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Deep learning-based methods for generating functional proteins address the growing need for novel biocatalysts, allowing for
precise tailoring of functionalities to meet specific requirements. This advancement leads to the development of highly efficient
and specialized proteins with diverse applications across scientific, technological, and biomedical fields. This study establishes a
pipeline for protein sequence generation with a conditional protein diffusion model, namely CPDiffusion, to create diverse
sequences of proteins with enhanced functions. CPDiffusion accommodates protein-specific conditions, such as secondary
structures and highly conserved amino acids. Without relying on extensive training data, CPDiffusion effectively captures highly
conserved residues and sequence features for specific protein families. We applied CPDiffusion to generate artificial sequences of
Argonaute (Ago) proteins based on the backbone structures of wild-type (WT) Kurthia massiliensis Ago (KmAgo) and Pyrococcus
furiosus Ago (PfAgo), which are complex multi-domain programmable endonucleases. The generated sequences deviate by up to
nearly 400 amino acids from their WT templates. Experimental tests demonstrated that the majority of the generated proteins for
both KmAgo and PfAgo show unambiguous activity in DNA cleavage, with many of them exhibiting superior activity as compared
to the WT. These findings underscore CPDiffusion’s remarkable success rate in generating novel sequences for proteins with
complex structures and functions in a single step, leading to enhanced activity. This approach facilitates the design of enzymes with
multi-domain molecular structures and intricate functions through in silico generation and screening, all accomplished without the
need for supervision from labeled data.
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INTRODUCTION
Deep learning-assisted functional protein design represents an
innovative and promising approach that expedites and enhances
the creation of novel proteins1,2. By harnessing the power of deep
learning, researchers are empowered to generate novel proteins
with bespoke functions tailored to specific criteria3–5. The
integration of deep learning in generating novel proteins offers
opportunities to produce proteins with highly desired properties,
such as higher stability, stronger binding affinity, and greater
enzymatic activity. The exceptional capability of deep learning to
generate and refine a diverse array of potential protein structures
pushes the boundaries of protein engineering and discovery to
new horizons. This expansion in scope offers opportunities for the
creation of proteins with unique and valuable functionalities.
Meanwhile, generating novel protein sequences of specific
functions significantly augments researchers’ options, enabling
the possibility of identifying protein candidates with superior

activity and stability. Furthermore, the pool of diverse generated
novel protein sequences enriches the library of the studied
protein family over limited natural sequences. Such an augmenta-
tion not only supplements the resources available for the analysis
and comprehension of proteins but also serves to provide an
expanded group of protein templates for engineering toward
enhanced functionality. At present, several prominent deep
learning models have been applied in designing novel protein
sequences of desired function6–9. One issue pertains to the
extensive parameters of existing models, demanding a large
amount of high-quality real-world data for training and fine-
tuning, with substantial computational resources for deploying
and inferencing. Meanwhile, extra efforts are required to
experiment on the designed proteins by these models to discover
a small subset of generated proteins that are soluble within
buffers or display adequate bioactivity. Remarkably, the proteins
tested in these researches tend to target relatively simple proteins
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in structure with a single domain, indicative of their simple
functionality and obstacles generalizing to broader proteins or
protein families. These collective challenges underscore the
intricate nature of establishing new deep learning models to
design novel sequences of proteins with multi-domain structures
and complex functions.
As an emerging tool for generating diverse samples from

complex distributions10–14, denoising diffusion probabilistic mod-
els (DDPMs) stand out as natural and strong candidates for
generating novel protein sequences. In the present task, identify-
ing sequentially dissimilar proteins with desired structures or
functions is of great significance. This requirement can be satisfied
by the design philosophy of DDPMs, which assembles trainable
neural network layers to progressively denoise artificial perturba-
tions of defined noise distribution and reveal the original data
distribution9,15–19. Through iterative denoising steps aligned with
specific objectives, DDPMs unravel the implicit mapping rules
connecting a protein’s sequence and structure to its functions.
Moreover, the denoising process can be conditioned on specific
structural preferences or other characteristics of the protein of
interest, guiding the output sampling distribution toward favor-
able directions. Consequently, a trained DDPM possesses the
remarkable capability to generate diverse protein sequences
conditioned by a set of desired properties tailored for the specific
functionality.
This study practiced the DDPM methodology to generate

novel sequences for programmable endonucleases called
prokaryotic Argonaute (pAgo) proteins. pAgo protein is a class
of endonucleases that play a crucial role in DNA interference in
prokaryotes, and has gained significant attention in the field of
biotechnology and bioengineering20–25. Their remarkable ability
to target and cleave specific single-strand DNA/RNA sequences
has led to important applications in diagnostics, which enables
the design of molecular diagnostic assays for detecting and
quantifying nucleic acid sequences associated with pathogens

or cancer-related mutations21,23. These assays offer improved
early detection and precise treatment of diseases. Moreover,
pAgo proteins exhibit high affinity to substrates and specific
recognition of target sequences, making them valuable tools for
imaging26–28 and genes editing29. Mesophilic pAgo proteins are
considered candidates for integration into isothermal nucleic
acid-based detection and gene editing techniques25,30,31. How-
ever, their potential applicability is hindered by their low DNA
cleavage activity. Thus, strategies are desired to enhance the
enzymatic function of pAgo proteins at ambient conditions. In
this context, we introduce a function-oriented design scheme
using conditional protein diffusion (CPDiffusion) for sequence
generation. CPDiffusion identifies a valid space of artificial pAgo
sequences by learning implicit facilitation rules from a diverse
set of data, including all different types of proteins with
experimentally solved structures and a small set of approxi-
mately 700 wild-type (WT) pAgo proteins. We generated two
sets of long Ago proteins based on the backbones of Kurthia
massiliensis Ago (KmAgo) and Pyrococcus furiosus Ago
(PfAgo)32,33. KmAgo is a mesophilic pAgo protein that can use
both DNA and RNA as guide to cleave DNA and RNA, while
PfAgo is a hyperthermophilic pAgo protein that can only use
DNA as guide to cleave DNA and only functions at high
temperatures in nature. Both of them have six structural
domains and are nearly 800 amino acids in length. After an
efficient training and screening procedure (Fig. 1), CPDiffusion
delivers 27 novel artificial KmAgos (Km-APs) and 15 Pf-APs. They
share 50%−70% similarity in sequence identity compared to the
template WT. The sequence identity of APs is less than 40%
compared to other WT proteins from NCBI (except for the
template). Unlike classic rational design methods, the entire
process of model training and inference requires minimum
expert guidance. Yet, when optimizing on a particular protein,
CPDiffusion learns to automatically identify highly conserved
regions while letting the remaining regions be highly variant.

