler, 1998) is a measure of the average of the standardized fitted
residuals. It ranges from .00 to 1.00, and a value of less than .08 indicates a good fit.
The Comparative fit index (CFI; Bentler, 1990) ranges from 0 (poor fit) to 1.00 (per-
fect fit) and is derived from a comparison of a restricted model (one in which struc-
ture is imposedon thedata)withanullmodel (one inwhichallpairsofobservedvari-
ables are assumed to be mutually uncorrelated). The CFI provides a measure of
complete covariation in the data. Originally, a value .90 or greater was suggested as
evidence of adequate fit, but Hu and Bentler (1999) more recently suggested the use
of .95 as a criterion for adequate fit.

In the context of testing measurement invariance, a series of hierarchically
nested models are tested. Each pair of models in the sequence is nested because a
set of parameters are constrained to be equal across groups in the more restricted
but not in the less restricted model. For example, in the configural invariance
model, no constraints are placed on the values of the hypothesized factor loadings
across groups, whereas the factor loading invariance model constrains the factor
loadings to be equal in each group. To compare the fit for two nested models, the
chi-square difference (likelihood ratio) test is used (Bentler & Bonett, 1980). If the
chi-square difference test is significant, it suggests that the constraints on the more
restricted model may be too strict. Otherwise stated, the more restricted model
fails the test of measurement invariance across groups and the results of the less re-
stricted model should be accepted. However, once again, the performance of the
chi-square difference test is also affected by nonnormality and large sample size so
that goodness-of-fit indexes are typically also used to assess model fit. Assessment
of fit is an active area of research and no definitive, widely accepted guidelines
have yet been established in the context of testing measurement invariance. At
present, the best available guidelines are probably those proposed by Cheung and
Rensvold (2002). Based on the results of the only large-scale simulation study to
date, they concluded that a difference of larger than .01 in the CFI would indicate a
meaningful change in model fit for testing measurement invariance.6 We followed
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of the RMSEA. A disadvantage of the CFI is that it is relatively insensitive to mean structure that is partic-
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their general recommendation in this article and used both the chi-square differ-
ence test and change in the value of the CFI to evaluate model fit. Following Hu
and Bentler (1998, 1999), we also report for readers’ interest the values of the
RMSEA and SRMR in Table 1. The conclusions that would be reached based on
these fit indexes would not differ from those reached based on the CFI.

To test whether the second-order factor structure is statistically equivalent
across the two groups, a hierarchical series of nested models were tested, following
the general procedures suggested by Widaman and Reise (1997).

Configural invariance (Model 1). In testing for this form of invariance, an
unrestricted baseline model was specified in which each group had the same struc-
ture. That is, the pattern of fixed and free factor loadings for the first- and sec-
ond-order factor loadings was constrained to be the same across groups, but differ-
ent estimates were allowed for the corresponding parameters in the different
groups. As can be seen from Table 1 the χ2 statistic was 742.60 (df = 230), p < .001.
RMSEA was .07, SRMR was .05, and CFI was .95. These results indicated an ade-
quate fit of the model to the data.

Invariance of first-order factor loadings (Model 2). In testing for this level
of factorial invariance, all of the first-order factor loadings were constrained to be
equal across groups. This level of invariance was nested within Model 1. As can be
seen from Table 1, the chi-square difference test was not significant, χ ∆

2 (∆df = 13),
= 14.56, ns. These results indicated that the first-order factor loadings were invari-
ant across the working and nonworking groups.

Invariance of second-order factor loadings (Model 3). In testing for this
level of invariance, all first- and second-order factor loadings were constrained to
be equal across groups. This form of invariance is nested within Model 2. The
chi-square difference test was not significant, χ ∆

2 (∆df = 3) = 1.15, ns. These results
indicated that the second-order factor loadings were invariant across the working
and nonworking groups.

Invariance of intercepts of measured variables (Model 4). Models 4 and
5 impose additional constraints to determine whether two different sets of inter-
cepts are invariant. In Model 4 the focus is on the measured variables. In addition
to the constraints already imposed on the first- and second-order factor loadings in
Model 3, the intercepts of the measured variables were constrained to be equal
across groups. This condition is required to detect potential differences in the inter-
cepts of the measured variables between groups when only the first-order factors
are involved. The chi-square difference test between Model 4 and Model 3 was sig-
nificant, χ ∆

2 (∆df = 13) = 80.14, p < .001. Given that the test was based on a large
sample size for psychological research (n = 924), and there was no substantial dif-
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ference in CFI (.95 vs. .94), we concluded that there was no appreciable difference
between the working and nonworking groups on the intercepts of the measured
variables. (We consider the implications of using the chi-square difference test
rather than the CFI as the criterion later.)

