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A B S T R A C T

Assessing and analysing individual differences in change over time is of central scientific importance to de-
velopmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect
a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models
in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan
development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that
naturally accommodates key developmental questions as model parameters and can even be used, with some
limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two em-
pirical examples. In a lifespan cognitive training study (COGITO, N=204 (N=32 imaging) on two waves) we
observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an
adolescent development cohort (NSPN, N=176, two waves) we find greater variability in cortical thinning in
males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis
code that can be adapted by other researchers and basic primers in two freely available SEM software packages
(lavaan and Ωnyx).

1. Introduction

When thinking about any repeated measures analysis it is best to ask
first, what is your model for change? (McArdle, 2009, p. 579)

Developmental cognitive neuroscience is concerned with how cog-
nitive and neural processes change during development, and how they
interact to give rise to a rich and rapidly fluctuating profile of cognitive,

emotional and behavioural changes. Many, if not all, central questions
in the field can be conceived as related to the temporal dynamics of
multivariate brain-behaviour relations. Theories in developmental
cognitive neuroscience often implicitly or explicitly suggest causal hy-
potheses about the direction of the association between variables of
interest, the temporal precedence of their emergence, and the likely
consequences of interventions. For instance, the maturational viewpoint
(e.g. Gesell, 1929; cf. Johnson, 2011; Segalowitz and Rose-Krasnor,
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1992) proposes that development of key brain regions (e.g. the frontal
lobes) is a necessary precondition to acquiring psychological capacities
(e.g. cognitive control or inhibition). This represents a clear causal
pathway, where developmental change in neural regions precedes, and
causes, changes in faculties associated with those regions (also known
as developmental epigenesis). This is contrasted with interactive speciali-
sation theory (Johnson, 2011), where probabilistic epigenesis posits bi-
directional causal influences from mental function to brain structure
and function. These competing theories make explicit claims about the
temporal order of development, as well as the causal interactions be-
tween explanatory levels. Similarly, developmental mismatch theory
(Ahmed et al., 2015; Mills et al., 2014; Steinberg, 2008; van den Bos
and Eppinger, 2016) suggests that a key explanation of risk taking be-
haviour in adolescence is the delayed development of brain regions
associated with cognitive control (e.g. the frontal lobe) compared to
regions associated with mediating emotional responses (e.g. the
amygdala). This too posits a clear brain-behaviour dynamic, where a
mismatch between maturation in executive brain regions compared to
emotion systems is hypothesized to affect the likelihood of certain (mal)
adaptive behaviours. Empirical examples of such questions show, for
instance, that frontoparietal structural connectivity (but not functional
connectivity) determined longitudinal changes in reasoning ability
(Wendelken et al., 2017).

An active area of research where cognitive or behavioural changes
are presumed to precede changes in brain structure or function is that of
training-induced plasticity. For instance, Bengtsson et al. (2005) found
that degree and intensity of piano practice in childhood and adoles-
cence correlated with regionally specific differences in white matter
structure, and that this effect was more pronounced in developmental
windows in which maturation was ongoing. This was interpreted as
evidence of training-induced plasticity, suggesting that behavioural
modifications (i.e. prolonged practice) preceded, and caused, measur-
able changes in white matter structure.1 More direct longitudinal evi-
dence in 845 children scanned on two occasions suggests that grey
matter volume and changes in white matter microstructure are slower
in individuals with more severe psychiatric symptoms, but not vice
versa. This is compatible with (although not conclusive evidence of) the
hypothesis that differences in structural changes are consequences, not
causes, of psychiatric symptoms (Muetzel et al., 2017).

Although such questions are characterized by a fundamental in-
terest in temporal dynamics and causality, much of the literature is
dominated by cross-sectional (age-heterogeneous) data that are ill
equipped to resolve these questions (Lindenberger and Poetter, 1998;
Lindenberger et al., 2011; Salthouse, 2014). For instance, individual
differences in brain structure may precede differential changes in cog-
nitive abilities (e.g. certain clinical conditions), or changes in cognitive
abilities may trigger measurable changes in brain structure (e.g.
learning-induced plasticity). Although these hypotheses imply radically
different causal pathways and (potential) intervention strategies, they
are often indistinguishable in cross-sectional data. Moreover, ag-
gregated cross-sectional data can be affected by cohort effects (i.e.
different populations) which in turn can lead to overestimates (e.g.
cohort differences, Sliwinski et al., 2010), underestimates (e.g. selective
attrition, training effects; Willis and Schaie, 1986), and even full re-
versals of the direction of effects observed between groups compared to
within groups (Kievit et al., 2013). Most crucially, cross-sectional ag-
gregations do capture change at the individual level, nor individual
differences in intra-individual change (Baltes et al., 1977). Thus, they
fail to directly address the most fundamental questions of develop-
mental science: How and why do people differ in the way they develop?

The recent rapid increase in the study of large, longitudinal, ima-
ging cohorts (Poldrack and Gorgolewski, 2014) provides unprecedented
opportunities to study these key questions. Here we introduce a class of
Structural Equation Models called Latent Change Score Models that are
specifically tailored to overcome various weaknesses of more tradi-
tional approaches, and are well suited to address hypotheses about
temporal, interactive dynamics over time.

2. Towards a model-based longitudinal developmental cognitive
neuroscience

Structural equation modelling (SEM) combines the strengths of path
modelling and latent variable modelling and has a long tradition in the
social sciences (Bollen, 1989; Tomarken and Waller, 2005). Path
modelling (an extension of (multiple) regression) allows for simulta-
neous estimation of multiple hypothesized relationships, specification
of directed relations that correspond to hypothesised causal pathways,
and models in which constructs may function as both dependent and
independent variables. Latent variable modelling allows researchers to
use observed (manifest) variables to make inferences and test theories
about unobserved (latent) variables.

In offering a flexible framework for multivariate analyses SEM has
several key strengths compared to other methods of analysis (Rodgers
and Lee, 2010). First, SEM forces researchers to posit an explicit model,
representing some hypothesized explanatory account of the data, which
is then compared to the observed data (usually a covariance matrix, or a
covariance matrix and a vector of means). The extent to which the
hypothesized model can reproduce the observations is adduced as
evidence in favour of, or against, some proposed model of the construct
under investigation. Moreover, SEM helps make researchers aware of
assumptions that may be hidden in other approaches (e.g., assumptions
of equal variances across groups).2 Second, by using latent variables
researchers can account for measurement error in observed scores. This
strategy not only increases power to detect true effects (van der Sluis
et al., 2010), but also offers greater validity and generalizability in
research designs (Little et al., 1999). Specifically, it can be used to test
for bias across subgroups (e.g. tests functioning differently for different
subgroups, Wicherts et al., 2005) and biased estimates across devel-
opmental time (Wicherts et al., 2004), and improve the use of covari-
ates (Westfall and Yarkoni, 2016).

In recent decades, various extensions of SEM have been developed
for longitudinal, or repeated measures, data (McArdle, 2009). More
traditional techniques (e.g. repeated measures ANOVA) are rarely tai-
lored to the complex error structure of longitudinal data, neglect in-
dividual differences and are not developed explicitly to test the pre-
dictions that follow from causal hypotheses across a whole set of
variables simultaneously. The longitudinal SEM framework, closely
related to general linear mixed modelling (Bernal-Rusiel et al., 2013;
Rovine and Molenaar, 2001), is so flexible that many common statis-
tical procedures such as t-tests, regressions, and repeated measures
(M)ANOVA can be considered special cases of longitudinal SEM models
(Voelkle, 2007). Common procedures in developmental cognitive
(neuro)science including cross-lagged panel models or simple regres-
sions (on either raw or difference scores) can be considered special
cases of LCSM’s, but without various benefits associated with SEM such
as reduction of measurement error and incorporation of stable in-
dividual differences (Hamaker et al., 2015).

Examples of longitudinal SEM include latent growth curve models,
latent change score models, growth mixture models, latent class growth
curve modelling and continuous time modelling (Driver et al., 2016;
McArdle, 2009). In the next section we describe a specific subtype of
longitudinal SEM known as the Latent Change Score Models (LCS,1 It is worth noting that such hypotheses of temporal precedence in measurable

properties do not imply a dualist perspective on mental and physical processes (cf. Kievit
et al., 2011). They do suggest scientifically relevant distinctions can be made with im-
plications for interpretation, the likely consequences of interventions and early detection
of non-typical development.

2 Although it should be noted that SEM software packages can vary in their default
model specifications, so users should always be aware of these modelling assumptions
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sometimes also called Latent Difference Score models) (McArdle and
Hamagami, 2001b; McArdle and Nesselroade, 1994). This particular
class of models is especially versatile and useful for researchers in de-
velopmental cognitive neuroscience as it can model change at the
construct level, can be used with a relatively modest number of time
points (a minimum of 2, although more are desirable) and is especially
powerful for testing cross-domain (i.e. brain behaviour) couplings.