Fig. 1 Workflow of CPDiffusion for designing novel mesophilic pAgo sequences. Arrows show the information flow among different
components. a The WT pAgo was processed to extract AA-level graph representation with biochemical and topological properties of the
molecule (See Supplementary Data, Section 1). b At the forward diffusion process, every AA type in the pAgo protein was corrupted in T steps
following some transition probability matrix to gradually reach uniform distribution (see Supplementary Data, Section 2.1). c The reverse
diffusion process started from randomly sampling each AA across the 20 AA types with a uniform distribution, following a progressive
denoising process. d The denoising process was guided by conditions, including the backbone template and secondary structure from the
WT pAgo, and the transition matrix (see Supplementary Data, Section 2.2). In particular, the propagation function f(⋅) was fitted by an
equivariant graph convolutional layer that guarantees SE(3) equivariance with arbitrary rotation R and translation t. e A set of protein
sequences were sampled from the learned distribution at denoising step 0, which was then screened based on the predicted pLDDT by
AlphaFold239. f The candidates were confirmed by wet experimental synthesis, characterization, and evaluation.
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We validated the enzymatic function and thermostability of
CPDiffusion-designed pAgo proteins by biophysical and biochem-
ical assays. Protein expression and purification experiments
revealed successful expression and solubility of all 27 Km-APs.
Significantly, 24 Km-APs displayed single-strand DNA (ssDNA)
cleavage activity, with 20 of these sequences demonstrating
superior ssDNA cleavage activity compared to the WT KmAgo.
Meanwhile, all 15 Pf-APs were expressed and soluble in the buffer,
displaying unambiguous ssDNA cleavage activity at 45 °C, and the
melting temperature shifts from 100 °C to 50 °C. Among these 15
Pf-APs, 6 Pf-APs (at 45 °C) exhibited even greater activity than WT
PfAgo at 95 °C, with the enzymatic activity of the best Pf-AP being
twice as high as that of the latter. The generation of novel
programmable endonucleases by CPDiffusion with greatly
enhanced activity at the ambient condition holds great practical
value for easy-to-implement and high-throughput screening
methods in gene editing and molecular diagnostics25,31,34. More-
over, the high success rate of CPDiffusion in generating novel
sequences for large complex proteins, such as pAgo proteins with
enzymatic function enhancement, represents a significant
advancement in protein design and engineering for biomedical,
biotechnological, and environmental applications.

RESULTS
CPDiffusion trains a denoising diffusion model with 4 million
learnable parameters from natural protein structures. The model
assigns categorical noise distributions to amino acids (AAs) and
learns their distribution via a conditional reverse diffusion. The
overall construction of CPDiffusion is provided in the Materials and
methods section and Supplementary Data, Sections 2 and 3. For
baseline comparison, we trained a base model with ~20,000 crystal
structures from CATH 4.235,36 to learn sequence patterns from the
conformation of protein structures. We validated the generative
performance of the base model with the inverse folding task on
several open test benchmarks spanning CATH 4.2, TS50, and T500.
In the application of generating novel pAgo sequences, we trained
CPDiffusion to learn the conservative patterns of Ago proteins on
top of the general protein construction rules with WT proteins from
CATH 4.2. We deliberately included a set of 693 WT proteins from
the pAgo family to bias the model towards understanding pAgo
proteins37; the template protein used for generation was excluded
from the full set of 694 pAgo datasets. The training with additional
pAgo family proteins enhances the model’s ability to generate
sequences with desired AA composition patterns (Supplementary
Data, Section 5).
Compared to the existing baseline methods, CPDiffusion

generates reliable sequences with higher recovery rates and
better sequence diversity (Supplementary Data, Section 4). The
additional conditions, such as secondary structure and transition
matrix, further attribute to an enhancement of CPDiffusion in
recovering the distribution of protein sequences (Supplementary
Fig. S3). Particularly, in the case of design sequences for pAgo
proteins, CPDiffusion exhibits a significant advantage over base-
line methods, such as ProteinMPNN. It did a notably better job of
preserving biologically meaningful AA properties for proteins,
such as polar AAs. This property is pivotal for protein stability and
protein-nucleic acid interactions (Supplementary Fig. S4), yet
ProteinMPNN misgenerated many polar AAs with opposite
charges, potentially damaging the functionality of the generated
proteins. Furthermore, the trained CPDiffusion successfully gen-
erated the catalytic tetrads in the PIWI domain, whereas
ProteinMPNN failed (Supplementary Figs. S5 and S6). Accurately
generating catalytic tetrads is crucial for ensuring the functional
integrity of the proteins in cleaving the target nucleic acids, and
misgeneration of any AA within the tetrads designed for the
studied pAgo proteins would directly result in failure of their
function38.

Screening workflow for generative Ago sequences
The trained CPDiffusion was applied to generate 100 pAgo
sequences guided by the KmAgo template with < 70% sequence
identity to the template. An initial structure-based screening is
next processed to reduce the experimental workload. Given the
structural conservation of pAgo proteins, we adopted Alpha-
Fold239 to assess the quality of the new sequences by their
structural prediction confidence with respect to the template
KmAgo. Initially, the overall predicted Local Distance Difference
Test (pLDDT) scores of the generated sequences were compared
against each other, where the generated samples with their
overall pLDDT scores lower than one standard deviation below the
average performance among 100 samples were eliminated
(Fig. 2a, top panel). Next, the residue-level discrepancies of
generated samples and WT KmAgo were measured by σ(ΔpLDDT)
(Fig. 2a, middle panel) and count(∣ΔpLDDT∣ > 10) (Fig. 2a, bottom
panel), where ΔpLDDT ¼ pLDDTAPi � pLDDTWT describes per-
residue pLDDT difference between the generated and WT KmAgo
sequences. The former calculates the volatility of per-residue
pLDDT difference between APs and the WT. As we desired
sequences with a smaller inconsistency with their WT template,
those with σ(ΔpLDDT) exceeding one standard deviation above
the average inconsistency were removed. The last criterion
disposes sequences of more than 93 AA positions that have
ΔpLDDT larger than 10. Similarly, the threshold 93 was taken from
one standard deviation above the average.
The three initial screening criteria outlined above led to the