Invariance of intercepts of first-order latent factors (Model 5). In a sec-
ond-order factor model, the intercepts of the first-order latent factors must also be
invariant across groups in addition to intercept invariance of measured variables to
compare the second-order factor means across groups. In testing for this level of
invariance, first- and second-order factor loadings and the intercepts of the mea-
sured variables and first-order latent factors were constrained to be equal across
groups. The chi-square difference test between Models 4 and 5 was significant,
χ ∆

2 (∆df = 3) = 53.38, p < .001. Once again, given that there was no substantial dif-
ference in CFI (.94 vs. .93), we concluded that there was no appreciable difference
in the intercepts of the first-order factors across the two groups.

Invariance of disturbances of first-order factors (Model 6). In testing for
this level of factorial invariance, all first- and second-order factor loadings, the
intercepts of the measured variables and the first-order factors, and disturbances
of the first-order factors were constrained equal across groups.7 This model is
nested within Model 5 and the chi-square difference test between the two mod-
els was significant, χ ∆

2 (∆df = 4) = 38.77, p < .001. Once again, there was no
substantial difference in CFI (.93 vs. .93), so we concluded that there was no ap-
preciable difference in the disturbances, which are the unique variances that are
not shared by the common higher order factor between the working and
nonworking groups.

Invariance of residual variance of observed variables (Model 7). In test-
ing for this level of factorial invariance, all first- and second-order factor loadings,
the intercepts of the measured variables and the first-order factors, disturbances of
the first-order factors, and residual variances of the measured variables were con-
strained equal across groups. The chi-square difference test between Model 7 and
Model 6 was significant, χ ∆

2 (∆df = 17) = 176.01, p < .001, indicating a significant
difference between the working and nonworking group on the residual variance of
the observed variables. For this comparison, the CFI also indicated that a substan-
tial change in fit had occurred (.93 vs. .91). This result indicates that the residual
variances of the measured variables were not invariant across the two groups.
Model 6 in which the first- and second-order factor loadings, the intercepts of the

484 CHEN, SOUSA, WEST

7Models 6 and 7 can theoretically be tested in either order. We tested Model 6 first because of the
substantially greater theoretical interest in the invariance of the disturbances of the first-order factors
(the specific factors) than the uniqueness of the measured variables.



measured variables and the first-order factors, and the disturbances of the first-or-
der factors were constrained to be equal represented the highest level of invariance
that could be achieved with these data.

Implications of choice of criterion. The conclusions of the analysis depend
on the criterion selected. If we rely on the results of the chi-square difference test,
then invariance of the first-order and second-order factor loadings is achieved. In-
deed, based on this criterion, we would not conduct any further tests once we had
determined that there was a significant difference between Model 4 and Model 3.
Model 3 in which the loadings of the first- and second-order factors were con-
strained to be equal would represent the highest level of invariance that could be
achieved. On the other hand, if we rely on the criterion of the change in the CFI
suggested by Cheung and Rensvold (2002), then Model 6 represents the highest
level of invariance that could be achieved. Of importance, the comparison of the
higher order factor mean across groups8 that we report below requires that
invariance be achieved for the first- and second-order factor loadings and for the
intercepts of the measured variables and first-order factors (through Model 5).
Using the Cheung–Rensvold guidelines, this requirement was surpassed, and we
report this comparison later. We will return to the issue of the choice of a criterion
for measurement invariance in the discussion.

Stage 2: Test of the Group Difference
on the Second-Order Factor Mean

To obtain an estimate of the difference between the higher order factor means in
the two groups, the working group was chosen as a reference or baseline group
and its second-order latent mean was set to zero. The latent mean of the
nonworking group was estimated; this value reflects the difference between the
factor means of the two groups. The significance test (Wald z test) for the latent
means of the nonworking group is the test for significance of the difference be-
tween the means of the two groups on the latent construct (Aiken et al., 1994;
Sörbom, 1978).