3. The Latent Change Score model

Latent Change Score models (McArdle and Hamagami, 2001b;
McArdle and Nesselroade, 1994) are a powerful and flexible class of
Structural Equation Models that offer ways to test a wide range of de-
velopmental hypotheses with relative ease. LCSMs have been used to
considerable effect in developmental (cognitive) psychology to show a
range of effects including that vocabulary affects reading comprehen-
sion but not vice versa (Quinn et al., 2015), that people with dyslexia
show fewer intellectual benefits from reading than controls (Ferrer
et al., 2010), that positive transfer of cognitive training generalizes
beyond the item-level to cognitive ability (Schmiedek et al., 2010), that
volume changes of the hippocampus and prefrontal white matter are
reliably correlated in adulthood and old age (Raz et al., 2005), that an
age-related decline in white matter changes is associated with declines
in fluid intelligence (Ritchie et al., 2015) and that basic cognitive
abilities such as reasoning and vocabulary show mutualistic benefits
over time that may partially explain positive correlations among cog-
nitive abilities (Kievit et al., 2017). One of the first applications of LCS
in cognitive neuroscience showed that ventricle size in an elderly po-
pulation predicted rate of decline on memory tests across a seven year
interval (McArdle et al., 2004). There are several excellent tutorials on
longitudinal SEM (Ghisletta and McArdle, 2012; Grimm, 2007; Jajodia
and Archana, 2012; McArdle and Grimm, 2010; Petscher et al., 2016;
Snitz et al., 2015; Usami et al., 2016; Zhang et al., 2015), and the ap-
proach we outline below builds heavily upon this previous work, where
we illustrate LCS models specifically in the context of Developmental
Cognitive Neuroscience. We will start with the simplest model, using
one variable measured on two occasions, and then present four exten-
sions of the model. These extensions will sequentially incorporate latent
variables, add multiple coupled domains (cognitive and neural mea-
sures), extend to multiple time waves (latent growth- and dual change
score models) and finally test for differences in multiple groups. After
discussing each of the basic models in turn, we will cover methodolo-
gical challenges including estimation, model fit, interpretation and
model comparison. For each of the five types of models we discussed
below, we provide example syntax that simulates data under a selected
parameterisation and fits the model in question to the data. These
scripts are freely available at the Open Science Framework https://osf.
io/4bpmq/files/ to be used, modified and extended by the wider
community.

3.1. Univariate latent change score model

Imagine a researcher studying a psychological variable of interest,
repeatedly measured at two time points (T1 and T2) in a population of
interest. A traditional way to examine whether scores of a group of
individuals increased or decreased between T1 and T2 is performed by
means of a paired t-test. Using some simple modifications, the LCS al-
lows us to go beyond this traditional analysis framework even in this
simplest case. The basic steps of a univariate latent change score model
are as follows. To facilitate understanding, in the examples below, we
will use informative notation (e.g. ‘COG’ for cognitive measures and
‘NEU’ for neural measures). For a more standard mathematical notation
of the LCS we refer the reader to texts such as (McArdle, 2008; McArdle
and Hamagami, 2001a; Newsom, 2015; Petscher et al., 2016). First, we
conceptualize the scores of an individual i on the construct of interest
COG at time t as being a function of an autoregressive component and

some residual. By fixing the regression weight of COGT2 on COGT1 to
1, the autoregressive equation simplifies to

= +COG COG ΔCOGi t i t i, 2 , 1 ,1 (1)

From this it follows that the change score is simply:

ΔCOGi,1= COGi,t2− COGi,t1 (2)

The powerful step in the context of SEM is to define a latent change
score factor ΔCOG1, which is measured by time point 2 with a factor
loading fixed to 1. Doing so creates a latent factor that captures the
change between time 1 and time 2. Finally, we can add an regression
parameter β to the change score, which allows us to investigate whether
the degree of change depends on the scores at time 1 as follows:

ΔCOGi,1 = β·COGi,t1 (3)

With this model in place we can address three fundamental ques-
tions. The first and simplest question is whether there is a reliable
average change from T1 to T2. This is captured by the mean of the
latent change factor, μΔCOG1. Under relatively simple assumptions this
test is equivalent to a paired t-test (Coman et al., 2013). However, even
this simplest implementation of the latent change score model yields
two additional parameters of considerable interest. First, we can now
estimate the variance in the change factor, σ2ΔCOG1, which captures the
extent to which individuals differ in the change they manifest over time.
Second, we can specify either a covariance or an autoregressive para-
meter β which captures the extent to which change is dependent, or
proportional, to the scores at time one (this parameter can also be spe-
cified as a covariance if so desired). Note that if a regression parameter
is included, the mean change should be interpreted conditional on the
regression path – A covariance will yield the mean ‘raw’ change.

SEMs are often illustrated using path models. Such representations
go back to Wright (1920), and allow researchers to represent complex
causal patterns using simple visual representations. Fig. 1 shows the
commonly employed symbols, meaning and notation. The simplest re-
presentation of the univariate latent change model is shown in Fig. 2,
and can be fit to data measured on two occasions. As the autoregressive
parameter between COGT2 and COGT1 is fixed to unity, we implicitly
assume that the intervals are equidistant across individuals. Deviations
from this assumption can be dealt with by rescaling scores (Ferrer and
McArdle, 2004, p. 941) or, ideally, by using definition variables (Mehta
and West, 2000) or continuous-time modelling approaches (Driver
et al., 2016), which yield parameters that more easily generalize across
different longitudinal designs. The model shown in Fig. 2 is just iden-
tified, that is, there are as many unique pieces of information that enter
the model (two variances, two means and a covariance) as parameters
to be estimated (one observed variance, one latent variance, one ob-
served mean score, one latent mean score and one regression para-
meter). This means that although we can estimate this model, we
cannot interpret model fit in isolation unless additional data (multiple
waves, multiple domains or multiple indicators) are included. However,
we can make use of parameter constraints, namely fixing certain
parameters to zero and employ likelihood ratio testing of hypotheses
about specific parameters. For instance, one can separately fit two si-
milar models: once a model with the latent change variance parameter
freely estimated, and once with the variance constrained to 0 (implying
no differences in change). The difference in model fit will be chi-square
distributed with k degrees of freedom, where k is the number of para-
meters constrained to equality (Neale, 2000; but see Stoel et al., 2006).
If fixing the variance of change parameter to 0 leads to a significant
drop in model fit, it would suggest that individuals change hetero-
geneously. However, it should be noted that this inference is only valid
compared to the simpler model – a more extensive model with addi-
tional variables or time points may lead to different conclusions about
heterogeneity in change. A more practical concern is that constraining
variances parameters may lead to failure of model convergence which
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renders interpretation challenging – See Section 4.2 for more guidance.
Similar procedures can be employed for any other parameter of interest
or combinations of any number of parameters. The likelihood ratio test
is especially suitable for parameters such as variances, as the simpli-
fying assumptions of parameter significance tests such as the often-used
Wald test may not hold (i.e. a variance cannot be negative). Next, we
examine how to extend the LCS model to include latent variables.

3.2. Multiple indicator univariate latent change score model

The above example uses a single observed variable, which was as-
sumed to be measured without error. We can easily extend this model to
have an explicit measurement model by replacing the observed score
with a latent variable, measured by a set of observed variables. We refer
to this representation as a multiple indicator latent change score model,
as our aim is to model change in the latent score rather than observed
scores. To do so, we model a latent variable in the manner of a tradi-
tional confirmatory factor analysis, by expressing the strength of the
association between the latent variable COG in individuals i (i=1,…N)

measured at times t (t=1,…t) and the observed scores X (j=1,…j)
with factor loadings λ and error terms δ as follows:

Xijt= λjtCOGit+ δijt (4)

A simple multiple indicator latent change score model is shown in
Fig. 3. We model the mean, variance and autoregressive changes in
COG as before, but now add a set of three (X1-X3) observed measure-
ments on two occasions that each reflect the underlying cognitive
construct of interest. Additionally, we allow for residual covariance of
error terms across time points for each observed score with itself, re-
presented as double-headed arrows. These so-called ‘correlated errors’
allow for indicator-specific variance across occasions and are generally
included as default (Newsom, 2015, p. 103; Wheaton et al., 1977). This
model is similar to the univariate latent change score model in terms of
the key questions it can address (rate of change μΔCOG1, variance in
change σ2ΔCOG1, and the relation between COG1 and ΔCOG1 captured
by β), but includes the benefits of removing measurement error and
establishing measurement invariance over time and (if necessary)
across groups, improving inferences.

