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Abstract
Nowadays, the program’s mechanisms are becoming more dynamic. As a result, maintaining performance for a longer 
duration of time to increase the system’s long-term growth is tough. This is mostly because of the malfunction occurrence 
during the study, as the machine does not always have all details. In order to tackle this problem, the available data must be 
used to construct the problems. However, one of the most successful data theories is fuzzy set theory. The concept of fuzzy 
logic has recently grown in favour, and it plays an important role in engineering and management. Fuzzy arithmetic was 
very significant in research fields including decision-making problems, confidence analysis, optimization etc. as compare to 
others. Fuzzy numbers came into existence to perform operations on fuzzy observations. The distinction between generalised 
fuzzy and classic fuzzy arithmetic operations is that the former can handle both non-normal and normalised fuzzy, while the 
latter can only handle normalised fuzzy.
The goal of this research is to give a broad overview of current techniques in this field. The methodology reported in this 
article focuses on improving the arithmetic process in a fuzzy environment. The current arithmetic operations take into 
account the same degree of precision with specific fuzzy numbers, it is found that the lack of knowledge is responsible for 
incorrect performance. To avoid and maintain the uniformity of the fuzzy numbers, an improved operator like adding, scaling, 
subtracting, multiplication has been derived for generalized trapezoidal (triangular), sigmoidal and parabolic fuzzy numbers.

1 Introduction

The goal of this study is to use unknown, uncertain, and 
imprecise data to further evaluate the efficiency of industrial 
processes. It was accompanied by an improvement of the 
arithmetic operation. Including three sections of the present 
plan, the following are described:

Trapezoidal (triangular) fuzzy numbers: Since current 
arithmetic operations take into account the same trust level 
for different fuzzy numbers and thus this lack of knowledge 
contributes to the inaccurate result. To overcome this and 
maintain the uniformity of the fuzzy numbers, we devel-
oped a superior arithmetic operator that uses addition, scalar 
multiplication, subtraction, and multiplication for general-
ised (triangle) fuzzy numbers. The benefit of the proposed 
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operations is that they maintain uniformity of data and give 
importance to the data. Arithmetical operations on gen-
eralized trapezoidal fuzzy numbers and their applications 
are given by [1] which we will use in our present work. To 
enhance the usability, in addition to the linear, non-linear 
arithmetic operation on generalized triangular intuitionis-
tic fuzzy numbers defined by [2] and their applications are 
given by [3] will enhance the usability of this paper.

Sigmoidal fuzzy numbers: Traditionally, all studies were 
conducted using probabilistic and binary states. Unfortu-
nately, such theories have failed to incorporate trustworthy 
knowledge, and as a result of these flaws, probability the-
ory-based tests do not always provide clinicians with useful 
information. Hence, Inadequate probabilistic approach is to 
take these integrated uncertainties into account of the data. 
With contrast to probability theory, approaches to fuzzy 
logic based set theory [4] give a valuable technique for 
resolving uncertainties to solve this constraint.

Parabolic fuzzy numbers: Fuzzy set theory has been used 
as a valuable method to deal with the complex structures 
in particular, in which the device’s relationship may be too 
difficult to determine accurately. Nevertheless, by using dif-
ferent types of flushing arithmetic we can note that fuzzy 
logic can yield various simulated efficiencies and outputs, 
and the fluoridated arithmetic operations are expected. These 
increasing operations will employ triangular, fuzzy num-
bers. In addition to probability theory, techniques based on 
fuzzy set theory provide a valuable methodology for resolv-
ing doubts to solve this issue. Somewhat researchers have 
been working on arithmetic operations in neon numbers for 
the last couple of years. This is achieved by using the pos-
sibility extension theory of Zadeh or its new, expanded, and 
possible variant, suggested by Klir that takes the so-called 
required limitations into account. The algebra of ordered 
fuzzy numbers (OFN) is defined to deal quantitatively with 
fuzzy inputs in the same way that it does with real numbers 
[5]. The introduction of a new type of fuzzy number, the 
Generalized Hexagonal Fuzzy Number, and its applications 
to the Multi-Criteria Decision-Making Problem (MCDM) 
by [6].

1.1  Advantage of the Proposed Approach

(a) To avoid performance concerns caused by the same 
degree of precision with particular fuzzy numbers, 
arithmetic operations are defined separately for specific 
types of fuzzy numbers.

(b) Using inaccurate data and fuzzy arithmetic operations, 
industrial systems are considered to be more effective.

(c) Improve the usability of fuzzy arithmetic operations in 
a variety of real-world applications, such as optimiza-
tion and decision-making.

2  Review of Literature

Traditionally, both tests were done based on both probabil-
istic and conditional assumptions. However, these expecta-
tions do not handle trustworthy knowledge and these limi-
tations do not provide clinicians with realistic information 
because of the chance-based research and consequently, the 
combined risks are not adequately likely in the results to be 
taken into account. In addition to formal logic, approaches 
based on fuzzy set theory provide a valuable technique for 
handling issues in this context. Fuzzy set theory approaches 
[4] give a significant technique for resolving uncertainty [7] 
introduced Petri nets properties, analysis and applications.

Somewhat researchers have been working on arithmetic 
operations in neon numbers for the last couple of years. The 
concept of Fuzzy arithmetic was introduced by [8].Then 
Fuzzy states are given as the basis of Fuzzy reliability by 
[9]. For better calculations hybrid arithmetic were defined by 
[10]. Then some conditions are given to these fuzzy numbers 
and operations are applied on them, to compute these opera-
tions Fuzzy arithmetic with requisite constraints are intro-
duced by [11]. Then concept of Fuzzy was again introduced 
by [12] which makes a substantial reduction in the number 
of arithmetic transactions. Calculus on fuzzy numbers is a 
tool for improving fuzzy arithmetic on fuzzy numbers [5]. 
After that fuzzy sets are defined on intervals to reduce the 
uncertainties occur before them for which Interval analysis 
and fuzzy set theory defined by [13] same as crisp set theory 
to know more about fuzzy sets the concept of cardinality is 
given by [14]. Then fuzzy numbers are used for optimization 
techniques to enhance their certainty in accordance of which 
α-cut fuzzy arithmetic solve some optimization problems by 
[15]. As fuzzy set theory was introduced on intervals ear-
lier so the arithmetic was also introduced on them for their 
usability by [16]. As the problems can be of any type so for 
solving them arithmetic there was a need to define the arith-
metic on every type of fuzzy numbers for which Arithmetic 
on discrete fuzzy numbers also given by [17].In accordance 
of it the concept of gradual numbers and their use in fuzzy 
theory was introduced by [18]. After defining the fuzzy 
arithmetic some properties of it are analysed by [19], inves-
tigated the decomposition of fuzzy numbers. In addition to 
this a value is given to function of fuzzy variables with con-
tinuous function by [20]. A special type of fuzzy numbers, 
LR fuzzy numbers and their parametric forms and arithmetic 
operations on them are defined by [21]. Till now the fuzzy 
sets are not applied for solution of uncertain equation with 
interval and probabilities, the problem of which was solved 
by [22]. The real-world wavelength division multiplexing 
(WDM) network design problem was given by [23] in order 
to design a telecommunications network. Interval-Valued 
Degrees of Belief: Applications of Interval Computations 
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to Expert Systems and Intelligent Control defined by [24]. 
After that arithmetical operations on generalized trapezoidal 
fuzzy numbers and their applications are given by [1] which 
we will use in our present work. When Multi-objective relia-
bility-redundancy allocation problems were examined these 
problems are solved using swarm optimization by [25]. To 
enhance the usability, in addition to the linear, non-linear 
arithmetic operation on generalized triangular intuitionistic 
fuzzy numbers defined by [2]. In addition to this entropy 
based multi criteria decision making method given by 
[26]. After defining the horizontal membership function of 
Fuzzy numbers their applications were introduced by [27] 
and applications of Pentagonal fuzzy numbers are given by 
[28]. Different equations are solved under uncertainty by 
[29]. Rule based systems introduced by [30].In addition to 
the triangular arithmetic operations also applied in general-
ized sigmoidal fuzzy numbers which are defined by [31].
Fuzzy numbers are symmetrically triangularized by [32]. In 
addition to the generalized triangular non linear triangular 
intuitionistic fuzzy numbers and their applications are given 
by [3] Industrial systems are analysed by using different 
types of fuzzy numbers by [6, 33]. Computational method 
for fuzzy arithmetic operations on triangular fuzzy num-
bers by extension principle given by [34].Hexagonal fuzzy 
approximation was done by [6]. Then type 2 triangular and 
trapezoidal membership function generated clustering based 
by [35]. Ranking of fuzzy numbers are done on the base 
of relative position and shape characteristics by [36]. New 
operations based on function principal introduced in [37]. 
The symmetric triangular approximation of a fuzzy number 
which preserves the parameter p ∈ Ps was computed by [32].

3  Preliminaries

This paper provides some basic concepts and fundamental 
mathematics for fluid model. The fuzzy cuts, convex func-
tions, membership functions, regular fuzzy set, and fuzzy 
numbers are all explained in detail.

3.1  Basic Concepts of Fuzzy Set Theory

3.1.1  Fuzzy Sets

Crisp sets’ essential notions can be extended and generalised 
using fuzzy sets. The fuzzy package’s ability to permit mem-
bership grade is a significant element. A fuzzy collection has 
a membership level ranging between 1 and 0. Membership 
is not necessary in a Fuzzy set, i.e. members of one Fuzzy 
group may be members of other Fuzzy groups also. Widely 
stretched the notation of evaluation set [0,1] (define in / 
definitely out) to an interval between 0 and 1 with 0.0 being 

the absolute false and 1.0 representing absolute truth, In the 
world of discourse, U is represented as a series of ordered 
pairs (x, μp (x)), i.e.

where μp (x) is the degree of membership of element of 
x in the fuzzy set P which shows that x corresponds to P.

clearly μp (x) ∈ [0,1].

3.1.2  Membership Functions

The membership parameter defines the uncertainty and 
vagueness of the set, regardless of whether the elements are 
discrete or continuous. For a fuzzy set P, a function, denoted 
by µp which maps U to the space M, i.e. μp: U → M, is a 
membership function. Membership is defined as a subset of 
non-negative real numbers with a finite supremum within 
the membership range [0, 1].