Invariance of first- and second-order factor loadings, and intercepts of the mea-
sured variables and first-order factors was imposed on the working and non-
working groups. There was a significant mean difference between the two groups
on the higher order factor (–.49, z = –11.29, p < .0001), indicating that the
nonworking group had a lower score on the global quality of life factor than the
working group.
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Summary

The second-order factor model of quality of life fit the working and nonworking
groups adequately. The tests of measurement invariance using the Cheung–Rens-
vold criteria indicated that all first- and second-order factor loadings, intercepts of
the measured variables and first-order factors, and disturbances of the first-order
factors were equivalent. Given an adequate level of measurement invariance, the
difference between the group means on the higher order factor was tested, and it
was found that the working group had a higher level of overall quality of life than
the nonworking group.

DISCUSSION

This article illustrated the strategy of testing measurement invariance in a sec-
ond-order model of quality of life. The second-order factor model hypothesized
that the responses to the measurement of quality of life could be explained by four
first-order factors (cognition, vitality, mental health, and disease worry). More-
over, there was one second-order factor (global quality of life) that underlies the
four first-order factors. Compared to a correlated four-factor model, the sec-
ond-order factor model is more parsimonious and provides theoretically error-free
estimates of both the general factor and each specific factor. This latter advantage
is particularly important when researchers are interested in understanding whether
the specific factors can predict external criteria over and above the general factor.

Measurement invariance provides strong evidence that the same construct has
been measured across different groups, and it is an important issue in comparing
results across groups. Our illustration tested measurement invariance across
groups for the second-order factor model at seven different hierarchical levels that
are tested in sequence: configural invariance, factor loadings of the first-order fac-
tors, factor loadings of the second-order factors, intercepts of observed variables,
intercepts of the first-order factors, disturbances of the first-order factors, and re-
sidual variances of the observed variables.

Compared to first-order factor models, test of measurement invariance for sec-
ond-order models are more complex. To ensure that the unit of the scale is the
same, both the first-order factor loadings and second-order factor loadings must be
invariant. This level of invariance is required to compare the relation between the
constructs (e.g., unstandardized regression coefficients). Similarly, to additionally
demonstrate that the origin of the scale is the same, both the intercepts of the ob-
served variables and first-order factors must be shown to be invariant. This level of
invariance permits the researcher to test the differences in factor means across the
groups. Otherwise, the factor mean differences are potentially confounded with
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possible differences in the participants’origins of the scales in the different groups.
The invariance of disturbances of the first-order factors as well as the invariance of
the uniqueness of the measured variables may also be tested. The former test may
be of particular interest in second-order models as it ensures that the unique vari-
ance of each lower order factor that is not shared by the common higher order fac-
tor is the same. The latter test assures that the set of common factors are entirely re-
sponsible for any observed differences on the means of the measured variables.
These more advanced levels of invariance are difficult to achieve and are not re-
quired for testing differences in relationships or mean differences between the
groups. Indeed, the invariance of the uniquenesses of the measured variables was
not achieved with the data reported here.

Two Challenges for Future Research

Although tests of measurement invariance have become increasingly common,
there are at least two major challenges facing this area of research.

The choice of a criterion for fit. The first challenge is the search for a crite-
rion for judging the fit of invariance tests. Currently, the most frequently used stan-
dard is chi-square difference statistic. Here, α = .05 provides a well-established
convention for statistical significance. However, the likelihood ratio (chi-square
difference test) is sensitive to nonnormality9 and has substantial power in large
samples to detect small discrepancies between groups that may be of no theoretical
or practice consequence (errors of approximation; see Browne & Cudeck, 1993).
In addition, the likelihood ratio test assumes that the less restricted model is prop-
erly specified. Consequently, fit indexes have been suggested as providing an im-
proved criterion. However, fit indexes do not have known sampling distributions so
that significance tests are not possible. There is also currently a lack of complete
understanding of how goodness-of-fit indexes change as invariance constraints are
imposed in multigroup analyses.