3.3. Bivariate latent change score model

A further extension of the latent change score model is to include a
second (or third, fourth, etc.) domain of interest. For convenience in no-
tation and graphical representation we will revert back to using only ob-
served scores, but all extensions can and – where possible should – be
modelled using latent (multiple indicator) factors. We can assume the
second domain is some neural measure of interest (e.g. grey matter volume
in a region of interest), measured on the same number of occasions as the
cognitive variable (or variables). This allows for the investigation of a
powerful concept known as cross-domain coupling (Fig. 4), that captures the
extent to which change in one domain (e.g. ΔCOG) is a function of the
starting level in the other (i.e. NEUT1). For instance, we can quantify the
extent to which cognitive changes between T1 and T2 are a function of brain
structure (γ2) and cognition (β1) at T1 as follows:

ΔCOG1= β1·COGi,t1+ γ2·NEUi,t1 (5)

The implications for testing theories in developmental cognitive
neuroscience should be immediately clear: the dynamic parameters,
shown in red and blue in Fig. 4, capture the extent to which changes in
cognition are a function of initial condition of brain measures, vice
versa or both. Likelihood ratio tests or Wald tests of these dynamic
parameters (brain measures affecting rates of change in cognition, or
cognitive abilities affecting neural changes) furnish evidence for, or

Fig. 1. Basic path model notation.

Fig. 2. Univariate Latent Change Score Model. Variable COG is measured at two time points
(COG_T1 and COG_T2). Change (ΔCOG1) between the two timepoints is modelled as latent
variable.
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against, models that represent uni- or bidirectional hypothesized causal
influences. As is clear from Fig. 4, the bivariate latent change score model
can capture at least four different brain-behaviour relations of interest.
First, we have brain-behaviour covariance at baseline (shown in purple),
the main focus in traditional (developmental) cognitive neuroscience.
Second, we have cognition to brain coupling (shown in blue, labelled γ1),
where T1 scores in cognition predict the rate, or degree, of change in brain
structure. For instance, the degree of childhood piano practice affected
white matter structure (ΔNEU1) would predict a substantial cognition-to-
neural coupling parameter γ1 (Bengtsson et al., 2005). Third, we have
brain structure predicting rate, or degree, of cognitive change (shown in
blue, labelled γ2). For example, McArdle et al. (2004) showed that ventricle
size in an older population predicted rate of memory decline across an
interval of 7 years. Finally, we have an estimate of correlated change
(shown in yellow), reflecting the degree to which brain and behaviour
changes co-occur after taking into account the coupling pathways. For in-
stance, Gorbach et al. (2016) observed correlated change between hippo-
campal atrophy and episodic memory decline in older adults. More gen-
erally, correlated change may reflect a third, underlying variable
influencing both domains. The bivariate latent change score provides a
powerful analytic framework for testing a wide range of hypotheses in
developmental cognitive neuroscience in a principled and rigorous manner.

3.4. Bivariate dual change score model

So far, we focused on the simplest instance of longitudinal data,
namely where data is measured on two occasions. This is likely to be,

Fig. 3. Multiple indicator univariate latent change score model. The latent construct of interest (COG) is measures at two time points (COG_T1 and COG_T2) each measured using three
indicators (X1, X2, X3). We assume measurement invariance and correlated residual errors over time. See text for a detailed description of the model parameters.

Fig. 4. Bivariate Latent Change Score Model. Note: means are omitted for visual clarity.
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for the foreseeable future, the most common form of longitudinal da-
taset available to researchers in developmental cognitive neuroscience,
and yields many benefits compared to both cross-sectional data ana-
lyses and more traditional techniques such as cross-lagged panel models
or change score regression (see Section 4 for more detail). However,
with a greater number of timepoints, extensions within the framework
of LCS models makes it easy to capture more fine-grained dynamic
processes within and across domains. For instance, a sufficient number
of timepoints allows one to fit what is known as a dual change score
model (Ghisletta and Lindenberger, 2003). In this model, we specify an
additional latent variable, S (for slope), that captures the global in-
crease or decrease across all time points. This latent variable is mea-
sured by the successive change scores ΔCOGt, by specifying factor
loadings (α) to capture a range of dynamic shapes such as linear in-
crease or decrease. The factor loadings of the slope factor on the con-
stant change parameter can be fixed to a priori values to capture a
range of growth processes including linear (all 1) or accelerating
change (e.g. 1,2,3) – however, due to identification constraints, they
cannot generally be freely estimated from the data.

The ‘dual’ aspect of this model enters by separating the global
process of change captured by the slope from the more local, time
point-to-time point deviations from this trajectory denoted by the self-
feedback (β, red pathways in Fig. 5) and cross-domain coupling (γ, blue

pathways in Fig. 5) parameters. When modelled together with a neural
variable the bivariate dual change score, shown graphically in Fig. 5,
can be expressed as follows

ΔCOGi,t = αCOG·sCOGi+ β1·COGi,t + γ2·NEUi,t (6)

This (bivariate) dual change score model is a general approach that
can capture both general trends and more fine-grained temporal dy-
namics. This can be especially useful when trying to separate a known,
more stable change occurring during development (e.g. global cortical
thinning) from more high-frequency fluctuations. The dual change
score model has been used in a behaviour-only context to show (a) that
vocabulary influences changes in reading ability (but not vice versa)
(Quinn et al., 2015); (b) bivariate dynamic coupling between subjective
and objective memory problems in an ageing population (Snitz et al.,
2015); (c) within-person trial-to-trial RT variability predicts cognitive
decline in old and very old age (Lövdén et al., 2007); and (d) perceptual
speed decline in old age predicts decline in crystallized intelligence to a
greater extent than vice versa (Ghisletta and Lindenberger, 2003).

3.5. Multigroup latent change score models: manifest groups, mixtures and
intervention studies

The LCSM provides a comprehensive framework to model both

Fig. 5. Bivariate Dual Change Score Model. This more complex latent change score model captures both the stable change over time in the form of slopes (sCOG and sNEU), as well as
more fine-grained residual changes. Note this model incorporates latent variables at each timepoint – See Newsom (2015, p. 135) for more detail.
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within-person change across time and between-person variability in
change. A final, powerful extension that can be applied to any latent
change score (or SEM) model is the possibility for multigroup compar-
isons. Parameter estimates of a LCSM are valid under the assumption
that there is no model misspecification and the sample is drawn from a
single, homogeneous population. In practice, however, our samples
may be a mixture of participants from different populations (e.g.,
children and older adults; men and women, low vs. high SES). There are
several ways to address sample heterogeneity depending on the as-
sumptions we are willing to make and the strength of our theoretical
reasoning concerning sample heterogeneity. First and foremost, ap-
proaches to model heterogeneity can be classified by whether hetero-
geneity is assumed to be observed or unobserved.

When heterogeneity is observed in a confirmatory modelling ap-
proach, hypothesis testing is concerned with finding statistical evidence
for difference in the key parameters of the LCSM. Cross-sectional ana-
lyses often use traditional methods such as (M)ANOVA’s to focus on
simple parameters of interest, such as the mean scores on some outcome
of interest. In a SEM context, it is relatively easy to compare any
parameter of interest in a (dynamic) model across groups. To do so, one
simply imposes equality constraints on the parameter of interest and
compares the model where the parameter of interest is freely estimated
to a constrained model as described above. Relatively sophisticated
questions about changing relations between constructs, developmental
dynamics and group differences can be addressed with this simple yet
powerful test, with previous investigations comparing regression coef-
ficients (e.g. the negative effect of relational bullying on friendships is
stronger in boys than in girls, van Harmelen et al., 2016), or dynamic
growth components (e.g. boys and girls show differential response dy-
namics following divorce, Malone et al., 2004). In cases where a large
number of covariates are potentially relevant but we have no strong
theories to guide us, more exploratory techniques such as SEM trees
(Brandmaier et al., 2013) and SEM forests (Brandmaier et al., 2016)
allows researchers to hierarchically split empirical data into homo-
geneous groups sharing similar data patterns, by recursively selecting
optimal predictors of these differences from a potentially large set of
candidates. The resulting tree structure reflects a set of subgroups with
distinct model parameters, where the groups are derived in a data-
driven way. Group divisions are often based on observed variables, but
if heterogeneity is assumed to be unobserved, researchers may turn to
latent mixture models (McLachlan and Peel, 2005, but for a cautionary
note see Bauer, 2007).

An often overlooked application of LCS and SEM models is in in-
tervention studies (McArdle, 1994). We can treat grouping of partici-
pants into treatment and control groups in precisely the same way as
traditional grouping variables such as gender or education, and com-
pare all model parameter using likelihood ratio tests. For instance, Raz
et al. (2013) showed less cerebellar shrinkage in a cognitive training
intervention group than in controls, and Maass et al. (2015) using SEM
to demonstrate correlated change in between fitness improvement and
memory. By modelling time by group interaction in a SEM context, one
can use multiple indicator latent change score models to derive error-
free effect sizes of the treatment effect, by subtracting average latent
change in control group from average latent change in the treatment
group for latent constructs (e.g. Schmiedek et al., 2010, 2014). Once
researchers have decided on which model best matches their develop-
mental hypothesis and is compatible with the available data, it is time
to estimate and interpret the model.