exclusion of ~30 of 100 generated sequences. A more refined
analysis was pursued subsequently by comparing the pLDDT
scores of generated sequences and WT KmAgo at the residue
level. Eventually, we selected 27 Km-APs (the sequences are listed
in Supplementary Tables S5–S13) that exhibit high consistency in
local structures (predicted by AlphaFold2) with WT KmAgo
(Fig. 2b; Supplementary Figs. S8–S34). Example pLDDT curves of
excluded APs are shown in Supplementary Figs. S35–S40 for
comparison, where they all exhibit certain levels of local
inconsistency. Additionally, the selected Km-APs underwent
structural alignment with the WT KmAgo to confirm their
structural similarity (Supplementary Fig. S42). The structural
discrepancy was also quantified using Root Mean Square
Deviation (RMSD) and Template Modeling (TM) scores (Supple-
mentary Fig. S41), where the RMSD values of all 27 selected
proteins compared with WT KmAgo are below 3Å, falling within
the resolution range typically observed in X-ray crystallography of
pAgo protein38,40,41. Meanwhile, TM scores of all Km-APs are
above 0.9, suggesting an identical 3D structure of the generated
and WT KmAgo. The high structural consistency was not only
observed in the 27 chosen Km-APs but also for all CPDiffusion-
generated sequences. As summarized in Fig. 2c, both Km-APs
(red) and CPDiffusion-generated raw sequences (yellow) exhib-
ited low RMSD and high TM scores. In other words, the screening
procedure selects the most confident protein sequences for
testing rather than attempting to predict and filter out inactive
samples. In addition to high structural consistency, the generated
protein sequences also demonstrate high sequential diversity. As
displayed in Fig. 2c (the right two panels), the 27 Km-APs are 50%
−70% similar to WT KmAgo and 30%−40% similar to all WT
proteins included in the NCBI Non-Redundant (NR) database42.
Moreover, the pairwise identity among these generated Km-APs
ranges from 40% to 70%. More detailed statistics can be found in
Supplementary Figs. S44–S47.
The overall procedure of generating and screening remains the

same for PfAgo. In total, we selected 15 Pf-APs from 50 generated
sequences based on the WT PfAgo template (see Supplementary
Data, Section 6.4). Similar to Km-APs, the 15 Pf-APs also exhibit
high consistency in structure construction. All TM scores are above
0.97, and all RMSD scores are below 1 Å (Supplementary Fig. S83).
The sequence identities are ~60% compared to WT PfAgo and
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~40% compared to non-PfAgo proteins (Supplementary Figs.
S86–S88). The sequences for experimental examination are listed
in Supplementary Tables S19–S23.

Experimental assessment of artificial proteins on solubility,
activity, and thermostability
The previous screening procedure returned 27 Km-APs that
exhibit consistent structures with WT KmAgo (Fig. 3a, b) and

satisfying diversity at the sequence level. Wet-lab experiments
were then proceeded to evaluate the expression, single-strand
DNA (ssDNA) cleavage activity, and thermostability of these Km-
APs. Protein expression was assessed using a polyG linker fused
with green fluorescence protein (GFP) for each Km-AP. Under
buffer conditions, all 27 Km-APs displayed notable green
fluorescence signals (Fig. 3c), indicating successful expression
and solubility. We conducted synchrotron small-angle X-ray

Fig. 2 Initial screening and sequence-based analysis for CPDiffusion-generated artificial KmAgo proteins. a The three steps for the initial
screening of the generated 100 sequences (yellow). The excluded sequences at each step are colored in gray, and the final 27 Km-APs are
highlighted in red. The filtering thresholds are displayed as dotted horizontal lines. The three panels from top to bottom visualize the protein-
wise average pLDDT of generated KmAgo sequences (top), the average volatility of residue-level discrepancies between WT KmAgo and the
generated KmAgo sequences (middle), and the count of AA sites with large residue-level pLDDT discrepancies (bottom). b Comparison of
residue-wise pLDDT for WT KmAgo and the average Km-APs (upper panel, in red). The standard deviation of the pLDDT difference between
WT KmAgo and Km-APs is displayed in the bottom panel. c Summary of the structure (the left two subplots) and sequence variance (the right
two subplots) for generated KmAgo sequences. The RMSD values (first subplot) and TM scores (second subplot) of the 27 Km-APs (in red) and
100 generated sequences (in yellow) with respect to WT KmAgo indicate an overall consistency of the AlphaFold2-predicted structures
between generated sequences and WT KmAgo, with a few outliers in the group of 100 generated sequences. For the 27 Km-APs, their
sequence identity (third subplot) ranges from 50% to 70% compared to WT KmAgo (red) and from 30% to 45% compared to all WT proteins in
the NCBI NR database (yellow). Moreover, their pairwise sequence identities (fourth subplot) are below 40% to 80%, with the majority falling
near 50%.
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Fig. 3 Synthesis and characterization of CPDiffusion-generated artificial KmAgos. a Left panel: representation of the domain architectures
of WT KmAgo (predicted by AlphaFold2). The N domain, Linker1, PAZ domain, Linker2, MID domain, and PIWI domain are colored in red, light
gray, yellow, green, gray, and blue, respectively. Right panel: catalytic sites of WT KmAgo. b Schematic diagram of the domain organization of
WT KmAgo. c 27 Km-APs exhibited soluble expression, visualized by linking GFP to Km-APs. d Schematic diagram of the DNA-catalytic cycle of
KmAgo. e Cleavage activity of WT KmAgo and 27 Km-APs at 37 °C on ssDNA. Proteins are loaded with ssDNA guide and then incubated with
ssDNA target in a 2:1:1 molar ratio (protein:guide:target). These activities are defined by the slope of the fluorescence intensity vs time curve44.
Results from two independent experiments were quantified, with the associated standard deviations represented by error bars. f ssDNA
cleavage activities of WT KmAgo and 27 Km-APs after incubation at 42 °C for 2 min and 5 min showing thermostability enhancement of the
Km-APs in comparison to WT KmAgo. g Summary of the performance of the 27 tested Km-APs, where all of them can be expressed, with 24
exhibiting single-strand DNA cleavage activity, 20 surpassing the WT’s cleavage activity, and 10 showing enhanced thermostability.
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scattering (SAXS) to test the status of Km-APs in solution. We
calculated the radius of gyration (Rg) of proteins in buffer using
Guinier analysis and the pair distribution function (P(r)). As shown
in Supplementary Fig. S50 and Table S14, both analyses
demonstrated that the Rg of Km-APs is the same as Km-WT,
indicating that the Km-APs remain as monomer in buffer. The
foldability of Km-APs was investigated by comparing the circular
dichroism (CD) signal and SAXS to those of Km-WT, with the
results in Supplementary Fig. S51 and Table S14 indicating correct
folding in the buffer. Subsequently, we examined the ssDNA
cleavage activity of these Km-APs. Figure 3d presents the
cleavage process of pAgo proteins, where red fluorescence
indicates effective cleavage of the target DNA (tDNA). Remark-
ably, 24 Km-APs demonstrated ssDNA cleavage activity at 37 °C
(Fig. 3e; Supplementary Figs. S52 and S58), and 20 Km-APs
exhibited enhanced DNA cleavage activity compared to Km-WT.
The best-performing protein (Km-AP23) demonstrated nearly 9
times the ssDNA cleavage activity of the WT. We conducted
additional experiments to further test the cleavage activity of the
Km-APs with significantly enhanced functions. In these two
experiments, the ratios of protein:guide:target were set as 5:2:2
and 3:2:2. The results shown in Supplementary Fig. S59 indicated
that the Km-APs exhibit enhanced cleavage activity under various
protein:guide:target ratios. These results further demonstrated
that CPDiffusion can generate Km-APs with enhanced functions.
To further validate the enhancement in functionality of Km-AP23,
we quantified the biofunction of Km-WT, Km-AP23, and Km-AP9
(reduced function) by using the Michaelis-Menten kinetic model.
As shown in Supplementary Fig. S60 and Table S15, we found the
KM value for Km-AP23 is decreased and that for Km-AP9 is
increased compared with Km-WT, indicating that the affinity of
Km-AP23 for substrates is enhanced, while that of Km-AP9 is
reduced. Additionally, the kcat value for Km-AP23 is increased and
that for Km-AP9 is decreased compared with Km-WT, suggesting
that the cleavage efficiency of Km-AP23 is enhanced, while that of
Km-AP9 is reduced. These results further demonstrate that Km-
AP23 has a higher activity than Km-WT. We also compared Km-
AP23 with other well-established WT pAgo proteins (Supplemen-
tary Fig. S61) and conducted cleavage assays with different guide
DNA (gDNA) and tDNA sequences from various diseases and
viruses (Supplementary Fig. S62). Km-AP23 consistently exhibited
higher cleavage activity than other mesophilic pAgo proteins
across different DNA sequences. To provide more insights into
the performance of Km-AP23, we performed electrophoretic
mobility shift assay (EMSA) to analyze the binding of Km-AP23 to
gDNA. The results, presented in Supplementary Fig. S53, showed
that compared with Km-WT, the formation of the protein–gDNA
binary complex is increased in the Km-AP23 group at various
protein concentrations. This observation demonstrates enhanced
gDNA binding by Km-AP23, which can then provide more
templates for enhanced binding to tDNA. We also employed
the fluorescence polarization assay to study its binding affinity to
gDNA and tDNA. The results in Supplementary Fig. S54 showed
that the dissociate constant (Kd) of Km-AP23 is lower than that of
WT KmAgo, indicating an increased binding affinity of Km-AP23
to gDNA and tDNA. Furthermore, we tested the nucleic acid
preference of Km-AP23 (Supplementary Fig. S63). Km-AP23
displayed enhanced cleavage activity on both DNA and RNA
when utilizing ssDNA as a guide. However, it demonstrated either
comparable or reduced cleavage activity on DNA and RNA when
employing ssRNA as a guide, indicating that Km-AP23 is more
likely to use ssDNA as a guide rather than ssRNA32,43 We
calculated the binding free energy of gRNA/tDNA for the entire
structure of Km-WT and Km-AP23 using molecular dynamics (MD)
simulations (the structures of the protein–gRNA–tDNA complex
are predicted by AlphaFold3). As shown in Supplementary Fig.
S64, the binding free energy of gRNA/tDNA for Km-AP23 is higher
than that for Km-WT, which suggests that Km-AP23 may not form