In early work on this issue, McGaw and Jöreskog (1971) and Tucker and Lewis
(1973) compared factor solutions of often-analyzed data sets. McGaw and Jöres-
kog concluded that a difference between models in the Tucker–Lewis Index (ρ) of
less than .022 indicated a negligible difference in fit, whereas Tucker and Lewis
concluded this value should be .05. Cheung and Rensvold (2002), in an extensive
simulation study of measurement invariance testing in first-order models,10 exam-
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10We were unable to locate any study to date that has examined the performance of fit indexes in
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ined the properties of 20 goodness-of-fit indexes in models containing unim-
portant small errors of approximation. They found that several commonly used
indexes like χ2/df and the change in the Tucker–Lewis Index showed poor perfor-
mance in testing for measurement invariance. Cheung and Rensvold concluded
that changes in CFI, Gamma hat, and McDonald’s Noncentrality Index provided
the best performance in terms of not being overly sensitive to small errors of ap-
proximation. However, as with all simulation work, the conclusions cannot be gen-
eralized beyond the set of conditions investigated in the study.

Perhaps of most practical importance, Cheung and Rensvold (2002) did not in-
vestigate the power of the fit indexes to reject the null hypothesis of invariance
given that there is a failure of an invariance constraint that is of sufficient magni-
tude to be of material importance. For example, fit indexes were originally devel-
oped for covariance structure models in which there is no mean structure. Existing
fit indexes appear to be differentially sensitive to differences in mean structure. A
possible limitation of the CFI is that some work suggests that it is relatively insen-
sitive to mean structure so that important differences in the intercepts of measured
and latent variables may not be adequately detected using this fit index. Such prob-
lems may call for the development and evaluation of comparisons of new fit in-
dexes that are more focused on the effects of specific constraints (e.g., threshold
invariance) that are being imposed.

Clearly, additional work will be required to confirm or amend Cheung and
Rensvold’s (2002) suggestions. At present, their recommended guidelines might
be treated cautiously as a possibly liberal test (i.e., running the risk of having
insufficent power to detect invariance), whereas the likelihood ratio test might be
treated as a too-conservative test (i.e., running the risk of being too likely to detect
invariance where no appreciable invariance exists). In cases in which the two ap-
proaches disagree, analysts should note this in their reports and present their argu-
ments for and against measurement invariance. As Bollen and Long (1983) noted,
“The test statistics and fit indices are very beneficial, but they are no replacement
for sound judgment and substantive expertise” (p. 8).

Strategies when measurement invariance fails. A second challenge is
what strategies researchers should take when tests of measurement invariance fail.
In early stages of measurement development, it may be possible to discard prob-
lematic items. These items can be identified in an initial study and discarded, with
the remaining items ideally showing evidence of measurement invariance in a rep-
lication study. This strategy assumes that it is possible to identify which items are
not invariant, often a difficult task, and that there are sufficient items remaining to
properly specify each of the hypothesized factors of interest. An alternative ap-
proach that has been proposed is partial measurement invariance (Byrne,
Shavelson, & Muthén, 1989). In a partial measurement invariance model, the in-
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variant items are constrained to be equal, whereas the noninvariant items are al-
lowed to differ across the groups. Once again, it is often difficult to identify the
specific items that are not invariant and, more important, the consequences of par-
tial invariance are largely unknown. Studies are only beginning to examine how
partial measurement invariance affects group comparisons in terms of the relation
between the factors, the factor means, and the prediction of external criteria
(Millsap & Kwok, 2004). Finally, generalizations of work on measurement invari-
ance within the item response theory framework may provide potential solutions
(see, e.g., Embretson & Reise, 2000, chapter 10, for an introduction). For example,
when measurement invariance fails at the intercept level, it may be possible to ad-
just for differences in the intercepts so that the means of latent variables can be
properly compared. Once again, application of these promising procedures to
measurement invariance in the CFA context is at a relatively early stage of devel-
opment and further work is needed to evaluate their performance.

Conclusion

Despite remaining challenges, testing measurement invariance is important in an-
swering many research questions. Establishing measurement invariance allows re-
searchers to make appropriate comparisons between such important groups as
males and females, different cultural groups, age groups, occupational groups, or
even experimental and control groups. The work on testing measurement invari-
ance in CFA models has made great progress since its initial development more
than 30 years ago. More complete approaches involving both mean and covariance
structure have been developed so that there is now a strong parallel to the other ma-
jor approach to examining measurement invariance, item response theory. This ar-
ticle attempted to add to this development by providing an illustration for research-
ers of the procedures through which second-order factor models can be tested for
measurement invariance.
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