4. Challenges and limitations

4.1. Model fit, model estimation and model comparison

Once a model has been specified for a suitable dataset, a researcher
will estimate the free parameters in the model. The most common ap-
proach to parameter estimation in SEM is maximum likelihood, under

the assumption of multivariate normality. The extent to which this
assumption is violated can bias results, although adjusted model fit
indices have been developed to account for deviations from (multi-
variate) normality (e.g. Satorra-Bentler or Yuan-Bentler-scaled test
statistics; Rosseel, 2012). Note that these methods only adjust fit in-
dices, not standard errors, which may also be affected by deviations
from (multivariate) normality – Various additional methods such as
Huber-White standard errors can be used to address this challenge and
are implemented in almost all SEM packages (including lavaan, see
Rosseel (2012, p. 27) for more detail). Alternatively, other estimation
strategies can be used to estimate non-continuous or non-normal out-
comes (e.g., threshold models or weighted-least-squares estimators for
ordinal data) but as a detailed investigation of this issue is beyond the
scope of this tutorial we refer the reader to additional resources (Kline,
2011; Olsson et al., 2000; Rosseel, 2012; Schermelleh-Engel et al.,
2003).

A key intermediate step in longitudinal SEM in the case of mea-
surement models (e.g. Fig. 3) is to provide evidence for measurement
invariance, that is to ensure that the same latent construct (e.g. general
intelligence) is measured in the same manner across time or across
groups (Meredith, 1993; Millsap, 2011; Vandenberg and Lance, 2000;
Wicherts et al., 2004). In other words, we want the relationship be-
tween levels of the latent variables and the observed scores to be equal
across time, even when latent scores themselves are increasing or de-
creasing on average. Failing to establish measurement invariance can
lead to incorrect conclusions about latent variables, their growth over
time, and their relations to other variables (Ferrer et al., 2008). In
longitudinal SEM, a series of increasingly strict tests (Widaman et al.,
2010) can be applied to ensure measurement invariance. Con-
ventionally, this is done by establishing equality constraints over time,
by sequentially equating the factor loadings (λjt1= λjt2), error terms
(δjt1= δjt2) and intercepts across time or groups. Such constraints can
be shown graphically in model representations – For instance in Fig. 3,
these equality constraints are shown by designating the same factor
loading with a single label (e.g. λ1) or colour across loading (e.g. blue)
across time points. Recent work shows that the CFI (comparative fit
index, see for more detail below) is a practical way to test for mea-
surement invariance across increasingly strict models created by im-
posing a specific sequence of model constraints (Cheung and Rensvold,
2002). If measurement invariance is violated, the extent to which in-
ferences are affected and possible remedies using ‘partial measurement
invariance’ are discussed in (Vandenberg and Lance, 2000).

A key strength of estimation in SEM is the treatment of missing data
(Enders, 2001). Assuming data is either Missing Completely At Random
(MCAR) or Missing At Random (MAR), which means the missing data
can only be dependent on variables also measured within the same
dataset (e.g. if differences in dropout are gender specific, and gender is
assessed), Full Information Maximum Likelihood (FIML) can be used to
estimate a model on the full dataset (including subjects with incomplete
data) (Baraldi and Enders, 2010; Enders, 2001; Wothke, 2000). Using
FIML for missing data (under multivariate normality) maximizes the
utility of all existing data, decreases bias and increases statistical power
compared to (for instance) omitting incomplete cases (‘complete case
analysis’; Baraldi and Enders, 2010). In direct comparisons, FIML
usually performs as well or better than alternative methods such as
multiple imputation (MI) (Larsen, 2011; von Hippel, 2016). A practical
benefit of FIML compared to MI is the stability of estimation across
uses, whereas multiple imputation depends on stochastic sampling and
will yield a (slightly) different estimate every time. Moreover, com-
bining information across different imputations can be challenging,
although this has been automated for SEM with lavaan via the auxiliary
package ‘semTools’ (Jorgensen et al., 2015).

Once model estimation has finished (which may take anywhere
from fractions of a second to days), a wide range of model fit indices are
available to assess model fit (Kline, 2011; Schermelleh-Engel et al.,
2003). Generally, these metrics quantify the deviation between the
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observed and implied covariance matrix. Model fit metrics include a
simple test of deviation from perfect model fit (the chi square test),
indices that compare the degree to which the proposed model better fits
the data (e.g. the CFI and TLI) compared to some baseline model (which
typically is a model in which there are no correlations between mea-
surements; and good fit represents the degree to which covariation in
the empirical data is reliably modelled), and measures that quantify
some standardized measures of the deviation between the observed and
implied covariance matrices (e.g. SRMR or the RMSEA). Fit indices can
be affected by a range of model and data properties including sample
size, measurement quality, estimation method, misspecification and
more (Fan et al., 1999; McNeish et al., 2017; Moshagen and Erdfelder,
2016). Competing models can be compared using traditional likelihood
ratio test if models are nested (Neale, 2000), or specialized version of
the LRT for non-nested models (Merkle et al., 2016). Other approaches
to model comparison include the use of model fit indices such as CFI
and RMSEA (Usami et al., 2016), or information based metrics such as
the AIC and BIC (Aho et al., 2014; Wagenmakers and Farrell, 2004). A
relatively new question inspired by cognitive neuroscience will be how
to best conduct model selection and model comparison in procedures
such as voxelwise modelling from brain image data (Madhyastha et al.,
n.d.) which may require hundreds or thousands of model comparisons
or extended measurement models of spatially correlated observations –
This at present remains an open challenge.

Debates concerning the optimal way to assess and interpret model
fit, which thresholds to use or how to best compare models are wide
ranging and beyond the scope of this tutorial, for further details see
(Barrett, 2007; Fan et al., 1999; Hayduk et al., 2007; Schermelleh-Engel
et al., 2003; Steiger, 2007). Common advice includes reporting multiple
(types of) fit indices to allow for a more holistic assessment such as
reporting raw χ2, CFI and RMSEA (Schermelleh-Engel et al., 2003).
Recommended sources for a wide range of (longitudinal) SEM topics
include McArdle (2009), Newsom (2015), Hoyle (2014), Little (2013),
Voelkle and Oud (2015), Driver et al. (2016) and Voelkle (2007), as
well as the tutorials cited above. Other useful resources are SEM-or-
iented email groups such as SEMNET (http://www2.gsu.edu/∼mkteer/
semnet.html) or package focused help groups (e.g. https://groups.
google.com/forum/#!forum/lavaan).

4.2. Convergence and improper solutions

Although SEM in general and LCS in particular cover a broad and
flexible range of models and techniques, these techniques have various
limitations. Below we outline a subset of commonly faced challenges.
After specifying an LCS model, researchers will use a particular esti-
mation procedure, typically Maximum Likelihood, to provide estimates
for the parameters in the model. However, in contrast to simpler
methods such as t-tests and simple regressions, model estimation may
fail to converge. Common causes of a failure to converge include small
sample sizes, overly complex models, poor starting values, in-
appropriate estimators, large amounts of missing data, data input er-
rors, or misspecified models (Fan et al., 1999; Jackson, 2007; Wothke,
1993). A particular challenge in the context of latent change score
models (and closely related models such as linear mixed models) is that
of estimating or constraining variances terms (close) to 0 (for instance,
constraining the variance to 0 in the simplest univariate latent change
score model will generally lead to non-convergence even if the change
scores between T1 and T2 are identical across individuals). Classical
estimation methods such as Maximum Likelihood have relatively high
non-convergence rates in such scenarios, and non-convergence has
often (erroneously) been interpreted as evidence that the model is ne-
cessarily inappropriate. Moreover, the likelihood ratio test may not
behave appropriately in scenarios including such ‘boundary values’
(Stoel et al., 2006). One promising solution is Bayesian estimation,
which has been suggested to have considerably less estimation pro-
blems (Eager and Roy, 2017; Merkle and Rosseel, 2015; Muthén and

Asparouhov, 2012; Van Erp et al., 2017). Secondly, even if estimation
does converge, model fit may be ‘improper’ in various ways. Such im-
proper solutions may include negative variances, standardized esti-
mates that (far) exceed 1 (sometimes referred to as ‘Heywood cases’,
but see Jöreskog, 1999), or matrices that are ‘non-positive definite’
(Wothke, 1993). No unique cause underlies these problems, nor does a
single solution exist that applies in all cases, but various remedies may
help. These including providing plausible starting values for parameters
to aid estimation, increasing sample sizes, using a different estimator,
or constraining parameters to 0 or to (in)equality where appropriate –
for example, variances which are estimated just below zero might be
constrained to zero so that they remain within appropriate bounds. For
further reading on challenges and solutions of model convergence and
inappropriate solutions we recommend (Eager and Roy, 2017; Fan
et al., 1999; Gerbing and Anderson, 1987; Wothke, 1993).