a stable protein–gRNA–tDNA structure to perform cleavage.
Additionally, we analyzed the distribution of mutation sites in
Km-AP23. As shown in Supplementary Fig. S102, the mutations
are more frequently located on the protein surface. The
thermostability of Km-APs was evaluated by incubating them at
42 °C for 2 min and 5 min, followed by assays for ssDNA cleavage
activity, which were then normalized to their respective activities
at 37 °C. Fig. 3f shows that 10 of 27 Km-APs exhibited greater
thermostability than WT KmAgo. Particularly noteworthy were
some Km-APs, such as Km-AP5 and Km-AP14 (Fig. 3f), which
showed concurrent enhancements in both activity and
thermostability.
For Pf-APs, we selected 15 Pf-APs for wet experiment validation.

Although the structures of KmAgo and PfAgo are considerably
conservative (Fig. 4a, b), with a sequence identity of 25.42%, the
two proteins diverge at different evolutionary branches (Fig. 5a),
and they have distinct active temperatures and nucleic acid
preferences32,33,44. The SDS-PAGE and SAXS experiments demon-
strated that all Pf-APs can be purified and remain as monomers in
the buffer, respectively (Supplementary Fig. S90 and Table S24).
The overall packing of Pf-APs was investigated by comparing the
SAXS to that of Pf-WT; and the result in Supplementary Fig. S91
indicated correct folding in the buffer. The ssDNA cleavage assay
was performed on these Pf-APs, and remarkably, all 15 Pf-APs
demonstrated ssDNA cleavage activity (Fig. 4c; Supplementary
Figs. S93 and S94). To comprehensively assess their performance,
we used PfAgo’s ssDNA cleavage activities at both 45 °C and 95 °C,
and KmAgo’s ssDNA cleavage activities at 45 °C as references. All
Pf-APs exhibited enhanced cleavage activity compared to WT
PfAgo at 45 °C. Furthermore, 11 Pf-APs showed enhanced
cleavage activity compared to WT KmAgo at 45 °C, and 6 Pf-APs
(at 45 °C) were even more active than WT PfAgo at 95 °C (Fig. 4e).
A notable observation is that the melting temperature (~50 °C) of
Pf-APs is lower compared to WT PfAgo (~100 °C) (Fig. 4d), and the
activity of Pf-APs is enhanced at moderate temperatures. These
results can be attributed to the fact that our training dataset
primarily consists of pAgo proteins from mesophilic prokaryotes
(Supplementary Fig. S101). Thus, we can conclude that Pf-APs
generated by CPDiffusion maintain the functional feature from the
template WT, while their thermostability, associated with the
overall AA packing, is inherited from the training dataset. This
example might pave a new route for future applications to
engineer a hyperthermophilic protein to work at the mesophilic
condition.
Overall, the enhanced biofunctions observed in the tested Km-

APs and Pf-APs, especially in terms of DNA cleavage activity,
highlight the promising ability of CPDiffusion in function-oriented
protein design. The model efficiently and effectively learns,
discovers, and explores the implicit ‘sequence-structure-function’
relationship from a high-quality training dataset comprising a
small set of proteins from the same family. This capability leads to
the reliable generation of protein sequences with the desired
functionality and enhanced performance.