The three main characteristics of membership traits are 
as follows:

1. Core—The membership core for certain fuzzy set P is 
identified as the universe region characterized by full 
membership for set P. The core contains the universe’s 
element x in such a way that

  The core can be an empty set in a fuzzy system.
2. Support—Support for a fuzzy set P is defined as that 

universe region which is categorized with a non-zero-
membership feature of set P. The support includes uni-
verse elements such that

3. Boundary—The limits of the membership feature to the 
fuzzy set P are specified as the universe region which 
contains non-zero membership, but not competitors. In 
other words, those elements of the universe comprise 
such that

The boundary elements are those that are partially mem-
bers of the fuzzy set P.

3.1.3  α‑Cut of Fuzzy Set  (Pα)

α -cut is one of the most important and widely applied prin-
ciple introduced by Zadeh [26] in fuzzy set theory. α-cut of a 
fuzzy set Pα of X is the set in which the membership values 
in P, is greater than or equal to α.

(1)P = {(x,�P(x)|x ∈ U}

�p(x) = 1

𝜇p(x) > 0

𝜇p(x) < 1
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Take P, be a fuzzy set on X with P (x) Є [0,1].
Such that,

So,

3.1.4  Normal Fuzzy Set

When the universal set "U" confirms that a fuzzy set’s mem-
bership function is unitary, it is considered normal.

3.1.5  Fuzzy Number

A fuzzy number is a further justification from fuzzy sets 
and mathematics, which is a standard generalisation of real 
numbers, because it corresponds to a related set of poten-
tial values, where each potential value between 0 and 1 has 
its own strength. This ability is known as the "membership 
function."

A convex, real line R membership function is regarded as 
a fuzzy number i.e., if their membership is partially perma-
nent and at least one  x0 ∈ U exists, so μp  (x0) = 1. The asso-
ciated member function defined in [p, q] ≠ 0 is specified as.

where f and g are monotonic, continuous, non-decreasing 
and non-increasing functions from the right and left, and f 
(x) = 0 for x ∈ (−∞,ω1 ) and g (x) = 0 for x ∈ (ω2,∞).

3.1.6  Fuzzy Number and It’s Arithmetic Operations

3.1.6.1 Triangular Fuzzy Number Triangular Fuzzy Num-
ber has three variables. So, P = (p, q, r) is said to be triangu-
lar fuzzy number when the membership is specified as

The fuzzy numbers’ α -cut (p, q, r) is defined and illus-
trated graphically below.

Whose trust interval is

(2)P = {(x,P(x)∕x ∈ X}

(3)P� = {x∕P(x) ≥ �}

(4)�P(x) =

⎧⎪⎨⎪⎩

f (x);x ∈ (−∞, p)

1;x = (p, q)

g(x) ;x ∈ (q,∞)

(5)μP(x)=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, x < p ;

x − p

q − p
, p p ≤ x ≤ q

r − x

r − q
, q q ≤ x ≤ r ;

0, x > r

On two TFNs:P =
(
p1, q1, r1

)
 and Q =

(
p2, q2, r2

)
.per-

form basic arithmetic operations such as addition, subtrac-
tion, multiplication, and division (Fig. 1).where  pi ≥ 0, 
i = 1,2 are defined as.

1. Addition: P + Q =
(
p1 + p2, q1 + q2, r1 + r2

)
2. Subtraction: P − Q =

(
p1 − r2, q1 − q2, r1 − p2

)
3. Multiplication: P × Q =

(
p1 p2, q1 q2, r1 r2

)

4. Division: P ÷ Q =
(

p1

r2
,
q1

q2
,
r1

p2

)
if p2 > 0

3.1.6.2 Trapezoidal Membership Function In trapezoidal 
function there are four variables, P = (x: p, q, r, s), a lower 
limit is p, upper limit is s and in between there are other two 
limits q and r, such that p < q < r < s (Fig. 2).

Therefore, its membership is,

The α − cut of the number P = (p, q, r, s) is the closed 
interval

3.1.7  Sigmoidal Fuzzy Numbers

Sigmoidal functions is that computable function � ∶ R → R 
is known as sigmoidal function.

(6)Pα =
[
p(α), r(α)

]
=
[
(q − p)α + p, − (r − q)α + r

]

(7)μP(x) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x < p

x − p

q − p
, p p ≤ x < q

1 q ≤ x < r

s − x

s − r
, q r ≤ x < s

0, x ≥ r

(8)P� =
[
PL
�
,PR

�

]
=
[
p + �(q − p), s − �(s − r)

]
, � ∈ (0, 1]

Fig. 1  A graphic representation of the fuzzy triangle number
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each time, lim
x→−∞

�(x) = 0 and lim
X→+∞

�(x) = 1

Such functions typically have S-shaped curves and the 
following functions are given as standard sigmoidal.

Since, φ (5) = 0.9933 and φ (−5) = 0.0067, covering 
almost the entire [0, 1] set. In this analysis, the area of this 
function has therefore been examined [−5, 5], and hence, the 
membership function related to P =

(
p1, p2, p3;�

)
 is defined 

as follows (Fig. 3):

(9)�(P) =
1

1 + e−P

(10)

𝜇P(x) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀

�
𝜑

��
x−

p1+p2
2

��
10

p2−p1

��
−𝜑(−5)

𝜑(5)−𝜑(−5)

�
; if p1 ≤ x < p2,

𝜀 ; if x = p2,

𝜀

�
𝜑(5)−𝜑

��
x−

p2+p3
2

��
10

p3−p2

��

𝜑(5)−𝜑(−5)

�
; if p2 ≤ x < p

3
,

0 ; otherwise.

3.1.8  Parabolic Fuzzy Number

A fuzzy number A =
(
p1, p2, p3

)
 is a parabolic fuzzy num-

ber if it is described as follows (Fig. 4):

4  Generalized Fuzzy Number

Fuzzy number s P =
⟨(

p1, p2, p3; �
) | pi ∈ R

⟩
 , is knows as 

generalized fuzzy number, if it’s membership function i.e. 
�P(x) ∶ R → [0, 1] possess the following properties:

1. Continuity.
2. Zero for all x ∈ (− ∞,p1] ∪  [p3, ∞).
3. Growing dramatically on  [p1,  p2] and decreasing on  [p2, 

 p3].

(11)μ
A
(x) =

⎧
⎪⎪⎨⎪⎪⎩

�
x−p1
p2−p1

�2

, if p1 ≤ x < p2

1 if x = p2�
p3−x

p3−p2

�2

, if p2 ≤ x < p3

0, if otherwise

Fig. 2  A graphic representation 
of the fuzzy trapezoidal number

Fig. 3  A graphic representation of the fuzzy sigmoidal number
Fig. 4  A graphic representation of the fuzzy parabolic number
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4. μp (x) = ε for all x ∈  p2; where 0 < ε ≤ 1.

If ε = 1 then P is called normal, otherwise the fuzzy 
numeral is generalized.

4.1  Generalized Triangular Fuzzy Numbers

If the membership function of a fuzzy number 
P =

(
p1, p2, p3; �

)
 is defined

then the fuzzy number P = (p (1,) p (2,) p 3;) is a general 
triangular fuzzy number (Fig. 5).

The α − cut of the number P = ⟨p1, p2, p3; �⟩ is the closed 
interval

4.2  Generalized Trapezoidal Fuzzy Numbers

A fuzzy P =
(
p1, p2, p3, p4; �p

)
 is said to be a general trap-

ezoidal fuzzy number, if yhe membership function of P is 
given by (Fig. 6),

(12)μP(x) =

⎧
⎪⎪⎨⎪⎪⎩

ε
�

x−p1
p2−p1

�
; if p1 ≤ x < p

2
,

ε ; if x = p2,

ε
�

p3−x

p3−p2

�
; if p2 ≤ x < p3

0 ; otherwise

(13)
P� =

[
PL
�
,PR

�

]
=
[
p1 +

�

�

(
p2 − p1

)
, p3 −

�

�

(
p3 − p2

)]
, � ∈ (0, �]

(14)μP(x) =

⎧
⎪⎨⎪⎩

εP

�
x−p1
p2−p1

�
; if p1 ≤ x < p2,

εP ; if p2 ≤ x < p3;

εP

�
p4−x

p4−p3

�
; if p3 ≤ x < p4

where p1, p2, p3, p4 are real numbers, 0 ≤ εp  ≤ 1. We quan-
tify improved arithmetical operations on the basis of these 
α − cuts: addition, subtraction, scalar propagation, division, 
etc., between the two generalized fuzzy number.

4.2.1  Fuzzy Arithmetic Operations

Let two generalized trapezoidal fuzzy numbers  P1 and  P2 
are given by:

P1 =
(
p1,q1,r1,s1;�1

)
 and P2 =

(
p2,q2,r2,s2;�2

)
Then basic arithmetic operations defined between them 

are,

1. Addition of P1 and P2:

2. Subtraction of P1 and P2:

3. Multiplication of P1 and P2:

4. Division of P1 and P2:

It was noted that some vulnerabilities were shown with 
the help of the following examples;

P1 + P2 =

(
p1 + p2,q1 + q2,r1 + r2,s1 + s2 ; min

(
�1, �2

))

P1 − P2 =
(
p1 − s2, q1 − r2,r1 − q2,, s1 − p2 ; min

(
�1, �2

))

P1.P2 =
(
p1p2,q1q2,r1r2,s1s2 ; min

(
𝜀1, 𝜀2

))
; ifp1,p2 > 0

P1

P2

=

(
p1

s2
,
q1

r2
,
r1

q2
,
s1

p2
; min

(
�1, �2

))

Fig. 5  A graphic representation of the generalized fuzzy triangle 
number

Fig. 6  A graphic representation of the generalized fuzzy trapezoidal 
number
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4.3  Arithmetic Procedures Among Generalized 
Fuzzy Numbers

Theorem 1 By addition of two generalized fuzzy values i.e. 
P =

(
p1, p2, p3, p4;�P

)
 and Q =

(
q1, q2, q3, q4;�Q

)
 , a new 

trapezoidal fuzzy number “R” with two separate confidence 
levels will be generated:

where,

r1 = p1 + q1 , r2 = q1 + p2 +
�(q2−q1)

�Q
 , r3 = q4 + p3 +

�(q4−q3)

�Q

and r4 = p4 + q4

Proof: Appendix A.

Theorem 2 (Scalar multiplication of fuzzy number).