4.3. Power and sample size

A challenge closely related to model fit and model comparison is
that of statistical power and the associated question of sample size
(Cohen, 1988). One often encounters rules of thumb (such as “one
should have 20 subjects per SEM parameter”), which typically are
misleading and never capture the full story. Here, we advise against
such heuristics. When designing a longitudinal study, there are many
more design decisions that directly affect statistical power, such as in-
dicator reliability, true effect size, or the number and spacing of mea-
surement occasions (Brandmaier et al., 2015), and strategies exist to
improve power without necessarily increasing sample size (Hansen and
Collins, 1994). Longitudinal models have successfully been fit to as few
as 22 subjects (Curran et al., 2010), but as for all statistical approaches,
larger sample sizes will generally lead to more robust inferences. Al-
though factors determining statistical power in latent growth models
are reasonably well understood (Hertzog et al., 2006, 2008; Oertzen
et al., 2010; Rast and Hofer, 2014; von Oertzen and Brandmaier, 2013;
von Oertzen et al., 2015), we know of no empirical simulation studies
that may serve as guidelines for the power of (bivariate) LCSM. Cur-
rently, statistical power for a specific LCSM design (including a hy-
pothesized true effect and sample size) can be approximated mathe-
matically (Satorra and Saris, 1985) or by computer-intensive simulation
(Muthén and Muthén, 2002). For a more general approach to the
question of model selection, model comparison and parameter recovery
we have included a flexible, general script that can allow users to
generate a dataset under known conditions from a given model, and fit
one or more models to this dataset3. This simple approach should allow
anyone to examine compare parameter recovery, convergence rates,
statistical power, model selection and model fit under a range of effect
sizes, sample sizes and missingness to facilitate appropriate study
planning.

4.4. Inference and causality

Once model convergence and adequate model fit are obtained, the
most daunting step is that of (causal) inference: What may and may not
be concluded based on the results? One goal of SEM is to test predic-
tions derived from causal hypotheses about the process that generated
the data, represented as a model. That is, although SEM (nor any other
correlation-based technique) cannot directly demonstrate causality or
causal processes, it can be used as a statistical tool for deriving model-
based predictions of causal hypotheses, and examine the extent to
which the data disconfirms these hypotheses (Bollen and
Diamantopoulos, 2015; Pearl, 2000). However, inferring causality is,
unsurprisingly, non-trivial. A first and most fundamental challenge, not
specific to SEM, is that of model equivalence, known in philosophy of

3 https://osf.io/4bpmq/?view_.
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science as the ‘the underdetermination of theory by data’ (e.g. Newton-
Smith and Lukes, 1978). In the context of SEM, it has been shown
formally that any observed data pattern is compatible with many dif-
ferent data generating mechanisms (Raykov and Penev, 1999). In other
words, even if a model fits well in a sufficiently large dataset, that in
and of itself is not conclusive evidence for the (causal) hypotheses
posited by the model. Moreover, in a longitudinal context, modelling
choices and omitted variables can affect, and even spuriously invert,
causal direction and temporal ordering (Usami et al., 2016) as well as
the magnitude (Voelkle and Oud, 2015) of effects. Although recent
years have seen a consistent trend away from causal language with
recommendations to move away from the term ‘causal modelling’ as
shorthand for SEM (Kline, 2011), for a spirited defence as well as a
historically informed overview of the causal history and foundations of
SEM, see Pearl (2012). The most commonly accepted solution is that
model inferences, including causality, should come from a convergence
of robust empirical evidence guided by theoretical motivations, and
ideally be validated by interventions whenever possible.

Finally, although SEM is commonly used as a technique to test
whether data is (provisionally) compatible with a particular (causal)
hypothesis, in practice SEM spans a range of approaches from almost
entirely exploratory to confirmatory. In the context of LCS models, non-
trivial misfit may be amended by model re-specification to achieve
acceptable fit. One approach to improve model fit is the examination of
‘modification indices’ – The expected improvement in model fit if a
currently constrained parameter was freely estimated. As this is gen-
erally purely data-driven, this practice may adversely affect interpret-
ability and generalization to independent datasets, so should be ex-
ercised with caution (MacCallum et al., 1992). Other approaches
include the addition of cross-loadings, the elimination of non-sig-
nificant structural paths, constraining or equating parameters or the
exclusion of poorly performing measurement indicators. All of those
changes may be defensible, but researchers should be explicit about any
modifications that were made purely to improve model fit, so as to be
able to assess the evidence in favour of the ‘final’ model appropriately
(Bentler, 2007; MacCallum et al., 1992).

4.5. LCS versus alternative models

Structural equation modelling is an extremely general framework to
study differences and change, and shares foundations with other ana-
lytic approaches. Previous work has shown similarities and even
equivalences with other analytical traditions such as multilevel- and
linear mixed modelling (Bauer, 2003; Curran, 2003; Rovine and
Molenaar, 2001). However, even when models are mathematically
equivalent in principle, they may still diverge in practical terms, such as
ease of model specification and common defaults – McNeish and Matta
(2017) examine in which situations linear mixed models versus SEM
approaches are a better choice. An overarching treatment by Voelkle
(Voelkle, 2007) has shown how a wide variety of analytical techniques
ranging from t-tests to MANOVAs can be (re)written as special cases of
the latent growth curve model (which is itself a special case of the latent
change score model). For instance, (Coman et al., 2013) shows how a
basic LCS is a special case of the paired t-test. Similarly, simple forms of
the bivariate latent change score model can be rewritten as a special
case of a cross-lagged panel model, namely the recently proposed
random-intercept cross-lagged panel model (Hamaker et al., 2015), and
the autoregressive cross-lagged factor model is equivalent to a latent
change score model when slope factor scores are equivalent across in-
dividuals (Usami et al., 2016).

Grimm (2007) used three popular longitudinal models, the bivariate
latent growth curve model, the latent growth curve with a time-varying
covariate, and the bivariate dual change score growth model, to ex-
amine the same dataset concerning the relation between depression and
academic achievement. Although the three models yielded different
results, Grimm (2007) illustrates how each of the three approaches

answer slightly different developmental questions, illustrating the im-
portance of McArdle’s question posed at the beginning of this article:
‘When thinking about any repeated measures analysis it is best to ask
first, what is your model for change?’ (McArdle, 2009, p. 579). Alter-
native longitudinal SEM approaches that address specific questions
with differing strengths and weaknesses include the autoregressive la-
tent trajectory (ALT) model (Bollen and Curran, 2004), survival models
(Newsom, 2015, chapter 12), continuous time models (Driver et al.,
2016), simplex models (Newsom, 2015), the incorporation of definition
variables (Mehta and West, 2000), regime switching LCS models (Chow
et al., 2013), latent trait-state models (Steyer et al., 1999), and exten-
sions of latent curve models including structured residuals and time-
varying covariates (Curran et al., 2014). For a general introduction to
longitudinal SEM approaches we recommend the recent book by
Newsom (2015).

Direct comparisons of LCS models to competing models exist but are
relatively rare. Usami et al. (2016) compared the LCS to the auto-re-
gressive cross-lagged factor (ARCL) model, and showed lower levels of
bias in the parameter estimates of the LCS model, depending on the
number of time points and sample size, but slightly more power for the
ARCL model (due to decreased standard errors). Notably, they observed
that model selection was best when using the less conventional ap-
proach of comparison model fit indices (RMSEA and CFI) as opposed to
likelihood ratio tests or information indices. Using simulation studies,
McArdle and Hamagami (2001a) compared the bivariate dual change
score model to a Multilevel Change Score Regression Model under a
range of known data generating processes. They showed that the mul-
tilevel regression model performed adequately only under a range of
restrictive conditions including no missing data, an absence of error
terms and no bivariate coupling. The bivariate dual change score model
on the other hand was able to accurately recover parameter estimates
under a range of missingness conditions, even up to the extreme case of
cross-sectional data (i.e. one timepoint per individual), as long as data
was Missing Completely at Random (p. 233), illustrating the robustness
and flexibility of LCS models. Compared to simpler, more traditional
techniques LCS and related models more natural accommodate a range
of commonly encountered research challenges, including missing data,
unequal spacing, time-varying covariates, and latent and manifest
group comparisons which may aid in the nature, direction and precision
of statistical inferences in studying dynamic processes (Curran et al.,
2010). Many developmental hypotheses can be cast as a special case of
the LCS, but researchers should always carefully consider whether a
given model best captures their central developmental hypotheses
compared to other analytical approaches.