Bioinformatical and computational analysis of CPDiffusion-
generated novel sequences
To understand the functional and evolutionary relationships
between the CPDiffusion-generated sequences and the WT pAgo
proteins in terms of their function and evolution relationship, we
performed a comprehensive analysis of their sequences and
structures. First, we performed an evolutionary analysis on the Km-
APs and Pf-APs to determine their relationship with other WT
pAgo proteins. A phylogenetic tree was constructed through
multiple sequence alignment (MSA) of Km-APs, Pf-APs, and
proteins in the pAgo database (Fig. 5a and Materials and methods
section). The designed Km-APs and Pf-APs, positioned within the
long-A clade, belong to the KmAgo lineage and the PfAgo lineage,
respectively, and share evolutionary properties with long-A pAgo
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proteins. We then delve into the conservative patterns captured
by CPDiffusion-generated sequences at the 33 align-based
conservative AA sites. For both KmAgo (Fig. 5b) and PfAgo
(Supplementary Fig. S96), the generated sequences closely mirror
the distribution of conserved AAs in the dataset. Additionally, the
catalytic motifs DEDD (for KmAgo, in Fig. 5c and Supplementary
Fig. S97) and DEDH (for PfAgo, in Supplementary Fig. S98) are
preserved perfectly in the generated sequences, the correct
generation of which is pivotal for the catalytic functions of pAgo
proteins45. We attribute the success of automatically capturing
these crucial residues to the abundance of the high-quality pAgo
dataset used to train the model. As supporting evidence, the
generated sequences failed to retain both the DEDX motif and the
conservative sites necessary for recovering desired groups of AAs
when the model was trained without pAgo proteins (bottom
panels in Fig. 5b, c). Furthermore, the surface electrostatic
properties of Km-APs and Pf-APs exhibit resemblances to those
of the WT KmAgo and PfAgo, respectively, including the
negatively charged core for metal ion binding at the cleavage
site and the positively charged surface responsible for target
nucleic acid binding (Fig. 5d; Supplementary Figs. S43 and S85).
These findings affirm CPDiffusion’s ability to assimilate intrinsic

sequential and structural characteristics, thereby ensuring the
functional efficacy of the resultant proteins.
The observation of discernible variations in protein enzymatic

activity, despite the overall similarity in APs’ structure to the WT’s,
suggests the presence of distinct inter-residue interactions within
the APs. To explore this, we selected six Km-APs (Km-AP8, Km-
AP9, and Km-AP19 with reduced cleavage activity; Km-AP22, Km-
AP23, and Km-AP27 with enhanced cleavage activity) and
analyzed the impact of interactions in catalytic sites on the
alteration in cleavage activity. The catalytic tetrad (D527, E562,
D596, and D713) of the KmAgo protein forms a specific
conformation to cleave the tDNA38,45. In the case of Km-AP8,
the E562 in the loop region of KmAgo forms a small alpha-helix
(highlighted in red in Supplementary Fig. S65), and this structural
change might hinder E562 from inserting into the catalytic pocket
due to increased steric hindrance. Regarding Km-AP9 and Km-
AP19, there are missing beta-sheets near D527 (highlighted in
orange and green in Supplementary Fig. S65), leading to a
reduction in electrostatic interactions (Supplementary Table S18)
and potentially destabilizing the structure of the catalytic pocket.
Conversely, in the case of Km-AP22, Km-AP23, and Km-AP27,
which exhibit higher activity than Km-WT, certain AAs within the

Fig. 4 Synthesis and characterization of CPDiffusion-generated artificial PfAgos. a Left panel: representation of the domain architectures of
WT PfAgo (predicted by AlphaFold2). The N domain, Linker1, PAZ domain, Linker2, MID domain, and PIWI domain are colored in red, light
gray, yellow, green, gray, and blue, respectively. Right panel: catalytic sites of WT PfAgo. b Schematic diagram of the domain organization of
WT PfAgo. c Cleavage activities of 15 Pf-APs at 45 °C. Proteins are loaded with ssDNA guide and then incubated with ssDNA target in a 2:1:1
molar ratio (protein:guide:target). The activities are defined by the slope of the fluorescence intensity vs time curve44,52. Results from two
independent experiments were quantified, with the associated standard deviations represented by error bars. d Melting temperature (Tm) of
WT PfAgo and Pf-APs. Tm of Pf-APs is determined by DSF spectra, and Tm of WT PfAgo is retrieved from44. e Out of the 15 tested Pf-APs, all of
them can be expressed, exhibiting ssDNA cleavage activity, and surpassing the WT PfAgo’s cleavage activity at 45 °C. Additionally, 6 Pf-APs
surpass the WT PfAgo’s cleavage activity at 95 °C, and 11 Pf-APs exceed the WT KmAgo’s cleavage activity at 45 °C.
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turn fold into beta-sheets (highlighted in green in Supplementary
Fig. S66). This observation suggests the presence of more
hydrogen bonds and salt bridges compared to the WT
(Supplementary Table S18). Together, the increased interactions
around the catalytic sites could enhance the structural stability of
the catalytic pockets.

We further calculated the binding free energy of gDNA/tDNA in
the catalytic pockets of Km-WT, Km-AP23 (enhanced function)
and Km-AP9 (reduced function) using MD simulation (the
structures of the protein–gDNA–tDNA complexes are generated
using AlphaFold3). As shown in Supplementary Fig. S67, the
binding free energy of gDNA/tDNA in the catalytic pocket of Km-
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AP23 is lower than that in Km-WT, while in Km-AP9 it is higher.
This suggests that the binding affinity of gDNA/tDNA in the
catalytic pocket of Km-AP23 is higher, whereas that in Km-AP9 is
lower compared to Km-WT. This stable binding state might
facilitate tDNA cleavage, because the conformation of the
catalytic pocket is crucial for the catalytic motif to cleave the
tDNA38,45.

DISCUSSION
This study introduces CPDiffusion, a novel pipeline for generating
functional sequences tailored to a given protein backbone. We
showcased the remarkable potential of this generative pipeline
through its application to generate mesophilic endonucleases
based on WT KmAgo and PfAgo with enhanced functionality. The
generated novel sequences of KmAgo and PfAgo are < 70%
similar to their WT template sequences. For both groups of
designed pAgo proteins, more than 90% novel sequences
acquired DNA cleavage activity with over 70% exhibited activity
enhancement over their WT baselines. Notably, the best-
performing novel KmAgo achieves nine times better activity than
WT KmAgo. The best novel PfAgo shifts the melting temperature
of WT PfAgo from approximately 100 °C to 50 °C, and its ssDNA
cleavage activity at 45 °C is two times that of WT PfAgo at 95 °C,
which is 11 times that of WT KmAgo at moderate temperatures.
These remarkable results demonstrate CPDiffusion’s strong
potential in automatically learning from WT functional proteins
and designing valid protein sequences with highly complex
biofunctions toward enhanced functions.
Additionally, APs with enhanced functions could be potentially