By multiplication of a scalar number with trapezoidal 
fuzzy number i.e. P =

(
p1, p2, p3, p4;�

)
 a new generalized 

trapezoidal fuzzy number kP is generated whose value given 
by.

Proof: Appendix B.

Theorem 3 (Subtraction of two numbers).

Deliberate  two general ized fuzzy  numbers 
P =

(
p1, p2, p3, p4;�P

)
 and Q =

(
q1, q2, q3, q4;�Q

)
 , generates 

a trapezoidal fuzzy number with two separate confidence 
levels,

w h e r e ,  r1 = p1 − q4, r2 = p2 − q4 +
�(q4−q3)

�Q
 , 

r3 = p3 − q1 −
�(q2−q1)

�Q
 , and r4 = p4 − q1

Proof. We omit this since it follows from Theorems 1 and 
2.

Theorem 4 (Multiplication of two numbers).

P =
(
p1, p2, p3, p4;�P

)
 and Q =

(
q1, q2, q3, q4;�Q

)
 are two 

generalised fuzzy numbers with two independent confidence 
levels such that �P ≤ �q then

(15)R = P + Q =
(
r1, r2, r3, r4;�

)

(16)kP =

{(
kp1, kp2, kp3, kp4; 𝜀

)
;if k > 0(

kp4, kp3, kp2, kp1; 𝜀
)
;if k < 0

(17)R = P − Q =
(
r1, r2, r3, r4;�

)

(18)R = P × Q =
(
r1, r2, r3, r4;�

)

� = min
(
�P, �q

)
 ; generate a fuzzy numberwhere, 

r1 = p1 q1 , r2 =
�(p2 q2−p2 q1)

�Q
+ p2 q1 , r3 =

�(p3q3−p3q4)

�Q
= p3q4 , 

and r4 = p4q4

Proof: Appendix C.

Theorem  5 For two generalized fuzzy numbers , 
P =

(
p1, p2, p3, p4;�P

)
 and Q =

(
q1, q2, q3, q4;�Q

)
 , with two 

separate confidence levels such that εP ≤ εq then,

where, r1 =
p1

q4
 , r2 =

�

(
p2

q3
−

p2

q4

)

�Q
+

p2

q4
 , r3 =

�

(
p3

q2
−

p3

q1

)

�Q
+

p3

q1
 , and 

r4 =
p4

q1

Proof. 

As, Q =
(
q1, q2, q3, q4; �Q

)
 . Thus 1

Q
=
(

1

q4
,
1

q3
,
1

q2
,
1

q1
;�
)

 , 

and P
Q
= P ×

(
1

Q

)
.

As a result, we ignore the proof of this theorem because 
it follows from Theorem 3.2.4.

4.4  Generalized Parabolic Fuzzy Number

A fuzzy number given by Ã =
(
p1, p2, p3; 𝜀

)
 , is generalized 

parabolic fuzzy when its membership is

Theorem 6 If X and Y are the two fuzzy Sigmoid numbers 
that span the globe, their membership is determined as 
follows:

And,

(19)

R =
P

Q
=
(
r1, r2, r3, r4;�

)
= in

(
�P, �q

)
; generate a fuzzy number

(20)μ
A
(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀

�
x−p1
p2−p1

�2

; if p1 ≤ x < p2

𝜀 ; if x = p2

𝜀

�
p3−x

p3−p2

�2

; if p2 ≤ x < p3

0 ; otherwise

(21)μX(x) =

⎧⎪⎨⎪⎩

ε1L1(x) ; if p1 ≤ x < p2,

ε1 ; if x = p2,

ε1R1(x) ; if p2 ≤ x < p3
0 ; otherwise

(22)μY(y) =

⎧⎪⎨⎪⎩

ε1L1(y) ; if q1 ≤ y < q2,

ε1 ; if y = q2,

ε1R1(y) ; if q2 ≤ y < q3
0 ; if otherwise



 R. Kumar et al.

1 3

Then there’s the fuzzier adjustable Similarly, Z = X + Y is 
a parabolic fuzzy number with a membership value.

Proof: Appendix D.

Theorem 7 Because X is a fuzzy parabolic number and 
z = kx is the transform, kX is also a sigmoidal fuzzy number 
given by:

Proof: Appendix E.

Theorem 8 If X and Y are the two fuzzy parabolic number of 
the world’s function U. The Z variable given by Z = X–Y is 
then a parabolic fuzzy value whose membership is,

Proof 

This proof is insignificant with the use of addition as well 
as scalar increase (k = −1; which is less than 0) of the two 
parabolic fuzzy numbers.

Theorem 9 The two functions of the signature of para-
bolic membership are given by X and Y, then the variable 
Z = X.Y, is also a parabolic fuzzy number, which functions 
as a member, is given by:

(23)μZ(x) =

⎧
⎪⎪⎨⎪⎪⎩

ε
�

x−(p1+q1)
p2−p1+q2−q1

�2

; p1 + q1 ≤ x < p2 + q2

ε ; x = p2 + q2

𝜀

�
(p3+q3)−x

p3−p2+q3−q2

�2

; p2 + q2 ≤ x < p3 + q3

0 ; otherwise

(24)kX =

{(
kp1, kp2, kp3 ; 𝜀1

)
if k > 0(

kp3, kp2, kp1; 𝜀1
)
if k < 0

(25)

μZ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀

�
x −

�
p1 − q3

�
p2 − p1 + q3 − q2

�2

; p1 − q3 ≤ x < p2 − q2

𝜀; x = p2 − q2

ε

� �
p3 − q1

�
− x

p3 − p2 + q2 − q1

�2

; p2 − q2 ≤ x < p3 − q1

0; otherwise

where, P1 =
(
p2 − p1

)(
q2 − q1

)
 , Q1 = p1

(
q2 − q1

)
+ b1

(
p2 − p1

) , 
R1 = p1q1

P2 =
(
p3 − p2

)(
q3 − q2

)
, Q2 = −p3

(
q3 − q2

)
− q3

(
p3 − p2

)
and R2 = p3q3.

Proof: Appendix F.

Theorem 10 If a fuzzy number X denote the parabolic mem-
bership which is given in Equation.

So, the inverse X−1 =
[
p−1
3
, p−1

2
, p−1

1
; �1

]
 will also be a 

parabolic fuzzy number whose membership is denoted as:

Proof: Appendix G.

Theorem 11 X and Y are the 2 fuzzy numbers around the 
World U. If 0 ∉ Y , then fuzzy adjustable Z =

X

Y
orX × Y−1 

will be also a parabolic fuzzy number.

Proof

By help of the Theorems 4 and 5, given value will become 
the membership of Z = X × Y−1

(26)𝜇XY (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜀

⎛
⎜⎜⎜⎝

−Q1 +
�

Q2

1
− 4P1

�
R1 − x

�

2P1

⎞
⎟⎟⎟⎠

2

; p1q1 ≤ x < p2q2

𝜀; x = p2q2

𝜀

⎛
⎜⎜⎜⎝

−Q2 +
�

Q2

2
− 4P2

�
R2 − x

�

2P2

⎞
⎟⎟⎟⎠

2

; p2q2 ≤ x < p3q3

0; otherwise

(27)μx(x) =

⎧
⎪⎪⎨⎪⎪⎩

ε1L1(x); if p1 ≤ x < p2,

ε1; if x = p2

ε1R1(x); if p2 ≤ x < p3

0 ; otherwise

(28)μX−1(x) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε1

�
xp3 − 1

x
�
p3 − p2

�
�2

; if p−1
3

≤ x < p−1
2

ε1; if x = p−1
2

ε1

�
1 − p1X

x
�
p2 − p1

�
�2

; if p−1
2

≤ x < p−1
1

0; otherwise
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4.5  Generalized Sigmoidal Fuzzy Numbers

If membership function of a fuzzy number Ã =
(
p1, p2, p3;𝜀

)
 

related to P =
(
p1,p2,p3;�

)
 is defined as follows:

Then the given fuzzy number will be a sigmoidal fuzzy 
number.

4.5.1  Membership for Function of a Fuzzy Inconstant

Let function: Rn
→ R be a function, and let ξ1, 

ξ2 ………ξn , be fuzzy Φ space variables. Then, 
ξ = f(ξ1, ξ2 ………ξn ), is a fuzzy variable defined as 
ξ(θ) = f(ξ1(θ), ξ2(θ)………ξn(θ) ), for any θϵΦ . If the 
fuzzy variables which is described in various spaces, then 
ξ = f(ξ1, ξ2 ………ξn ), is a fuzzy variable defined on 
the product space Φ as, ξ(θ1, θ2 ……… , θn) = f(ξ1(θ1), 
ξ2(θ2)………ξn(θn) ), for any (θ1 , θ2,……… , θn) ϵΦ 
(Fig. 7).

4.5.2  Fuzzy Arithmetic Operations

Let, X =
(
p1, p2, p3;�1

)
 and Y =

(
q1, q2, q3, ;�2

)
 , be two sig-

moid fuzzy numbers with the following membership:

(29)𝜇P(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜀

⎛⎜⎜⎜⎝

𝜑

��
x −

p1+p2
2

��
10

p2−p1

��
− 𝜑(−5)

𝜑(5) − 𝜑(−5)

⎞⎟⎟⎟⎠
; if p1 ≤ x < p

𝜀; if x = p2

𝜀

⎛⎜⎜⎜⎝

𝜑(5) − 𝜑

��
x −

p2+p3

2

��
10

p3−p2

��

𝜑(5) − 𝜑(−5)

⎞⎟⎟⎟⎠
; if p2 ≤ x < p

0; otherwise

And,

where,

And,

are the functions of the left distribution,

And,

are the functions of right distribution.
To calculate the distribution functions of the arithmetic 

operations, we begin by equating  L1 (x) with  L1 (y) and 
 R1 (x) with  R1 (y), yielding y = y = �1 (x) and y = �2 (x), 
respectively, such that,

Let Z be an arithmetic product of X and Y operations. 
Then at value of y = ∅1 (x) and ∅2 (x), we get value of x = 
ξ1(z) andξ2(z) , respectively. The function of distribution for 
fuzzy variable F (z) can be computed on the basis of distri-
bution function of X and Y. Then F (z) = (z1, z2, z3;ε ) where;

ε =min ( ε1,ε2 ) as follows:

(30)μX(x) =

⎧⎪⎨⎪⎩

ε1L1(x); if p1 ≤ x < p2
ε1; if x = p2

ε1R1(x); if p2 ≤ x < p3
0; if otherwise

(31)μY(y) =

⎧⎪⎨⎪⎩

ε1L1(y); if q1 ≤ y < q2,

ε1; if y = q2,

ε1R1(y); if q2 ≤ y < q3
0; if otherwise

(32)L1(x) =
�

[(
x −

p1+p2
2

)(
10

p2−p1

)]
− �(−5)

�(5) − �(−5)

(33)L1(y) =
�

[(
y −

q1+q2
2

)(
10

q2−q1

)]
− �(−5)

�(5) − �(−5)

(34)R1(x) =
�(5) − �

[(
x −

p2+p3

2

)(
10

p3−p2

)]

�(5) − �(−5)

(35)R1(y) =
�(5) − �

[(
y −

q2+q3

2

)(
10

q3−q2

)]

�(5) − �(−5)

(36)�1(x) =
q1 + q2

2
+

q2 − q1

p2 − p1

(
x −

p1 + p2

2

)

(37)�2(x) =
q2 + q3

2
+

q3 − q2

p3 − p2

(
x −

p2 + p3

2

)

(38)f1(x) =
d

dx
L1(x) = n1(z) at x = �1(z)

Fig. 7  A graphic representation of the generalized fuzzy sigmoidal 
number
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In addition.