5. Fitting latent change score models using open source software

A wide array of tools exist to fit longitudinal SEM models, ranging
from modules within popular statistical tools (e.g., AMOS within SPSS;
Arbuckle, 2010) to dedicated SEM software (e.g., Mplus; Muthén and
Muthén, 2005). We focus on two freely available tools: The package
lavaan (Rosseel, 2012) within R and a standalone, GUI-based tool Ωnyx
(von Oertzen et al., 2015).

5.1. Lavaan

R (R Development Core Team, 2016) is a powerful programming
language with a rapidly growing user community dedicated to data
analysis and visualisation. Several excellent interactive introductions to
R exist, including http://tryr.codeschool.com/ or http://swirlstats.
com/. The core strength of R is the wide range of packages dedicated
to addressing specific challenges (more than 10,000 as of February
2017), implementing statistical techniques, visualisation and more.
Several packages dedicated to SEM exist, including OpenMx (Boker
et al., 2011) which allows for a high degree of model specification
flexibility, but relatively complex syntax, the sem package (Fox, 2006),
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Bayesian SEM (blavaan, Merkle and Rosseel, 2015), regularized SEM
for complex models (regsem, Jacobucci et al., 2016) and even a new
package dedicated specifically to specific subtypes of longitudinal SEM
(RAMpath, Zhang et al., 2015).

We will focus on lavaan (Rosseel, 2012) as this is a highly popular
and versatile tool for modelling various structural equation models,
including longitudinal models. Lavaan syntax consists of multiple lines
specifying relations among variables using different operators for e.g.
factor loadings (‘=∼’), regressions (‘∼’), (co)variances (‘∼∼’), and
means or intercepts (‘∼1′). In the syntax below we specify a simple,
univariate latent change score model, estimating five key parameters
(in bold).

#Fit the Univariate Latent Change Score model in Lavaan to simulated
data

LCS< -' # Specify the model name
COG2 ∼

1*COG1
# This parameter regresses COG2 perfectly on COG1

dCOG1 =∼
1*COG2

# This defines the latent change score factor as
measured perfectly by COG2

dCOG1 ∼1 # This estimates the conditional mean of the
change score

COG1 ∼ 1 # This estimates the mean of COG1
COG2 ∼ θ*1 # This constrains the intercept of COG2 to θ
dCOG1 ∼∼

dCOG1
# This estimates the conditional variance of the
change scores

COG1 ∼∼
COG1

# This estimates the variance of the COG1

COG2 ∼∼
θ*COG2

# This fixes the variance of the COG2 to θ

dCOG1∼COG1 # This estimates the self-feedback parameter
fitLCS< - lavaan(LCS,

data= simdatLCS,estimator= 'mlr',fixed.x= FALSE,missing= 'fiml')
## this fits the model
summary(fitLCS, fit.measures=TRUE, standardized=TRUE,

rsquare=TRUE)
## this reports model fit
Lavaan example syntax. Comments in R are preceded by #. Key LCS

parameters are boldfaced.

The lavaan syntax and simulated data for all five model types dis-
cussed above is available online https://osf.io/4bpmq/files/. These
scripts install and load the relevant packages if needed, simulate data
according to given set of parameter values, visualize raw data and fit
the model. For a simulated data object called ‘simdatLCS’, the syntax
above fits a simple Univariate Latent Change Score model with a Yuan-
Bentler correction for non-normality (‘estimator=’mlr’), and full in-
formation maximum likelihood to deal with missing data (‘mis-
sing=’fiml’). In Appendix A we provide a step-by-step instruction to fit
models using R or Ωnyx (see below).

5.2. Ωnyx

Although syntax-centred methods for SEM are most common, new
users may prefer a more visual, path model based approach (e.g. AMOS,
Arbuckle, 2010). One powerful tool is Ωnyx (von Oertzen et al., 2015),
a freely available graphical modelling software for creating and esti-
mating various structural equation models. At the time of writing, we
used the most recent public version (Ωnyx 1.0-972), available from
http://onyx.brandmaier.de/. Ωnyx provides a purely graphical model-
ling environment without a model syntax level, that is, models are
simply drawn as path diagrams. As soon as datasets are loaded within a
model, estimation starts on-the-fly and parameter estimates will be
directly shown in the model diagram. In addition to its easy-to-use in-
terface, a particular strength of Ωnyx is its capability of generating
model syntax for other programs, such as Lavaan (Rosseel, 2012)
OpenMx (Boker et al., 2011), or Mplus Muthén and Muthén, 2005). The
focus on the graphical interface makes Ωnyx especially useful for be-
ginners who want to get a basic comprehension of SEM, but also for
more advanced users who either want to transition to other SEM pro-
grams or need to produce diagrams for presentations or manuscripts.
Finally, Ωnyx provides template models for commonly used models,
reducing time needed to set up standard models to a minimum. Here,
we will give a brief introduction on how the Ωnyx graphical user in-
terface works.

The idea behind Ωnyx is a little different to typical editors. The main
menu is virtually empty (with the exception of basic load and save
functions) and there is neither a tool ribbon (e.g., as in Microsoft Word)
or a toolbox (e.g., as in Adobe Photoshop) to access functions. Instead,
Ωnyx relies heavily on context-menus that are accessible with right
mouse-clicks. A double-click performs a context-specific default action.
For example, when Ωnyx is started, the empty Ωnyx desktop is shown.

Fig. 6. Ωnyx interface.
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A right-click on the desktop opens a new model frame, which is a
container for a SEM. Alternatively, a double-click on the desktop cre-
ates a model frame (see Fig. 6 for an example of the interface). In
Appendix A, we provide a step by step guide to fitting an existing model
to data within Ωnyx, as well as a step-by-step explanation how to
specify a new model from scratch.

5.3. Developing intuitions about change using an interactive shiny app

Above we explained the basics of LCS models, including graphical
representations. Although these examples are relatively easy to under-
stand, one challenge with complex dynamic models is that it can be
hard to intuit what the consequences of changes in various parameters
might be. To ameliorate this problem, we have built an interactive
online tool using the R package Shiny (Chang et al., 2016). This tool
allows researchers to modify the key parameters of interest for three
key models (univariate latent change score, bivariate latent change
score, and bivariate dual change score) in an interactive fashion and
examine the consequences for the observed scores. Fig. 7 illustrates our
shiny interface, which can be found at http://brandmaier.de/shiny/
sample-apps/SimLCS_app/.4 The drop-down menu at the top can be

used to select one of three models, and the sliders can be used to tweak
individual parameters. Changing the key parameters causes the un-
derlying simulation to be modified on the fly, and the panels at the
bottom visualize the raw data simulated. The underlying code can ea-
sily be accessed and modified, such that researchers can tailor our code
to their specific research design. Our hope is that this tool will prove
useful in developing intuitions about dynamic co-occurring processes of
development and change.

6. Examples

Below we illustrate the flexibility of Latent Change Score modelling
by describing two empirical examples. First, we describe cognitive
(processing speed) and neural (white matter fractional anisotropy)
changes from a training intervention study in younger and older adults.
Second, we describe group differences in structural changes (i.e. cor-
tical thinning) in a developmental study of (late) adolescents aged
14–24. These applications illustrate the types of questions naturally
accommodated by latent change score models.

6.1. Correlated change in high intensity training intervention: the COGITO
sample

The first illustration comes from data on the COGITO project

Fig. 7. Shiny interface. At the top users can select from three different latent change score models (Univariate, bivariate or dual). At the left, users can modify key parameters and select
‘generate data’ to simulate data with a given parametrisation. On the right, the raw data as well as the path model will shown. This allows users to form an intuition of the effect of
dynamic coupling. For instance, it can illustrate that even in the absence of significant changes within a domain, a coupling parameter from another domain can cause significant
increases or decreases over time.

4 Note: some firewalls block the app. A zipped folder that contains all scripts and can be
run locally is available on https://osf.io/4bpmq/files/.
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(Schmiedek et al., 2014), a high-intensity (100 day) training interven-
tion with pre and post-tests cognitive scores for 204 adults: 101 young
(age M=25.11, SD=2.7, range=20–31) and 103 old (age
M=70.78, SD=4.15, range=64–80).

We examine changes between pre- and post-test scores on a latent
variable of processing speed, measured by three standardized tests from
the Berlin Intelligence Structure test measured on two occasions (see
Schmiedek et al. (2010) for more details). The neural measure of in-
terest is fractional anisotropy in the sensory subregion of the Corpus
Callosum (see Lövdén et al., 2010 for more details – note in our ex-
ploratory analysis this subregion gave the most stable results and so it
was used for our illustration). Longitudinal neuroimaging data was
available for a subset of 32 people (20 younger, 12 older adults). We fit
the model to the entire sample using Full Information Maximum Like-
lihood estimation, maximizing the use of our sample and decreasing
bias compared to complete case analysis. However, the neural para-
meters should be interpreted with a level of caution commensurate to
the modest sample size. See Lövdén et al. (2014) for further discussion
regarding the benefits of FIML in such a context and Enders (2001) for
more general discussion of FIML.