applied in in vivo biotechnology25, particularly for cellular-level
nucleic acid labeling. Their high substrate affinity, stability within
protein–substrate complexes, and precise targeting offer sub-
stantial advantages over conventional nucleic acid-binding
methods like DNA-painting and fluorescence in situ hybridization
(FISH)27,46. For instance, APs could assist gDNA in binding to
nucleic acids within mammalian cells (such as HEK293T cells, HeLa
cells, and fly embryos). The gDNA carries overhang initiator
sequences to initiate hybridization chain reactions, whereby
multiple fluorophore-tagged secondary probes are recruited and
assembled into a chain to amplify the signal. Compared to
traditional FISH, pAgo-based FISH could stain nucleic acids within
cells effectively and accurately at moderate temperatures without
formamide treatment, which is known to be toxic and a potential
teratogen. Additionally, the high cleavage activity of APs could be
leveraged for the specific cutting of labeled nucleic acids in cells,
preparing the way for multiple rounds of nucleic acid labeling.
Furthermore, the joint action of pAgo with enhanced function and
nuclease-deficient RecBC helicase holds the potential to cleave
double-stranded DNA29, potentially leading to gene therapy
approaches that precisely target genes responsible for diseases.
Thus, the applications of APs could open up novel opportunities
for developing therapies, in vivo imaging, cancer immunotherapy,
and gene editing.

There has been considerable progress in designing new
functional proteins using deep learning methods with experi-
mental validations. ProteinGAN6 learns the evolutionary relation-
ships of protein sequences directly from the sophisticated
multidimensional space of AA sequences. Out of 55 artificial
sequences generated by ProteinGAN that contain 321 AAs and
one functional domain, 24% of the new proteins are soluble and
display malate dehydrogenase catalytic activity. Pre-trained
ProGen8, a large language model trained on 280 million protein
sequences and billions of network parameters, allows for
conditional protein design. Through fine-tuning the model on
a particular protein family, it generates lysozyme sequences
(~120 AAs) with low sequence identities, and thousands of
protein samples exhibit activity. Lately, Watson et al.9 introduced
RFdiffusion, a function-oriented protein design method based
on structures. This method demonstrates outstanding perfor-
mance in protein monomer design, protein binder design,
symmetric oligomer design, enzyme active site scaffolding, and
symmetric motif scaffolding. In comparison, CPDiffusion estab-
lishes a discrete denoising diffusion model for protein sequence
generation characterized by protein-specific conditions, such as
template secondary and tertiary structure, and extremely
conserved AAs. Taking advantage of these specifications on
the studied protein, valid sequences could be generated
automatically by CPDiffusion with 4 million parameters trained
on ~20,000 family-diverse and 700 family-specific WT proteins.
The model comprehends proteins’ intrinsic sequence-structure-
function construction rules to guide sequence generation even
for excessively long protein sequences (~800 AAs) and those
with highly complex functionality (six functional domains).
CPDiffusion effectively learns the conservative patterns and
other construction rules from the trained pAgo protein family.
Remarkably, the pAgo sequences generated by CPDiffusion
disperse from the template WT protein towards the landscape of
the pAgo proteins family, encompassing diverse AA combina-
tions and enzymatic mechanisms. Despite significant sequence
differences, the proteins generated by CPDiffusion show high
similarity to natural proteins in the high-dimensional space. In
other words, our method acquires knowledge of protein
sequences, structures, and functionality in nature, facilitating
exploration in latent space to unveil novel protein sequences
with desired properties, such as thermostability, affinity (KM) and
catalytic efficiency (kcat) to substrate, and overall activity (kcat/
KM). In contrast to rational design or directed evolution, our deep
learning-based protein generation strategy fosters a more
extensive realm for exploring protein sequences, all while
preserving functional integrity. Moreover, since our method
exhibits a high success rate (> 90%) in generating diverse
protein sequences (altering up to 400 AAs in a single step) with
enzymatic activity, it offers a new avenue for protein engineer-
ing and the potential expansion of the sequence library and
protein fitness landscape, providing researchers with a broader
range of options to explore for desired protein functions within
the family.

Fig. 5 Evolutionary analysis on CPDiffusion-generated pAgo proteins. a Phylogenetic tree of natural pAgo protein sequences and
generated Km-APs and Pf-APs. b Conservative patterns of WT pAgo (upper panel), Km-APs (middle panel), and KmAgo sequences generated
by CPDiffusion trained without the pAgo dataset (lower panel). The conservative positions are presented based on the alignment of the pAgo
dataset. c AA composition at the catalytic motif (DEDD) of Km-APs (upper panel) and KmAgo sequences generated by CPDiffusion trained
without the pAgo dataset (lower panel, details in Supplementary Fig. S100). Each pie chart denotes the AA composition of the generated
protein sequences at the site specified below the pie chart, and the top AA types with > 5% occurrence are listed above the pie chart. Training
with the pAgo dataset significantly improves the model performance in preserving the conservative patterns for KmAgo. d Electrostatic
surface of MID domain and PIWI domain in Km-WT and Km-AP23. Color ranges from red for negative potential through white to blue for
positive potential. The arrows indicate the nucleic acid-binding sites and metal ion-binding sites. e Computational analysis of WT pAgo and
generated KmAgos with t-distributed stochastic neighbor embedding (t-SNE). Each point represents a protein sequence embedding in a two-
dimensional space for visualization purposes. The Km-APs generated by CPDiffusion tend to move from Km-WT toward the entire landscape
of WT pAgo proteins.
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CPDiffusion is dedicated to generating novel AA sequences that
exhibit low sequence homology with WT proteins, while
demonstrating significantly improved enzymatic activity that
better aligns with certain application requirements. While WT
proteins, after hundreds of millions of years of natural evolution in
distinct physiological conditions, may exhibit similar enzymatic
functions with largely different sequences, the likelihood of failure
is high when attempting to manually simulate this evolutionary
process. CPDiffusion learns from a small set of training datasets,
enabling the alteration of hundreds of AAs in a single step to
design novel multi-domain sequences. Remarkably, CPDiffusion
achieves a success rate of over 90% and successfully discovers
highly active sequences that have not been reported in the
literature. The underlying generation strategy also plays a pivotal
role in expanding the available reservoir of potential protein
candidates, thereby establishing a paradigm shift in the explora-
tion of existing proteins. Additionally, our end-to-end generation
method facilitates protein engineering endeavors. When engi-
neering a protein toward desired functionalities, our method does
not require time-consuming iterative selections like directed
evolution methods, which start from single-site mutations and
gradually combine multiple mutations through lengthy iterative
processes. Meanwhile, the progressive denoising steps integrated
within our CPDiffusion can be perceived as guided pathways
leading from arbitrary initial sequences toward their optimized
states in a latent space. Our model streamlines the generation and
evolution process by enabling the direct creation of proteins that
manifest commendable biological performance in a single step.
This approach, in turn, presents a myriad of innovative starting
points that propel directed evolution toward the swift discovery of
novel sequences possessing superior properties. The efficiency
and efficacy exhibited by CPDiffusion suggest promising pro-
spects for expediting the protein design and discovery.