Thus, the membership function of F (z) is given by,

Theorem 12 If the two fuzzy Sigmoid are X and Y across 
the world U, in order to determine their membership func-
tions is,

And,

then there’s the fuzzy adjustable Z = X + Y is a sigmoidal 
fuzzy with the following membership:

Proof. Appendix H.

Theorem 13 If X is a fuzzy sigmoidal number and z is the 
product of scalar number k and element of X equal to kx is 
the transform, so k is a sigmoidal fuzzy as well given by:

Proof. Appendix I.

(39)g1(x) =
d

dx
R1(x) = n2(z) at x = �2(z)

dx

dz
=

d

dz

(
�1(z)

)
= m1(z);

dx

dz
=

d

dz

(
�2(z)

)
= m2(z)

(40)𝜇F(z)(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀�
x

z1

n1(z)m1(z)dz; ifz1 ≤ x < z2,

𝜀; ifx = z2,

𝜀�
z3

x

n2(z)m2(z)dz; ifz2 ≤ x < z3

(41)μX(x) =

⎧⎪⎨⎪⎩

ε1L1(x) ; if p1 ≤ x < p2,
ε1 ; if x = p2,

ε1R1(x) ; if p2 ≤ x < p3
0 ; if otherwise

(42)μY(y) =

⎧
⎪⎪⎨⎪⎪⎩

ε1L1(y); if q1 ≤ y < q2,

ε1; if y = q2,

ε1R1(y); if q2 ≤ y < q3

0; if otherwise

(43)

μz(Z) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜀
φ
��

z−
p1+p2+q1+q2

2

��
10

p2+q2−p1−q1

��
−φ(−5)

φ(5)−φ(−5)
;ifp1 + q1 ≤ z < p2 + q2

𝜀;ifz = p
2
+ q2

𝜀
φ(5)−φ

��
z−

p2+p3+q2+q3
2

��
10

p3+q3−p2−q2

��

φ(5)−φ(−5)
;ifp2 + q2 ≤ z < p3 + q3

0;ifotherwise

(44)kX =

{(
kp1, kp2, kp3; 𝜀1

)
if k > 0(

kp3, kp2, kp1; 𝜀1
)

if k < 0

Theorem 14 If X and Y are the two sigmoids of the U world 
functions, then Z = X–Y is a sigmoidal fuzzy number whose 
membership is.

Proof

The evidence is negligible by adding and scaling multi-
pling (k = −1 < 0) of two sigmoidal fuzzy numbers.

Theorem 15 When X and Y are two functions of the sigmoi-
dal membership signature, the variable Z equals X. Y is also 
the sigmoidal fuzzy number, and its function as a member 
is given by,

w h e r e ,  �1 = 10

�
−Q1+

√
Q2

1
−4P1(R1−z)−P1

2P1

�
 , 

�2 = 10

�
−Q2−

√
Q2

2
−4P2(R2−z)+P2

2P2

�
,

P1 =
(
p2 − p1

)(
q2 − q1

)
 , Q1 = p1

(
q2 − q1

)
+ q1

(
p2 − p1

)
 , 

R1 = p1q1

P2 =
(
p3 − p2

)(
q3 − q2

)
 , Q2 = −p3

(
q3 − q2

)
− q3

(
p3 − p2

)
 , 

and R2 = p3q3

Proof. Appendix J.

Theorem 16 Proof

If X and Y are the different fuzzy numbers that orbit 
the Universe U, then 0 belongs to Y, the fuzzy adjustable 
Z =

X

Y
= X ⋅ Y−1 is a sigmoidal fuzzy number as well.

By means of the theorem 4, we can come to the member-
ship function, Z = X ⋅ Y−1

(45)

μZ(z) =

⎧
⎪⎪⎨⎪⎪⎩

ε
φ({z−

p1+p2−q1−q2
2

}
10

(p2−q2−p1+q1)
)−φ(−5)

φ(5)−φ(−5)
; p1 + q1 ≤ z < p2 + q2

ε; z = p + q2

ε
φ(5)−φ({z−

p2+p3−q2−q3
2

}
10

(p3−q3−p2+q2)
)

φ(5)−φ(−5)
; p2 + q2 ≤ z < p3 + q3

(46)𝜇XY (z) =

⎧
⎪⎨⎪⎩

𝜀
𝜑(𝜏1)−𝜑(−5)
𝜑(5)−𝜑(−5)

; p1q1 ≤ z < p2q2

𝜀; z = p2q2

𝜀
𝜑(5)−𝜑(𝜏2)
𝜑(5)−𝜑(−5)

; p2q2 ≤ z < p3q3
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5  Application of Basic Fuzzy Number

5.1  Trapezoidal (Triangular) Fuzzy Numbers

Example 1 Consider the generalised triangle fuzzy num-
bers, P = (0.5, 0.6, 0.7; 0.5) and Q = (0.6, 0.7, 0.8; 0.9), as 
illustrated in the figure below. After the above-mentioned 
numbers are added we get, P + Q = (1.1,1.3,1.6;0.5) and 
therefore, the resulting number is a generalized fuzzy tri-
angular number. The figure, however, demonstrated that if 
we take a 0.5 (= min (0.5, 0.9)) break from Q, the Fuzzy 
Q is then transformed it into generalised trapezoidal fuzzy 
number. Thus, in Chen’s operations the triangular fuzzy 
number changes into the trapezoidal fuzzy number, and thus 
the smoothness of the figures are not preserved. Hence, this 
flatness must be preserved in the widespread fuzzy number. 
Therefore, the current method loses its value (Fig. 8).

Example 2 As shown in Figure,  P1 = (0.2, 0.4, 0.6; 0.5), 
 P2 = (0.5, 0.7, 0.9; 0.7), and P 3 = (0.5, 0.7, 0.9; 0.9) are 
generalised triangular fuzzy numbers. It can be seen from it 
that if P2 ∈ P3 , then we have P1 + P2 ∈ P1 + P3 . If, however, 
if we use the Chen method, we have P1 + P2 = (0.7,1,1.1;0.5) 
and P1 + P3  = (0.7,1,1.1;0.5). Thus P1 + P2 ≡ P1 + P3 which 
breaches the fact P1 + P2 ∈ P1 + P3 . Therefore, the arith-
metic operations between general fuzzy numbers cannot be 
determined using a Chen method (Fig. 9).

Example 3 Length of the Rod Assume the length of the rod 
is a fuzzy number which is sigmoidal, P = (12, 13.5, 15 cm; 
0.8). When the sigmoidal fuzzy number Q = (5, 6.5, 8 cm; 
0.7) is cut from the rod, the rod length R = P−Q remains 
constant. Then, − = (−8, 6.5, 5 cm; 0.7) have a fuzzy number 
negative Q, And the accompanying sigmoidal representation 
to P and –Q is:

And

As a result, the additional property of the two sigmoidal 
numbers is employed, and the remaining rod length is a sig-
moidal fuzzy number with R membership degree, denoted 
as:

Example 4 Length of the Rectangle The rectangle’s area 
and width should be given as fuzzy sigmoidal numbers 
P = (1,2,4cm2; 0.75) and Q = (3,5,6 cm; 0.85), respectively, 
and the rectangle length is characterised as P(÷)Q or P(⋅)Q−1 . 
We now obtain the membership function based on Q for 
Q−1 =

(
6−1, 5−1, 3−1cm−1;0.85

)
 is:

(47)𝜇P(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.8

�
𝜑

��
x−

25.5

2

�
1.0

15

�
−𝜑(−5)

𝜑(5)−𝜑(−5)

�
; 12 ≤ x < 13.5

0.8; x = 13.5

0.8

�
𝜑(5)−𝜑

��
x−

28.5

2

�
10

1.5

�

𝜑(5)−𝜑(−5)

�
; 13.5 ≤ x < 15

0; otherwise

(48)

𝜇−Q(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.7

�
𝜑

��
y+

14.5

2

�
10

1.5

�
−𝜑(−5)

𝜑(5)−𝜑(−5)

�
; − 8 ≤ y < −6.5

0.7; y = −6.5

0.7

�
𝜑(5)−𝜑

��
y+

11.5

2

�
1.0

15

�

𝜑(5)−𝜑(−5)

�
; − 6.5 ≤ y < −5

0; otherwise

(49)

μR(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.7

�
𝜑

��
z−

11

2

�
10

3

�
−𝜑(−5)

𝜑(5)−𝜑(−5)

�
; 4 ≤ z < 7

0.7; z = 7

0.7

�
𝜑(5)−𝜑

��
z−

17

2

�
10

3

�

𝜑(5)−𝜑(−5)

�
; 7 ≤ z < 10.

0; otherwise

Fig. 8  A graphic representation the addition of the two generalised 
fuzzy triangle number

Fig. 9  A graphic representation the addition of generalised fuzzy tri-
angle number
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As a result, the membership function of rectangle length 
is obtained by combining two sigmoidal fuzzy numbers, P 
and  Q−1. From membership feature, it was inferred that there 
is a 75% possibility of 0.4 cm length of the rectangle, and 
its range is [ 1

6
,
4

3
].