First, we test a multiple indicator univariate latent change score
model (the same type of model as shown in Fig. 3). This univariate
(only processing speed) multiple indicator (a latent variable of pro-
cessing speed is specified) latent change score model fits the data well:
χ2(12)= 15.052, P=0.239, RMSEA=0.035 [0.000 0.084],
CFI= 0.996, SRMR=0.028, Yuan-Bentler scaling factor= 0.969. In-
spection of key parameters shows that scores increased between pre-

and post-test (the intercept of the change factor= 0.224, se= 0.031,
Z=7.24), there were significant individual differences in gains (var-
iance parameter for the latent change score: est= 0.120, se= 0.019,
Z=6.5, but the rate of improvement did not depend on the starting
point: est=−0.069, se= 0.054, Z=−1.32). Next, we include a
neural measure, namely Fractional Anisotropy in the sensory region of
the Corpus Callosum measured pre- and post-test, to fit a bivariate
(neural and behaviour) multiple indicator (we include a measurement
model) latent change score model shown in Fig. 8.

We next test the evidence for four possible brain-behaviour re-
lationships: Covariance (are scores on processing speed at T1 correlated
with white matter structure at T1?), neural measures as leading variable
(do differences in white matter integrity at T1 affect the rate of cog-
nitive training gains?), cognition as leading variable (do processing
speed scores at T1 predict degree of white matter plasticity between T1
and T2?) and/or correlated change (is the degree of improvement in the
cognitive domain correlated with the degree of white matter change in
individuals?). Fig. 8 shows the full model, as well as the changes in
processing speed factor scores (top right) and fractional anisotropy
(bottom right) (note we artificially expanded the interval between
testing intervals for visual clarity). First, we find that model fit is good:
χ2(20)= 24.773, P=0.21, RMSEA=0.034 [90% CI: 0.000 0.072],
CFI= 0.995, SRMR=0.083, Yuan-Bentler scaling factor= 1.021. The
full model is shown in Fig. 8. Inspection of the four parameters of in-
terest, reflecting the four possible brain-behaviour relationships out-
lined above, shows evidence (only) for correlated change. In other
words, those with greater gains in processing speed were, on average,

Fig. 8. COGITO correlated change in processing speed and white matter plasticity. The panels on the left show the fitted model, parameter estimates and standard errors. The latent
variable Processing Speed is measured by three subtests of the Berlin Intelligence Structure test (BIS1-BIS3) measured before (pre) and after (post) an intensive training intervention (see
Schmiedek et al., 2010). Observed variable means and variance estimates are omitted for visual clarity. The panels on the right show the raw scores changing across two occasions. The
raw scores are plotted on separate panels to accommodate the age gap, but the model is estimated for the population as a whole.
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those with less positive change in fractional anisotropy after taking into
account the other dynamic parameters (est=−0.006, se= 0.002,
z=−2.631). Although counterintuitive, a similar pattern was also
observed in Bender et al. (2015) who observed negative correlation
between age-related declines in episodic memory and white matter
integrity, such that a greater decrease in fractional anisotropy was as-
sociated with greater improvement in episodic memory (whereas at T1
FA and episodic memory were positively correlated). This illustration
shows how LCS models can be used to simultaneously estimate four
rather distinct brain-behaviour relationships over time.

6.2. Multigroup analysis of prefrontal structural change in late adolescence:
the NSPN cohort

As the example in the Cogito sample shows, LCS offers a simple and
powerful way to test distinct dynamic pathways within a single LCS
model. However, investigations in Developmental Cognitive
Neuroscience are often concerned with differences between groups (e.g.
gender, treatment vs. controls, psychopathology vs. healthy controls,

low vs high SES etc.). Such questions are best addressed by means of
multigroup modelling. Here we illustrate a multigroup model to compare
structural changes in a group of adolescents. Data for this is drawn from
the Neuroscience in Psychiatry Network (NSPN), a cohort that studies
development in adolescents (see also Kiddle et al., 2017; Kievit et al.,
2017; Whitaker et al., 2016) Here we illustrate a multigroup model to
compare structural brain change in a group of adolescents. Previous
work suggests differences in the temporal development of the frontal
cortex, with boys generally maturing later than girls (Giedd et al., 2012;
Ziegler et al., 2017), possibly as a consequence of differences in sensi-
tivity to hormone levels (Bramen et al., 2012).

For our analysis, we focus on volumetric changes in the frontal pole.
This region is part of the frontal lobe, which is often discussed with
respect to the speed of maturational changes and its purported role in
controlling higher cognitive functions and risk taking behaviour (e.g.
Crone and Dahl, 2012; Johnson, 2011; Mills et al., 2014).

Our sample consisted of 176 individuals, mean age= 18.84, range
14.3–24.9, 82 girls, scanned on two occasions (average interval:
M=1.24 years, SD= 0.33 years). We fit a multiple indicator

Fig. 9. NSPN: Differential variability in frontal lobe thinning. Panel A shows longitudinal development in frontal structure. Panel B shows the model fit for the best model. Where
parameters are different between groups we show male estimates in blue (top parameter), female in red (bottom parameter). Panel C shows the AIC and BIC of the free versus constrained
models – in all cases only one parameter is constrained to equality and compared to the ‘all free’ model. Panel D shows the left and right frontal poles of the neuromorphometrics atlas
used in our analysis. See Appendix B for more details on the imaging pipeline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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univariate latent change score model, with volume of the frontal pole
(FP) using the neuromorphometrics atlas as the key variable (see
Fig. 9D for an illustration). Our measurement model consisted of vo-
lumetric estimates of the left and right FP measured on two occasions
(for more details on the structural processing pipeline, see Appendix B).
We can use the framework of multigroup models to investigate whether
there is evidence for differences between the two groups in the key
parameters of interest. The four parameters of interest are the mean of
the frontal factor (reflecting mean volumes at T1), the intercept of the
change factor (reflecting the rate of change), the variance of the latent
change scores (reflecting individual differences in rates of FP change)
and the covariance between FP at T1 and rate of FP change. To do so,
we employ the method of equality constrained Likelihood Ratio tests,
by comparing a model where some parameter of interest is constrained
to be the same across the two groups with a model where the parameter
is allowed to be free. The difference in model fit under the null hy-
pothesis is chi-square distributed with a df equivalent to the difference
in numbers of parameters being constrained. In other words, if a
parameter of interest is the same (or highly similar) between two
groups, the chi-square test will fail to be rejected, suggesting the more
parsimonious model is sufficient.

First, we fit a model where all measurement model parameters
(constraining all factor loadings and residual (co)variances) are con-
strained to be equal across males and females, but all other parameters
are free to vary between the sexes. This model fit the data well:
χ2(9)= 8.929, P=0.44, RMSEA=0.00 [0.000 0.120], CFI= 1,
SRMR=0.021, Yuan-Bentler scaling factor= 0.983. Next, we explored
which (if any) of the four parameters above differed between the sexes.
If a parameter is different between the groups, constraining it to be
equal should result in a significant decrease in model fit. Using the
likelihood ratio test, we observe significant decreases in model fit by
constraining the mean of frontal lobe volume at T1 to be equal across
the sexes (χ2Δ=38.01, dfΔ=2, p= <0.0001). Inspection of para-
meter estimates shows, unsurprisingly, greater FP volume in males,
compatible with either larger brains, delayed cortical thinning, or a
combination of the two. Contrary to expectations, constraining the in-
tercept of the change scores did not lead to a significant decrease in fit
(χ2Δ=0.31889, dfΔ=2, p=0.57), indicating an absence of reliable
differences in cortical thinning. However, constraining the variance of
change scores to be equal did result in a significant drop in fit
(χ2Δ=49.319, dfΔ=2, p= <0.0001), with males showing greater
individual differences in rates of thinning than females see also Ritchie
et al., (2017). Finally, constraining the covariance between frontal
volume and change scores also led to a drop in model fit, with males
showing a stronger (negative) association between volume at T1 and
rate of change (compatible with the hypotheses of delayed development
in males). Fig. 9 shows the temporal development of FP structure be-
tween sexes, information based model comparison and parameter es-
timates for the full model (with different estimates for males and

females where required).
Together, this suggests that there are considerable differences in

frontal development between males and females in (late) adolescence:
Although males and females show similar rates of cortical thinning,
males show greater initial volume, greater individual differences in
thinning and a stronger association between initial volume and rate of
thinning. Notably, the parameters where the evidence for sex differ-
ences is strongest (e.g. variance and covariance in change scores) are
not parameters often studied using conventional techniques such as
paired t-tests (other than as a statistical assumption such as equality of
variances). Conversely, the parameter that would be the key focus with
traditional techniques (i.e. group differences in change scores) does not
show differences.