MATERIALS AND METHODS
Conditional protein denoising diffusion
DDPMs11 approximate a distribution by parameterizing the reversal of a
discrete-time forward diffusion process. In the context of protein
sequence generation, the forward diffusion operates on the distribution
of AA types Xaa

0 that involves the iterative noise addition for T steps until
reaching qðXaa

T Þ, a distribution indistinguishable from a reference
independent transition distribution. The forward diffusion (Xaa

0 ! Xaa
T )

samples Xaa
t at every step t (t = 1, …, T) using the forward diffusion

kernel defined as qðXaa
t jXaa

t�1Þ ¼ Xaa
t�1lQt until Xaa

T � qðXaa
T Þ, where Qt

denotes the transition probabilities at t. The reverse diffusion (Xaa
T ! Xaa

0 )
samples Xaa

T � pθðXaa
T Þ � qðXaa

T Þ to convert from the prior into samples of
the learned data distribution, i.e., Xaa

0 � pθðXaa
0 Þ. During the progressive

training process, the generative probability distribution pθðXaa
t�1jXaa

t Þ is
parameterized by a neural network f(θ) that embeds additional
characterization of protein instances, such as their topology and
physicochemical features. We represent proteins as graphs with nodes
corresponding to AAs and implement equivariant graph neural networks
(e.g., EGNN47) that perform rotation and translation equivariance on
aggregating node attributes based on relative spatial relationships of
corresponding neighboring AAs. Additional conditions are also possible
to be inserted to guide the denoising process, such as the secondary
structure and transition matrix. Notably, we defined a conserved AA as
the known region and conditioned the reverse diffusion process of an
unconditional DDPM for sequence inpainting14. We fixed D713 for the
WT KmAgo32,43, which is the position of the catalytic site that depends
on the particular Ago of interest. The weights in the neural network f(θ)
are optimized by minimizing the cross-entropy LCE between p̂θðXaaÞ, the
network prediction that approximates pθ(X

aa), and the observed AA
types. Further details regarding the diffusion model can be found in
Supplementary information.

Structure prediction and comparison
To predict the structure for the artificial Ago sequences generated by
conditional protein denoising diffusion, we used AlphaFold2 in single-

sequence mode with MSA and with PDB templates. The highest-ranked
predicted structure among the five models was used. The RMSD values
between WT and artificial Ago proteins in our study were calculated using
PyMOL (The PyMOL Molecular Graphics System, Version 2.0, Schrödinger,
LLC.). Hydrogen bonds are defined as polar contacts in proteins; salt
bridges are characterized by identifying oxygen atoms in AAs and nitrogen
atoms in basic AA pairs that are within a distance of 4Å.

pAgo protein database
We constructed a dataset containing 694 pAgo proteins, selected from a
comprehensive Ago dataset37. This curated set represents a broad
diversity of pAgo types, including short, long-A, and long-B pAgo
proteins. We performed all five models that AlphaFold239 provides to
predict the structures of WT pAgo sequences. Since the results derived
from five different models are generally consistent, we used the results
of all proteins via Model 1 for further analysis. In Supplementary Figs.
S100 and S101, we delved into the diversity of the pAgo database to
alleviate concerns regarding data bias and highlighted its crucial role in
enhancing the performance of CPDiffusion. Generally, pAgo proteins in
the dataset exhibit structural conservation alongside sequence diver-
sity. Furthermore, the majority of WT proteins are mesophilic pAgos,
with a few long-A pAgo proteins belonging to the thermophilic
category.

Sequence and structure analysis
The model-generated Ago proteins and 694 Ago proteins from the database
were subjected to MSA using the MUSCLE v5 software with the super5
algorithm48. Conservation scores for each residue were computed by

Rseq ¼ log2N � �
XN

n¼1

pnlog2pn

 !
;

where pn is the observed frequency of AA n, and N = 20 for all 20 kinds
of AAs. Conservation score equals Rseq multiplied by the fraction of
non-gapped positions in the column to apply the gap penalty. Residues
in the Ago database scoring above 2.5 were selected. Residues in the
design scoring below 0.2 were excluded to mitigate alignment
discrepancies (Supplementary Fig. S99). The conserved residues were
visualized using WebLogo49. The phylogenetic tree was computed via
IQ-TREE v1.6 with 1500 ultrafast bootstraps and BLOSUM62 was used as
a substitution model50. FigTree v1.4.4 was used to visualize the
phylogenetic tree (http://tree.bio.ed.ac.uk/software/figtree/). The elec-
trostatic surface, or the Coulombic electrostatic potential of the protein
was subsequently assessed using the ‘coulombic’ command in Chimera
visualization tool, which provided a graphical display of the distribu-
tion of electrostatic potential on the surface of the protein.

Protein expression and purification in BL21(DE3)
A codon-optimized version of KmAgo, Km-APs, PfAgo, Pf-APs, BlAgo,
PbAgo, CbAgo, and SeAgo genes were synthesized by Sangon Biotech
(Shanghai, China). They were cloned into the pET15(b) plasmid (the
construction of Ago protein is shown in Supplementary Figs.
S48 and S49) to construct pEX-Ago with an N-terminal His-tag. The
expression plasmids were transformed into Escherichia coli BL21(DE3)
cells. A 30 mL seed culture was grown at 37 °C in LB medium with
50 μg/mL kanamycin and was subsequently transferred to 500 mL of LB
in a shaker flask containing 50 μg/mL kanamycin. The cultures were
incubated at 37 °C until the OD600 reached 0.6–0.8, and protein
expression was then induced by the addition of isopropyl-D-thioga-
lactopyranoside (IPTG) to a final concentration of 0.5 mM, followed by
incubation for 16–20 h at 18 °C. Cells were harvested by centrifugation
for 30 min at 4000 rpm, and the cell pellets were collected for later
purification. The cell pellets were resuspended in lysis buffer (25 mM
Tris-HCl, 500 mM NaCl, 10 mM imidazole, pH 7.4) and then disrupted
using a High-Pressure Homogenizer at 700–800 bar for 5 min (Gefran,
Italy). The lysates were centrifuged for 30 min at 12,000 rpm at 4 °C,
after which the supernatants were subjected to Ni-NTA affinity
purification with elution buffer (25 mM Tris-HCl, 500 mM NaCl, 250
mM imidazole, pH 7.4). Further gel filtration purification using a
Superdex 200 (GE Tech, USA) was carried out with an elution buffer.
The fractions resulting from gel filtration were analyzed by SDS-PAGE.
The fractions fractions containing the protein were flash frozen at
−80 °C in buffer (15 mM Tris-HCl, pH 7.4, 200 mM NaCl, 10% glycerol).
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ssDNA/RNA cleavage assay
For standard activity assays of WT and APs, cleavage experiments were
performed in a 2:1:1, 5:2:2, or 3:2:2 molar ratio (protein:guide:target). For
studying the effect of temperature on the activity of proteins, they were
incubated at 42 °C for 2 min and 5 min before conducting the ssDNA
cleavage assay. First, 5 μM protein was mixed with a synthetic 1 μM gDNA
guide in the reaction buffer (15 mM Tris-HCl (pH 7.4), 200 mM NaCl, and 5
mM MnCl2). The solution was then pre-incubated at 37 °C for 20 min. After
pre-incubation, 1 μM tDNA, which was labeled with the fluorescent group
6-FAM at the 5’-end and the quencher BHQ1 at the 3’-end, was added to the
mixture. The fluorescence signals were traced by the quantitative real-time
PCR QuantStudio 5 (Thermo Fisher Scientific, USA) with λex = 495 nm and
λem = 520 nm. The results were analyzed by QuantStudioTM Design &
Analysis Software v1.5.1. The guide and target nucleic acids used for
cleavage are listed in Supplementary Tables S16 and S17. Two independent
experiments were conducted to determine the cleavage activity of Ago
proteins. The original data were shown in Supplementary Figs.
S55–S59 and S92. For the kinetic measurements, the parameters kcat and
KM were determined by fitting the Michaelis-Menten equation to the
velocity of each reaction as a function of the concentration of ssDNA target.