From the information, we may deduce that the rod will 
be between 4 and 10 cm long, with a 70% chance of being 
7 cm long.

Example 5 Length of the Rod Assume that the rod’s length is 
a fuzzy parabolic number, P = (12,13.5,15 cm; 0.8). When 
the rod is cut to the length Q = (5,6.5,8 cm; 0.7), the rod 
length remains R = P-Q.The parabolic component function 
for fluorescent numbers P and Q are described below

And

then, −Q = (−8, − 6.5, − 5 cm;0.7) is a negative fuzzy 
number – Q . And the accompanying sigmoidal representa-
tion is

(50)μQ−1(y)=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.85

�
𝜑(5)−𝜑

��
1

y
−

11

2

�
10

�

𝜑(5)−𝜑(−5)

�
; 6−1 ≤ y < 5−1

0.85; y = 5−1

0.85

�
𝜑

��
1

y
−

8

2

�
5
�
−𝜑(−5)

𝜑(5)−𝜑(−5)

�
; 5−1 ≤ y < 3−1

0; otherwise

(51)μP(x) =

⎧
⎪⎪⎨⎪⎪⎩

0.8
�
x − 12

1.5

�2

; if 12 ≤ x < 13.5

0.8
�
15 − x

1.5

�2

; if 13.5 ≤ x < 15

0; otherwise

(52)μQ(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.7

�
y − 5

1.5

�2

; if 5 ≤ y < 6.5

0.7

�
8 − y

1.5

�2

; if 6.5 ≤ y < 8

0; otherwise

(53)μ−Q(y) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.7

�
y + 8

1.5

�2

; if − 8 ≤ y < −6.5

0.7; if y = −6.5

0.7

�
y + 5

1.5

�2

; if − 6.5 ≤ y < −5

0; otherwise

Therefore, the membership function of the remaining 
length of rod is the parabolic fuzzy number R by adding the 
two parabolic fuzzy numbers and specified as:

We can deduce from the above that the rest of the rod is 
between 4 and 10 cm thick.

In addition, at a non-linear rate of 14∕9(x − 4) the 
length has been raised from 4 to 7 cm and subsequently 
decreased from 7 to 10 cm at a non-linear rate of decrease 
14∕9(10 − x) . There are also 70% possibilities for a value of 
7 cm in length.

Example 6 Length of the Rectangle The rectangle’s area and 
width are fuzzy sigmoidal numbers P = (1,2,4cm2; 0.75) and 
Q = (3,5,6 cm; 0.85) respectively, and the rectangle length is 
P(÷)Q or P(⋅)Q−1 . We now obtain the membership function 
based on Q membership of  Q−1 =  (6−1,  5−1,  3−1; 0.85) is:

Therefore, by multiplying the two fuzzy numbers P and 
Q.−1, the membership function of the rectangle length is 
achieved as

It was inferred from the membership feature that 75% 
were likely to have a rectangle length of 0.4 cm and the 
range of the rectangle’s length is 

[
1

6
,
4

3

]
.

(54)μR(y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.7
�
x − 4

3

�2

; if 4 ≤ x < 7

0.7; if x = 7

0.7
�
10 − x

3

�2

; if 7 ≤ x < 10

0; otherwise

(55)𝜇Q−1(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.85

�
6 −

1

y

�2

; if 6−1 ≤ y < 5−1

0.85; if y = 5−1

0.85

⎛⎜⎜⎝

1

y
− 3

2

⎞⎟⎟⎠

2

; if 5−1 ≤ y < 3−1

0; otherwise

(56)𝜇P.Q−1(y) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0.75
�
6x − 1

x + 1

�2

; if
1

6
≤ x <

2

5

0.75; if x =
2

5

0.75

�
4 − 3x

2(x + 1)

�2

; if
2

5
≤ x <

4

3

0; otherwise
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6  Conclusion

On the basis of dispersion and associated functions, we 
worked on generalised (triangular), sigmoidal, and parabolic 
fuzzy numbers and offered the associated flush arithmetic 
activities, like addition, subtraction, multiplication, rever-
sal, division, and so on. In our everyday lives, because of 
human mistakes or other inevitable variables it is impos-
sible to tell the right actions, it is hard to denote or gather 
the information correctly. To answer this issue, the effects 
of uncertainties in the data were evaluated by a nonlinear 
sigmoid logistic function. Concerning decussated values 
of linear and parabolic membership functions, the COG 
method measured them and found that preservation should 
be grounded on defuzzied values instead of crisp values to 
increase efficiency, as a harmless period is checked earlier 
the crisp value is hit.

Also, a validity check was performed using general-
ized parabolic fuzzy numbers to overcome those estima-
tion problems. Specific reliability parameters of different 
spreads proposed by decision makers were then determined 
using an improved arithmetic operation and thus their output 
compared with other current operations. As an additional 
study, we suggest the development of new efficient numeri-
cal methods for the estimation of the basis on the extension 
principle as well as the appropriate adoption of the proposed 
generalised fuzzy member.

Appendix A

Proof—Assume P and Q are two generalised fuzzified values 
with varying levels of confidence, such that 𝜀P<𝜀Q . Take 
� = min

(
�P, �Q

)
 i.e. ε = εP then α− cut of P and Q are.

Let, R=P+Q={x | x ∈   Rα} for all α ∈  [0, ε]. 
Here  Rα=[RL(α),  RU(α)] be its α− cuts such that, 
RL ( � ) = PL( � ) + QL( � ), and RU( � ) = PU( � ) + QU( � ) 
i.e.

P� =

[
p1 + �

(
p2 − p1

�P

)
, p4 − �

(
p4 − p3

�P

)]
;∀� ∈

[
0, �P

]
s.t.0 ≤ �P ≤ 1

Q� =

[
q1 + �

(
q∗
2
− q1

�

)
, q4 − �

(
q4 − q∗

3

�

)]
;∀� ∈ [0, �]s.t.0 ≤ � ≤ 1

(57)R� =
[
PL(�) + QL(�),PU(�) + QU(�)

]

Now,
p1 + q1 + �

(
p2−p1
�P

+
q∗
2
−q1

�

)
− x = 0 and 

As a result, R’s left and right membership functions are.

S i n c e  � = �P  a n d  q∗
2
= q1 + �

(
q2−q1
�Q

)
 a n d 

q∗
3
= q4 − �

(
q4−q3

�Q

)
 , Thus, above fL

R
 and fR

R
 becomes,

=

[
p1 + �

(
p2 − p1

�P

)
+ q1 + �

(
q∗
2
− q1

�

)
,

p4 − �

(
p4 − p3

�P

)
+ q4 − �

(
q4 − q∗

3

�

)]

=

[
p1 + q1 + �

(
p2 − p1

�P
+

q∗
2
− q1

�

)
,

p4 + q4 − �

(
p4 − p3

�P
+

q4 − q∗
3

�

)]

p4 + q4 − �

(
p4 − p3

�P
+

q4 − q∗
3

�

)
− x = 0

(58)f
L

R
(x) =

x − p1 − q1
p2− p1

εP
−

q∗
2
−q1

ε

(59)f
L

R
(x) =

p4 + 4 − x

p4−p3

εP
+

q4−q
∗
3

ε

f
L

R
(x) =

x − p1 − q1
p2−p1
�P

−
q∗
2
−q1

�

= �

(
x − p1 − q1

p2 − p1 − q1 + q∗
2

)

(60)= �

⎛⎜⎜⎜⎝

x − (p1 + q1)

p2 + q1 + �

�
q2−q1
�Q

�
− (p1 + q1)

⎞⎟⎟⎟⎠
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For, p1 + q1 ≤ x ≤ p2 + q1 + �

(
q2−q1
�Q

)
Similarly,

For, q4 + p3 − �

(
q2−q3

�Q

) ≤ x ≤ (p4 + q4)

Thus, adding two generalized fuzzy values is another gen-
eralized fuzzy, whose membership function is explained as,

To put in another way, that’s the addition of two general-
ised fuzzy numbers, given by:

R = P + Q = (r1, r2, r3, r4;ε) = min ( εP,εQ ) is a generalized 
fuzzy number where,

Appendix B

Proof—When k > 0, the α − cut for P’s membership func-
tion is.

Pα = [p1+α(p2− p1

εP
 ), p4−α(p4− p3

εP
 )] ; ∀α ∈ [0, εP ] s.t. 0 ≤ 

εP  ≤ 1
This is,therefore,

(61)f R
R
(x) = �

⎛
⎜⎜⎜⎝

(p4 + q4) − x

q4 + p3 − �

�
q2−q3

�Q

�
− (p4 + q4)

⎞
⎟⎟⎟⎠

(62)�R(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�

⎛
⎜⎜⎜⎝

x − (p1 + q1)

p2 + q1 + �

�
q2−q1
�Q

�
− (p1 + q1)

⎞
⎟⎟⎟⎠
; p1 + q1 ≤ x ≤ p2 + q1 + �

�
q2 − q1

�Q

�

�; p2 + q1 + �

�
q2 − q1

�Q

�
≤ x ≤ q4 + p3 − �

�
q2 − q3

�Q

�

�

⎛⎜⎜⎜⎝

(p4 + q4) − x

q4 + p3 − �

�
q2−q3

�Q

�
− (p4 + q4)

⎞⎟⎟⎟⎠
; q4 + p3 − �

�
q2 − q3

�Q

�
≤ x ≤ (p4 + q4)

0; otherwise

r1 = p1 + q1

r2 = q1 + p2 +
�
(
q2 − q1

)
�Q

r3 = q4 + p3 −
�
(
q4 − q3

)
�Q

r4 = p4 + q4

As a conclusion, the scalar product’s membership func-
tion is:

x ∈

[
p1 + �

(
p2 − p1

�p

)
, p4 − �

(
p4 − p3

�p

)]

(63)

y = kx ∈

[
kp1 + �

(
kp2 − kp1

�P

)
, kp4 − �

(
kp4 − kp3

�P

)]

Appendix C

Proof—Because there are two distinct fuzzy numbers with 
confidence levels, εP and εq defined as εP ≤ εq . So, first of all 
we’ll turn the fuzzy Q into Q* = Q = (q1, q

∗
2
, q∗

3
, q4;� , where.

q∗
2
= q1 + �

(
q2−q1
�Q

)
and q∗

3
= q4 − �

(
q4−q3

�Q

)
 , Now the 

α − cuts that suit P and Q* are equivalent to.