7. Conclusion

In this tutorial, we introduce the powerful framework of Latent
Change Score modelling whose deployment can be an invaluable aid for
developmental cognitive neuroscience. It is our hope that more wide-
spread employment of these powerful techniques will aid the devel-
opmental cognitive neuroscientific community. Adopting the statistical
techniques we outline in tandem with the more widespread availability
of large, longitudinal, cohorts of developing adolescents will allow re-
searchers to more fully address questions of interest, as well as inspire
new questions and approaches. The approach we outline puts renewed
emphasis on the value of longitudinal over cross-sectional data in ad-
dressing developmental questions.
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Appendix A

Creating and fitting Latent Change Score models using R and Ωnyx
In the associated folder you will find code (file extensions .R), data (file extensions .csv) and Ωnyx model files (file extensions .xml) for five

different latent change score models. Below we outline how to specify and fit models using lavaan and R.

1 Analyse data using R and lavaan

–Install R (https://cran.r-project.org/)
–Install Rstudio (recommended) (https://www.rstudio.com/)
–Open the relevant lavaan file (e.g. ‘1_ULCS.R’)
–Install the appropriate packages by uncommenting (e.g. lines 17–19 in 1_ULCS.R)
–Select and run lines 30–60 to create a simulated dataset with given parameters
–Select and run lines 85–92 to visualize the raw data
–Select and run lines 65–80 to fit the latent change score model
–Run line 81 to examine model fit and parameters
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–If so desired, modify the parameters in lines 47–53 to examine the consequences for the raw data and model fit

2 Fit a model to existing dataset using Ωnyx

3 Creating a new model using Ωnyx

To create variables in the model, right-click on the model frame and choose ‘add variable’ to add an observed, latent or constant variable.
Alternatively, users can double-click on the model frame to create an observed variable. Existing variables can be moved by left-dragging (press left
mouse button and move mouse while button pressed). Double-clicking while holding down the SHIFT button creates a latent variable. Regression
paths (single headed) are drawn by right drags, that is, by pressing the right mouse button on a variable and releasing the button only when the
mouse was moved to a second variable. Covariance paths (double headed) are drawn by holding SHIFT while releasing a path. Variance paths are
created by creating a covariance path from a variable to itself. By default, path values are fixed to one. Paths values can be changed either by right-
clicking a path and entering a new value in the context menu or by moving the mouse over a path and directly typing the desired value. Path can be
defined to represent a freely estimated parameter by right-clicking a path and choosing “Free Parameter”. Using the context menu, parameters can be
renamed and starting values can be given. Observed variables can be either associated with a data column or not. This is indicated by observed
variables either having a grey box (not linked) or a black box (linked data). To link a variable with data, one can load a dataset from an existing file
and simply drag the variables onto the Ωnyx representation.

As an alternative to the manual creation of a change score model, Ωnyx provides a wizard for quick model specification, even for more advanced
models. Users can right-click on the Ωnyx desktop and choose, among other models, ‘Create new LGCM’ (for a linear growth curve model) or ‘Create
new DCSM’ (for a dual change score model), which can then be modified as desired. The LCSM wizard allows you to specify the number of time
points. Once the model is specified, users can simply drag and drop data (e.g. columns in a .csv file) from an existing data file onto the appropriate
observed variables in the model by selecting ‘load data’ from the main drop-down menu. As soon as variables are added the program starts
estimation.

Advanced features of Ωnyx
As noted before, Ωnyx provides various functions to export models to other SEM programs. For example, if users wish to use more complicated

modelling approaches (e.g., ordinal outcomes, non-linear constraints), Ωnyx can quickly create a graphical model specification which then can be
exported to another SEM program that allows greater flexibility in modelling. Ωnyx also exports diagrams as bitmap graphics (JPG, PNG) or vector
graphics (PDF, EPS) and even creates LaTeX-representations of diagrams based on the tikz package. Ωnyx comes with different visual style templates
that can be applied to a model with a single click. To choose among styles, right-click on a model frame and choose Customize Model→Apply
Diagram Style, or hit CTRL+L to cycle through styles in the active model frame. Ωnyx may be used to simulate data from the model-implied means
and covariance matrix. To this end, choose “Simulation-> Start Simulation” in the context menu of a model frame. Ωnyx allows parameter names to
be defined in a pseudo LaTeX input style, which allows users to use greek symbols (e.g., alpha, beta, gamma,…), subscripts (e.g., epsilon_i) and
superscripts (e.g., sigma^2).
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Appendix B

Structural Imaging and Map Generation
Brain scans were acquired using the MPM protocol (Weiskopf et al., 2013) on three 3T whole-body MRI systems (Magnetom TIM Trio; VB17

software version; Siemens Healthcare) located in Cambridge and London. Between-site reliability of MRI procedures was assessed in a pilot study
scanning five healthy volunteers at each site. The between-site bias was found to be less than 3% and the between-site coefficient of variation was
less than 8% for both longitudinal relaxation rate (R1) and MT parameters (Weiskopf et al., 2013) Isotropic 1mm MT images were quantified in
Matlab (2014b, The MathWorks, Inc.) using SPM12 r6685 (Wellcome Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/
spm), the Voxel-Based Quantification (VBQ) toolbox for SPM (Callaghan et al., 2014) and custom made tools.

Longitudinal Image Processing and Feature Extraction
All further image processing steps of MT maps were performed in SPM12. Longitudinal morphometry was used to assess macroscopic brain

maturational changes. Since longitudinal imaging is prone to artefacts due to registration inconsistency, scanner inconsistencies and age-related
deformations of the brains, it requires sophisticated processing pipelines in order to detect the changes of interest and achieve unbiased results.

First, we applied symmetric diffeomorphic registration for longitudinal MRI (Ashburner and Ridgway, 2012) combining non-linear diffeomorphic
and rigid-body registration and correction for intensity inhomogeneity artefacts. The optimization is realized within one integrated generative model
and provides consistent estimates of within-subject brain deformations over the study period. The registration model also creates a midpoint image
for each subject and the corresponding deformation fields for every individual scan.

Second, we applied SPM12’s Computational Anatomy Toolbox (CAT, r955, Structural Imaging Group, http://dbm.neuro.uni-jena.de/cat12/)
segmentation to each subject's midpoint image, which assumes every voxel to be drawn from an unknown mixture of gray matter (GM), white matter
(WM), cerebrospinal fluid (CSF). Earlier results showed that MT maps are highly suitable for automated segmentation in multi-subject morphometric
studies, showing improved GM tissue contrast in subcortical structures (Helms et al., 2009). This applied segmentation procedure contains partial
volume estimation (PVE) to account for mixed voxels with two tissue types (Tohka et al., 2004). The CAT algorithm is based on an adaptive
maximum a posteriori (AMAP) approach (Rajapakse et al., 1997) and subsequent application of a hidden Markov random field model (Cuadra et al.,
2005). Importantly, the applied AMAP estimation does not rely on tissue priors, which overcomes potential bias due to the application of in-
appropriate tissue priors in young maturing subjects with different to adult brain anatomy.

Third, nonlinear template generation and image registration was performed on the individual midpoint GM and WM tissue maps using DARTEL
registration and the template was registered to MNI space using an affine transform (Ashburner, 2007). Consecutively longitudinal normalised tissue
segments from all subjects and time-points were modulated by Jacobian determinants accounting for local tissue volume differences across subjects
and within-subject changes over time. In order to detect stronger deviations due to potential segmentation or normalization errors, we included a
quality check using covariance-based sample inhomogeneity measures implemented in the CAT toolbox to exclude subjects with extremal values
and/or severe artefacts.

Fourth, neuromorphometrics atlas was used to assess gray matter density in the bilateral frontal poles after Gaussian smoothing with 6mm full
width at half maximum. The atlas was based on maximum probability tissue labels derived in the MICCAI 2012 Grand Challenge and Workshop on
Multi-Atlas Labeling with data originating from the OASIS project (http://www.oasis-brains.org/) and the atlas provided by Neuromorphometrics,
Inc. (http://Neuromorphometrics.com/) under academic subscription.

All longitudinal features for subsequent structural equation modelling were obtained using the above steps. Since common processing pipelines of
longitudinal and cross-sectional data is different, this can introduce biases (Bernal-Rusiel et al., 2013). We initially focussed on the largest fully
longitudinally processed subsample of the NSPN dataset available, with 202 subjects having at least 2 scans per person. After rigorous quality control
of all processed imaging data, scans from 26 subjects had to be discarded due to artefacts, resulting in a finally analyzed brain features from 373
scans from 176 subjects (2.12 scans/person). Although a small subset of individuals had a third intermediate scan, for modelling purposes here we
use only the first and last scan.
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