CD spectroscopy
The CD measurements on the secondary structure of Km-WT and Km-APs
were performed in the Jasco J-1500 spectropolarimeter with a 1 mm
pathlength cell. The concentrations of proteins were 0.1 mg/mL in 1× PBS
buffer (pH = 7.4). For CD spectra, PBS buffer was used as the solvent
instead of Tris-HCl buffer because the Tris-HCl buffer has a strong CD
background, which would significantly affect the analysis of the CD signal
of proteins44. The original data are shown in Supplementary Fig. S51.

Fluorescence polarization assay
To determine the apparent Kd for proteins binding to either gDNA or tDNA, a
fluorescence polarization assay was conducted using a multifunctional
enzyme-linked immunosorbent assay plate reader (Spark, Tecan). The
solution was prepared by combining 5 nM of 3’ 6-FAM-labeled gDNA or
tDNA with proteins across a concentration range of 0 to 1500 nM in a
reaction buffer (15 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 5 mM MnCl2). This
mixture was incubated at 37 °C for 1 h and subsequently transferred to a
light-protected 96-well ELISA plate. The degree of polarization was measured
using the Spark Tecan plate reader, employing an excitation wavelength of
485 nm and an emission wavelength of 525 nm. All experiments were
independently conducted three times. The binding percentages were
analyzed using Microsoft Excel and Prism 8 (GraphPad) software. The data
were fitted with the Hill equation, incorporating a Hill coefficient of 2 to 2.5.
The original data are shown in Supplementary Fig. S54.

Cell-free protein expression and extraction
The expression of Km-WT and Km-APs was accomplished utilizing the
Tierra Bioscience cell-free expression platform. The preparation of cell-free
extracts for protein expression was conducted in adherence to the
methodology established by Sun et al.51.

Differential scanning fluorimetry
Each protein sample (PfAgo and Pf-APs) containing 1 μM of protein in a
buffer containing 15 mM Tris-HCl (pH= 7.4) and 200 mM NaCl was
prepared in triplicate and added to PCR tubes. SYPRO Orange dye available
as 5000× stock (Sigma-Aldrich) was added just before the measurement of
proteins in an appropriate amount to achieve a final concentration of the
dye of 5×. The thermal denaturation of proteins was monitored by exciting
the SYPRO Orange dye at 470 nm and monitoring its fluorescence
emission at 570 nm using Q-PCR (Analytikjena, Germany). The baseline
correction is used by the Opticon Monitor software available on the PCR
instrument. The original data are shown in Supplementary Fig. S95.

SAXS
SAXS measurement was employed to analyze the status of proteins in
the buffer. Synchrotron SAXS measurements were conducted at
BL19U2 beamline in Shanghai Synchrotron Radiation Facility. The
X-ray wavelength was 0.103 nm. Protein samples were dissolved in a
buffer containing 15 mM Tris-HCl (pH 7.4), 200 mM NaCl. The
concentration of samples is 0.5 mg/mL. Protein solutions were loaded
into the silica cell and then gently refreshed with a syringe pump to
prevent X-ray damage. To calculate the absolute intensity of protein,

the empty cell and buffer were also measured at 37 °C. Two-
dimensional (2D) diffraction patterns were collected by the Pilatus 2
M detector with a resolution of 1043 × 981 pixels of 172 μm × 172 μm.
Twenty sequential 2D images were collected with 0.5 s exposure time
per frame. The 2D scattering patterns were then integrated into one-
dimensional (1D) intensity curves by using Fit2D software from the
European Synchrotron Radiation Facility. Frames with no radiation
damage were used for further processing. The one-dimensional data
were processed using ScÅtter and ATSAS software.

MD simulations
The structures of proteins with nucleic acids for simulations were
predicted by AlphaFold3. Protein and a large number of water molecules
were filled in a cubic box. Sixteen chlorine counter ions were added to
keep the system neutral in charge. The CHARMM36m force field was used
for the complex and the CHARMM-modified TIP3P model was chosen for
water. The simulations were carried out at 310 K. After the 4000-step
energy-minimization procedure, the systems were heated and equili-
brated for 100 ps in the NVT ensemble and 500 ps in the NPT ensemble.
The 100-ns production simulations were carried out at 1 atm with the
proper periodic boundary condition, and the integration step was set to
2 fs. The covalent bonds with hydrogen atoms were constrained by the
LINCS algorithm. Lennard-Jones interactions were truncated at 12 Å with a
force-switching function from 10 Å to 12 Å. The electrostatic interactions
were calculated using the particle mesh Ewald method with a cutoff of
12 Å on an ~1 Å grid with a fourth-order spline. The temperature and
pressure of the system are controlled by the velocity rescaling thermostat
and the Parrinello-Rahman algorithm, respectively. All MD simulations
were performed using GROMACS 2020.4 software packages.

EMSA
To examine the loading of gDNA onto proteins, proteins and 3’-end FAM-
labeled guide were incubated in 20 μL of reaction buffer containing 15
mM Tris-HCl (pH 7.4), 200 mM NaCl for 20 min. The concentrations of 3’-
end FAM-labeled guide and protein were fixed as 1 μM and 2 μM,
respectively. Then the samples were mixed with 5 μL 5× loading buffer
(Tris-HCl (pH 7.4), 25% glycerin, Bromophenol blue) and resolved by 12%
native PAGE. Nucleic acids were visualized using Gel DocTM XR+.
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