μkP(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

εP

�
x − kp1

kp2 − kp1

�
; if kp1 ≤ x ≤ kp2

εP ; if kp2 ≤ x ≤ kp3

εP

�
kp4 − x

kp4 − kp3

�
; if kp3 ≤ x ≤ kp4

0; otherwise

P� =

[
p1 + �

(
p2 − p1

�P

)
, p4 − �

(
p4 − p3

�P

)]
;

∀� ∈
[
0, �P

]
s.t. 0 ≤ �P ≤ 1

Q∗
�
=

[
q1 + �

(
q∗
2
− q1

�

)
, q4 − �

(
q4 − q∗

3

�

)]
;

∀� ∈
[
0, �P

]
s.t. 0 ≤ � ≤ 1
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Suppose R = P × Q =
{
x|x ∈ R�

} for all α ∈ [0, �] . 
Here R� =

[
RL
�
,RU

�

]
 be its α − cuts such that RL

�
= PL

�
Q∗L

�
 

and RU
�
= PU

�
Q∗U

�
 i.e.

Therefore,

p4q4 + �

(
p4(q4−q∗3)+q1(p4−p3)

�

)
+

�2

�2

(
p4 − p3

)(
q4 − q∗

3

)
− x = 0

Which are the quadratic functions in the α and therefore 
its roots give the left as well as right membership of R,

Where, N1 =
p1(q∗2−q1)+q1(p2−p1)

�
 , N2 =

p4(q4−q∗3)+q1(p4−p3)
�

 , 

M1 =
(p2−p1)(q∗2−q1)

�2
 , M2 =

(p4−p3)(q4−q∗3)
�2

 , J1 = p1q1, J2 = p4q4
By Substituting the value of q∗

2
 and q∗

3
 , we get.

As an outcome, the product of two generalised fuzzy 
numbers is a fuzzy number with the membership,

R� =
[
PL
�
Q∗L

�
,PU

�
Q∗U

�

]

=

[{
p1 + �

(
p2 − p1

�P

)}
,

{
q1 + �

(
q∗
2
− q1

�

)}
,

{
p4 − �

(
p4 − p3

�P

)}{
q4 − �

(
q4 − q∗

3

�

)}]

=

[
p1q1 + �

(
p1
(
q∗
2
− q1

)
+ q1

(
p2 − p1

)
�

)
+

�2

�2

(
p2 − p1

)(
q∗
2
− q1

)]

[
p4q4 + �

(
p4
(
q4 − q∗

3

)
+ q1

(
p4 − p3

)
�

)
+

�2

�2

(
p4 − p3

)(
q4 − q∗

3

)]

p1q1 + �

(
p1
(
q∗
2
− q1

)
+ q1

(
p2 − p1

)
�

)
+

�2

�2

(
p2 − p1

)(
q∗
2
− q1

)
− x = 0, and

(64)f L
R
(x) =

−N1 +
√

N2
1
+ 4M1

(
x − J1

)

2M1

; r1 ≤ x ≤ r2

(65)f U
R
(x) =

−N2 +
√

N2
2
+ 4M2

(
x − J2

)

2M2

; r3 ≤ x ≤ r4

(66)N1 =

(
p2 − p1

)(
q2 − q1

)
��Q

;N2 =

(
p4 − p3

)(
q4 − q3

)
��Q

(67)

M1 =
p1
(
q2 − q1

)
�Q

+
q1
(
p2 − p1

)
�

;M2 =
p4
(
q4 − q3

)
�Q

+
q4
(
p4 − p3

)
�

where,

Appendix D

Proof—Consider the membership of two parabolic fuzzy 
numbers, X and Y be.

And,

To add the fuzzy numbers X and Y , the next fuzzy num-
ber of them, Z = X + Y

(68)�R(x) =

⎧
⎪⎪⎨⎪⎪⎩

−N1+
√

N2
1
+4M1(x−J1)

2M1

; r1 ≤ x ≤ r2

� ; r2 ≤ x ≤ r3
−N2+

√
N2
2
+4M2(x−J2)

2M2

; r3 ≤ x ≤ r4

r1 = p1q1

r2 =
�
(
p2q2 − p2q1

)
�Q

+ p2q1

r3 =
�
(
p3q3 − p3q4

)
�Q

+ p3q4

r4 = p4q4

𝜇X(x) =

⎧⎪⎨⎪⎩

𝜀1L1(x); if p1 ≤ x < p2,
𝜀1; if x = p2,

𝜀1R1(x); if p2 ≤ x < p3
0; if otherwise

𝜇Y (y) =

⎧⎪⎨⎪⎩

𝜀1L1(y); if q1 ≤ y < q2,
𝜀1; if y = q2,

𝜀1R1(y); if q2 ≤ y < q3
0; if otherwise
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Implies Z =
[
p1 + q1, p2 + q2, p3 + q3

]
As z = x + y at y = �1(x) and �2(x) we get,
z = x + �1(x) and z = x + �2(x) respectively.that specifies 

that x = �1(z) and x = �2(z) where

Hence, �1(z) =
(

2

(p2−p1)
2

)(
z−p1−q1

1+
(q2−q1)
p2−p1

)
 , m1(z) = 1 +

(q2−q1)
p2−p1

so, the left sided distribution function

Similarly, if y = �2(x) then z = x + y becomes x = �2(z) 
where

Here, in this case

so, the right sided distribution function,

(69)x = �1(z) =
z −

p2q1

p2−p1
+

p1q2

p2−p1

1 +
(q2−q1)
p2−p1

X∫
p1+q1

�1(z)m1(z)dz =
X∫

p1+q1

�
2

(p2 − p1)
2

�⎛
⎜⎜⎜⎝

z − p1 − q1

1 +
(q2−q1)
p2−p1

⎞
⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎝

1

1 +
(q2−q1)1
p2−p1

⎞
⎟⎟⎟⎠
dz

=

�
2

(p2 − p1)
2

�⎛⎜⎜⎜⎝
1

1 +
(q2−q1)
p2−p1

)2 ×
X∫

p1+q1

(z − p1 − q1

⎞⎟⎟⎟⎠
dz = (

1

p2 − p1
)2(

x −
�
p1 + q1

�

1 +
(q2−q1)
p2−p1

)2

= (
x −

(
p1 + q1

)
p2 + q2 − p1 − q1

)2 ; p1 + q1 ≤ x < p2 + q2

(70)�2(x) =
z +

−p2q3

p3−p2
+

p3q2

p3−p2

1 +
q3−q2

p3−p2

(71)�2(x) =

�
−2

(p3 − p2)
2

�⎛⎜⎜⎜⎝

p3 + q3 − z

1 +
(q3−q2)
p3−p2

⎞
⎟⎟⎟⎠

(72)
X∫

p3+q3

�2(z)m2(z)dz =
X∫

p3+q3

�
−2

(p3 − p2)
2

�⎛⎜⎜⎜⎝

p3 + q3 − z

1 +
(q3−q2)
p3−p2

⎞⎟⎟⎟⎠
×

⎛⎜⎜⎜⎝
1

1 +
(q3−q2)
p3−p2

⎞⎟⎟⎟⎠
dz

=

�
−2

(p3 − p2)
2

�⎛⎜⎜⎜⎝
1

1 +
(q3−q2)
p3−p2

)2 ×
X∫

p3+q3

(p3 + q3 − z

⎞⎟⎟⎟⎠
dz

so, the membership functions of the fuzzy variable 
Z = X + Y is,

where ε = min(ε1, ε2)

Appendix E

Proof—Using the change z = kx, we receive x = z/k as well 
as x = z/k and thus �(z) = z

k

so, |||
dx

dz

||| =
1

k
= m(z).

=

(
−2

(p3 − p2)
2

)
(

1

1 +
(q3−q2)
p3−p2

)2 ×
(p3 + q3 − x)2

−2

= (
1

p3 − p2
)2(

(
p3 + q3

)
− x

1 +
(q3−q2)
p3−p2

)2

(73)= (

(
p3 + q3

)
− x

p3 − p2 + q3 − q2
)2;p2 + q2 ≤ x < p3 + q3

(74)𝜇Z(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀(
x−(p1+q1)

p2−p1+q2−q1
)2 ; p1 + q1 ≤ x < p2 + q2

𝜀 ; x = p2 + q2

𝜀(
(p3+q3)−x

p3−p2+q3−q2
)2 ; p2 + q2 ≤ x < p3 + q3

0 ; otherwise
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Therefore,

Therefore, at k > 0 is

Also, at k < 0 is

Appendix F

Proof—Because X and Y have a parabolic membership,

(75)

X∫
kp1

�1(z)m(z)dz =
X∫

kp1

(
2
(
z − kp1

)
k(p2 − p1)

2
)
(
1

k

)
dz = (

x − kp1

kp2 − kp1
)2

X∫
kp3

�2(z)m(z)dz =
X∫

kp3

(
−2

(
kp3 − z

)
k(p3 − p2)

2
)
(
1

k

)
dz = (

kp3 − x

kp3 − kp2
)2

(76)𝜇kX(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀1(
x−kp1
kp2−kp1

)2 ; kp1 ≤ x < kp2

𝜀1 ; x = kp2

𝜀1(
kp3−x

kp3−kp2
)2 ; kp2 ≤ x < kp3

0 ; otherwise

(77)𝜇kX(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀1(
x−kp3

kp2−kp3
)2 ; kp3 ≤ x < kp2

𝜀1 ; x = kp2

𝜀1(
kp1−x

kp1−kp2
)2 ; kp2 ≤ x < kp1

0 ; otherwise

And,

Therefore, to find the membership functionsZ = XY

at y = �1(x), z = xy gives

Take,

Hence,

𝜇x(x) =

⎧⎪⎨⎪⎩

𝜀1L1(x) ; if p1 ≤ x < p2,
𝜀1 ; if x = p2.

𝜀1R1(x) ; if p2 ≤ x < p3
0 ; if otherwise

𝜇Y (y) =

⎧⎪⎨⎪⎩

𝜀1L1(y) ; if q1 ≤ y < q2,
𝜀1; if y = q2,

𝜀1R1(y) ; if q2 ≤ y < q3
0 ; if otherwise

(78)

x =

(
p1q2 − p2q1

)
±
√

(p1q2 − p2q1)
2 + 4

(
q2 − q1

)(
p2 − p1

)
z

2
(
q2 − q1

) = �1(z)

P1 =
(
p2 − p1

)(
q2 − q1

)

Q1 = p1
(
q2 − q1

)
+ q1

(
p2 − p1

)

R1 = p1q1

therefore,

�1(z) =
2

(p2 − p1)
2
×

⎡⎢⎢⎢⎣

−p1q2 − p2q1 + 2p1q1 +
�

Q2
1
− 4P1

�
R1 − z

�

2
�
q2 − q1

�
�
=

1

p2 − p1

�−Q1 +
�

Q2
1
− 4P1

�
R1 − z

�

P1

⎤⎥⎥⎥⎦

(79)m(z) =
||||
dx

dz

|||| =
p2 − p1√

Q2
1
− 4P1

(
R1 − z

)

X∫
p1b1

�1(z)m1(z)dz =
X∫

p1b1

1

p2 − p1

⎡⎢⎢⎢⎣

−Q1 +
�

Q2

1
− 4P1

�
R1 − z

�

P1

⎤⎥⎥⎥⎦
×

p2 − p1�
Q2

1
− 4P1

�
R1 − z

� dz =
X∫

p1b1

1

P1

⎡⎢⎢⎢⎣

−Q1 +
�

Q2

1
− 4P1

�
R1 − z

�
�

Q2

1
− 4P1

�
R1 − x

�
⎤⎥⎥⎥⎦
dz

=
X∫

p1b1

1

P1

⎡⎢⎢⎢⎣

−Q1�
Q2

1
− 4P1

�
R1 − z

� + 1

�
dz =

1

P1

� (−Q1)
2 − Q1

�
Q2

1
− 4P1

�
R1 − x

�
+ 2P1x − 2P1R1

2P1

⎤⎥⎥⎥⎦

(80)= [
−Q1 +

√
Q2

1
− 4P1

(
R1 − x

)

2P1

]2 ; p1q1 ≤ x < p2q2
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Similarly, by taking.

the membership function for the corresponding dispersal 
functions as.

As a result, the fuzzy variable Z’s membership is given 
by:

where, Z = XY.

Appendix G

Proof—let a fuzzy inconstant be X =
[
p1, p2, p3, �1

]
 whose 

membership is given in.

Then let z = 1

X
 so that |||

dx

dz

||| =
1

z2
 . So, for X−1

And,

So, constructed on the distribution, fuzzy membership 
of X−1 is

P2 =
(
p3 − p2

)(
q3 − q2

)

Q2 = −p3
(
q3 − q2

)
− q3

(
p3 − p2

)

R2 = p3q3

(81)

X�
p3q3

𝜂1(z)m1(z)dz = [
−Q2 +

√
Q2

2
− 4P2

(
R2 − x

)

2P2

]2;p2q2 ≤ x < p3q3

(82)𝜇XY (x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜀(
−Q1+

√
Q2

1
−4P1(R1−x)

2P1

)2 p1q1 ≤ x < p2q2

𝜀 x = p2q2

𝜀(
−Q2+

√
Q2

2
−4P2(R2−x)

2P2

)2 p2q2 ≤ x < p3q3

0 otherwise

𝜇x(x) =

⎧⎪⎨⎪⎩

𝜀1L1(x); if p1 ≤ x < p2,
𝜀1; if x = p2,

𝜀1R1(x); if p2 ≤ x < p3
0 ; if otherwise

p−1
1∫
X

�1(z)m(z)dz =
p−1
1∫
X

(
2

(p2 − p1)
2

(
1

z
− p1

)
)

(
1

z2

)
dz = (

1 − p1X

x
(
p2 − p1

) )2

X∫
p−1
3

�2(z)m(z)dz =
X∫

p−1
3

(
2

(p3 − p2)
2

(
1

z
− p3

)
)

(
1

z2

)
dx = (

xp3 − 1

x
(
p3 − p2

) )2

Appendix H

Proof—Deliberate two fuzzy Sigmoid numbers X and Y 
having membership function as,

And,

We have Z = X + Y = 
(
p1 + q1, p2 + q2, p3 + q3

)
 as the 

result of combining these fuzzy sigmoid numbers, and if 
we let z = x + y, we obtain z = x + ∅1 (x) and z = x + ∅2 (x) 
which means x = ξ1 (z) and x = ξ2 (z) where,

hence,

As in addition,

By solving above equation by part

(83)𝜇X−1(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀1(
xp3−1

x(p3−p2)
)2 if p−1

3
≤ x < p−1

2

𝜀1 if x = p−1
2

𝜀1(
1−p1X

x(p2−p1)
)2 if p−1

2
≤ x < p−1

1

0 otherwise

𝜇X(x) =

⎧⎪⎨⎪⎩

𝜀1L1(x); if p1 ≤ x < p2,
𝜀1; if x = p2,

𝜀1R1(x); if p2 ≤ x < p3
0; if otherwise

𝜇Y (y) =

⎧⎪⎨⎪⎩

𝜀1L1(y); if q1 ≤ y < q2,
𝜀1; if y = q2,

𝜀1R1(y); if q2 ≤ y < q3
0; if otherwise

x = ξ1(z) =
( p2 − p1) z −

(
q1p2 − p1 q2

)
p2 + q2 − p1 − q1

m1(z) =
d

dz

(
ξ1(z)

)
=

( p2 − p1)

( p2 − p1 + q2 − q1)

n1(z) =
d

dz

(
L1
)
at x = �1(z)

=
10(

p2 − p1
)
(�(5) − �(−5))

[
�

(
x −

p1 + p2

2

)(
10

p2 − p1

)]

×

[
1 − �

(
x −

p1 + p2

2

)(
10

p2 − p1

)]

x=�1(z)
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Thus,

Therefore,

�

(
x −

p1 + p2

2

)(
10

p2 − p1

)

=�

(
(p2 − p1)z −

(
q1p2 − p1q2

)
p2 + q2 − p1 − q1

−
p1 + p2

2

)(
10

p2 − p1

)

= �

(
2(p2 − p1)z − 2

(
q1p2 − p1q2

)
−
(
p1 + p2

)(
p2 + q2 − p1 + q1

)

2
(
p2 + q2 − p1 − q1

) −
p1 + p2

2

)(
10

p2 − p1

)

= �

(
2(p2 − p1)z + (p1 + p2)(p1 − p2) + q2(

(
p1 − p2

)
+ q1((p1 − p2))

2(p2 + q2 − p1 − q1)
−

p1 + p2

2

)(
10

p2 − p1

)

= �

(
2z − (p1 + p2 + q1 + q2)

2(p2 + q2 − p1 − q1)

)

= �

(
z −

(
p1 + p2 + q1 + q2

)
2

)(
10(

p2 + q2 − p1 − q1
)
)

n1(z) =
10(

p2 − p1
)
(�(5) − �(−5))

× �

(
z −

(
p1 + p2 + q1 + q2

)
2

)

(
10(

p2 + q2 − p1 − q1
)
)

×

[
1 − �

(
z −

(
p1 + p2 + q1 + q2

)
2

)(
10(

p2 + q2 − p1 − q1
)
)]

x=�1(z)

L1(x) =
X∫

p1+q1

m1(z)�1(z)dz

where �(⋅) = �

(
z −

(p1+p2+q1+q2)
2

)(
10

(p2+q2−p1−q1)

)
 

So, the distribution function of left side fuzzy number 
Z = X + Y is;

Likewise, if y = �2(x) , then x = x + y becomes x = ξ2(z) , 
where

Thus, m2(z) =
d(�2(z))

dx
=

p3−p2

(p3−p2)+(q3−q2)
and,

=
X∫

p1+q1

10
(
p2 − p1

)
(
p2 − p1 + q2 − q1

)(
p2 − p1

)
(�(5) − �(−5))

[�(⋅)(1 − �(⋅))]dz

=
1

(�(5) − �(−5))

[
�

({
z −

p1 + p2 + q1 + q2

2

}
10(

p2 + q2 − p1 − q1
)
)]X

p1+q1

=
1

(�(5) − �(−5))

[
�

({
x −

p1 + p2 + q1 + q2

2

}
10(

p2 + q2 − p1 − q1
)
)

−�

({
p1 + q1 −

p1 + p2 + q1 + q2

2

}
10(

p2 + q2 − p1 − q1
)
)]

=
1

(�(5) − �(−5))

[
�

({
x −

p1 + p2 + q1 + q2

2

}
10(

p2 + q2 − p1 − q1
)
)

− �(−5)

]

L1(z) =

�

({
z −

p1+p2+q1+q2
2

}
10

(p2+q2−p1−q1)

)
− �(−5)

�(5) − �(−5)

�2(z) =

(
p3 − p2

)
z −

(
q2p3 − p2q3

)
(
p3 − p2

)
+
(
q3 − q2

)



 R. Kumar et al.

1 3

At x = �2(z) =
(p3−p2)z−(q2p3−p2q3)
(p3−p2)+(q3−q2)

, we have

By solving above equation by part

Therefore,

�2(x) =
d

dx

(
R1(x)

)
atx = �2(z)

=
−10(

p3 − p2
)
(�(5) − �(−5))

� ×

({
x −

p2 + p3

2

}
10

p3 − p2

)
×

(
1 − �

({
x −

p2 + p3

2

}
10

p3 − p2

))

�

({
x −

p2 + p3

2

}
10

p3 − p2

)
= �

({(
p3 − p2

)
x −

(
q2p3 − p2q3

)
(
p3 − p2

)
+
(
q3 − q2

) −
p2 + p3

2

}
×

10

p3 − p2

)

= �

(
2
(
p3 − p2

)
x − 2

(
q2p3 − p2q3

)
−
(
p2 + p3

)(
p3 + q3 − p2 − q2

)

2
(
p3 + q3 − p2 − q2

) ×
10

p3 − p2

)

= �

(
2
(
p3 − p2

)
x +

(
p2 + p3

)(
p2 − p3

)
+ q2

(
p2 − p3

)
+ q3

(
p2 − p3

)

2
(
p3 + q3 − p2 − q2

) ×
10

p3 − p2

)

= �

({
2x −

(
p2 + p3 + q2 + q3

)

2
(
p3 + q3 − p2 − q2

)
}

× 10

)

= �

({
z −

p3 + p2 + q2 + q3

2

}
10

p3 + q3 − p2 − q2

)

�2(z) =
10(

p3 − p2
)
(�(5) − �(−5))

�

({
z −

p3 + p2 + q2 + q3

2

}
10

p3 + q3 − p2 − q2

)

×

[
1 − �

({
z −

p3 + p2 + q2 + q3

2

}
10

p3 + q3 − p2 − q2

)]

R1(x) =
p3+q3∫
x

�2(z)m2(z)dz

=
p3+q3∫
x

10
(
p3 − p2

)
(
p3 − p2 + q3 − q2

)(
p3 − p2

)
(�(5) − �(−5))

[�(⋅)(1 − �(⋅))]dz

where 

�(⋅) = �

({
z −

p3 + p2 + q2 + q3

2

}
10

p3 + q3 − p2 − q2

)

=
1

(�(5) − �(−5))

[
�

((
z −

p3 + p2 + q2 + q3

2

)
10

p3 + q3 − p2 − q2

)]p3+q3
x

=
1

(�(5) − �(−5))

[
�

((
p3 + q3 −

p3 + p2 + q2 + q3

2

)
10

p3 + q3 − p2 − q2

)

−�

((
x −

p3 + p2 + q2 + q3

2

)
10

p3 + q3 − p2 − q2

)]

=
�(5) − �

({
x −

p3+p2+q2+q3

2

}
10

p3+q3−p2−q2

)

�(5) − �(−5)
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As a result, the right-side fuzzy number (Z = X + Y)’s 
distribution function is;

Similarly, the non-complementary function R1(z) , gives.

As a result, the fuzzy variable Z = X + Y membership is 
given by

Appendix I

Proof—By the use of transformation given by z = kx, we get 
x = z

k
 , which can be written as ξ(z)

so, |||
dx

dz

||| =
1

k
= m (z) . Then, at x = �(z)

In addition, we have.

Hence,

R1(z) =
�(5) − �

({
z −

p3+p2+q2+q3

2

}
10

p3+q3−p2−q2

)

�(5) − �(−5)

(84)𝜇z(Z) =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜀

𝜑

��
z −

p1+p2+q1+q2

2

��
10

p2+q2−p1−q1

��
− 𝜑(−5)

𝜑(5) − 𝜑(−5)
; if p1 + q1 ≤ z < p2 + q2

𝜀 ; if z = p
2

+ q2

𝜀

𝜑(5) − 𝜑

��
z −

p2+p3+q2+q3

2

��
10

p3+q3−p2−q2

��

𝜑(5) − 𝜑(−5)
; if p2 + q2 ≤ z < p3 + q3

0 ; otherwise

�(z) = �

({
z

k
−

p1 + p2

2

}
10(

p2 − p1
)
)

η1(z) =
d

dx

(
L1

)
at x = ξ1(z) =

z

k

=
10(

p2 − p1
)
(�(5) − �(−5))

×

(
�

({
z

k
−

p1 + p2

2

}
10

p2 − p1

))

×

(
1 − �

({
z

k
−

p1 + p2

2

}
10

p2 − p1

))

�2(z) =
d

dx

(
R1(x)

)
 at x = �(z) =

z

k

And therefore,

The membership for the fuzzy number kX at k > 0 is:

L1(x) =
x∫

kp1

�1(z)m(z)dz

=
x∫

kp1

⎡⎢⎢⎢⎢⎣

10

k
�
p2 − p1

�
(�(5) − �(−5))

�
�

��
z

k
−

p1 + p2

2

�
10

p2 − p1

��

×

�
1 − �

��
z

k
−

p1 + p2

2

�
10

p2 − p1

��
⎤⎥⎥⎥⎥⎦
dz

(85)
=

�

({
x −

kp1+kp2
2

}
10

(kp2−kp1)

)
− �(−5)

�(5) − �(−5)

=
10(

p3 − p2
)
(�(5) − �(−5))

�

({
z

k
−

p2 + p3

2

}
10

p3 − p2

)

×

(
1 − �

({
z

k
−

p2 + p3

2

}
10

p3 − p2

))

R1(x) =
kp3∫
X

�2(z)m(z)dx

=
kp3∫
X

[
10(

p3 − p2
)
(�(5) − �(−5))

×

(
�

({
z

k
−

p2 + p3

2

}
10

p3 − p2

))
×

(
1 − �

({
z

k
−

p2 + p3

2

}
10

p3 − p2

))]
dz

=

�(5) − �

({
x −

kp2+kp3

2

}
10

(kp3−kp2)

)

�(5) − �(−5)
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Likewise, the membership for the fuzzy number kX at 
k < 0, is:

Appendix J

Proof—The fuzzy number Z = XY  , associate L1(x) with 
L1(y) and R1(x) with R2(y) and get y = �1(x) and y = �2(x),

W h e r e , �1(x) =
q1+q2

2
+

q2−q1
a2−a1

(
x −

a1+a2
2

)
; �2(x)

=
q2+q3

2
+

q3−q2

a3−a2

(
x −

a2+a3

2

)
.

Therefore, at y = �1(x), z = xy becomes

Therefore,

𝜇kX(x) =

⎧
⎪⎪⎨⎪⎪⎩

𝜀1

𝜑

��
x−

kp1+kp2
2

�
10

(kp2−kp1)

�
−𝜑(−5)

𝜑(5)−𝜑(−5)
; kp1 ≤ x < kp2

𝜀1; x = kp2

𝜀1

𝜑(5)−𝜑
��

x−
kp2+kp3

2

�
10

(kp3−kp2)

�

𝜑(5)−𝜑(−5)
; kp2 ≤ x < kp3.

𝜇kX(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜀1

𝜑

��
x −

kp2+kp3

2

�
10

(kp2−kp3)

�
− 𝜑(−5)

𝜑(5) − 𝜑(−5)
; kp3 ≤ x < kp2

𝜀1; x = kp2

𝜀1

𝜑(5) − 𝜑

��
x −

kp1+kp2
2

�
10

(kp1−kp2)

�

𝜑(5) − 𝜑(−5)
; kp2 ≤ x < kp1

x =
p1q2 − p2q1 ±

√
(p1q2 − p2q1)

2 + 4
(
p2 − p1

)(
q2 − q1

)
x

2
(
q2 − q1

) = �1(z)

m1(z) =|dx
dz

|x=�1(z)

=
4
(
p2 − p1

)(
q2 − q1

)

4
(
q2 − q1

)√
(p1q2 − p2q1)

2 + 4
(
p2 − p1

)(
q2 − q1

)
z

w h e r e  P1 =
(
p2 − p1

)(
q2 − q1

)
 ;  Q1 = p1

(
q2 − q1

)
+

;R1 = p1q1.and in addition,

At,

Hence

=
p2 − p1√

(p1q2 − p2q1)
2 + 4

(
p2 − p1

)(
q2 − q1

)
z

=
p2 − p1√

Q2
1
− 4P1

(
R1 − z

)

�1(z) =
d

dx

(
L1
)
at, x = �1(z)

=
10

(�(5) − �(−5))dx

(
�

({
x −

p1 + p2

2

}
10(

p2 − p1
)
))

=
10(

p2 − p1
)
(�(5) − �(−5))

�

({
x −

p1 + p2

2

}
10(

p2 − p1
)
)

×

(
1 − �

({
x −

p1 + p2

2

}
10(

p2 − p1
)
))

X = �1(z) =
p1q2 − p2q1 ±

√
(p1q2 − p2q1)

2 + 4
(
p2 − p1

)(
q2 − q1

)
z

2
(
q2 − q1

)

�

��
x −

p1 + p2

2

�
10�

p2 − p1
�
�

= �

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q2 − p2q1 ±

��
p1q2 − p2q1

�2
+ 4

�
p2 − p1

��
q2 − q1

�
zp1 + p2

2
�
q2 − q1

�
2

⎫⎪⎬⎪⎭
×

10

p2 − p1

⎞⎟⎟⎟⎠

= �

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q2 − p2q1 ±
�

Q2
1
− 4P1

�
R1 − z

�
p1 + p2

2
�
q2 − q1

�
2

⎫⎪⎬⎪⎭
10

p2 − p1

⎞⎟⎟⎟⎠

= �

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q1 − p2q2 ±
�

Q2
1
− 4P1

�
R1 − z

�

2
�
q2 − q1

�
⎫⎪⎬⎪⎭

10

p2 − p1

⎞⎟⎟⎟⎠

�1(z) =
10�

p2 − p1
�
(�(5) − �(−5))

�

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q1 − p2q2 ±
�

Q2
1
− 4P1

�
R1 − z

�

2
�
q2 − q1

�
⎫⎪⎬⎪⎭

10

p2 − p1

⎞⎟⎟⎟⎠
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Therefore,

where �(⋅) = �

��
p1q1−p2q2±

√
Q2

1
−4P1(R1−z)

2(q2−q1)

�
10

p2−p1

�

=
�(�1)−�(−5)
�(5)−�(−5)

 , where, �1 = 10

�
−Q1+

√
Q2

1
−4P1(R1−x)−P1

2P1

�
.

By taking, P2 =
(
p3 − p2

)(
q3 − q2

) ; Q2 = −p3
(
q3 − q2

)
− q3

(
p3 − p2

) ; 
R2 = p3q3,

We're having the accurate membership of Z = XY  as:

R1(x) = lp3q3�2(z)m2(z)dz =
�(5)−�(�2)
�(5)−�(−5)

 ,  w h e r e 

�2 = 10

�
−Q2−

√
Q2

2
−4P2(R2−x)+P2

2P2

�
consequently, the member-

ship of the fuzzy number Z = XY  is:

×

⎡
⎢⎢⎢⎣
1 − �

⎛
⎜⎜⎜⎝

⎧
⎪⎨⎪⎩

p1q1 − p2q2 ±
�

Q2
1
− 4P1

�
R1 − z

�

2
�
q2 − q1

�
⎫
⎪⎬⎪⎭

10

p2 − p1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

L1(x) =
X∫

p1q1

m1(z)�1(z)dz =
X∫

p1q1

10

(�(5) − �(−5))
√

Q2
1
− 4P1

(
R1 − z

)�(⋅)(1 − �(⋅))dz

=
1

(�(5) − �(−5))

⎡
⎢⎢⎢⎣
�

⎛
⎜⎜⎜⎝

⎧
⎪⎨⎪⎩

p1q1 − p2q2 ±
�

Q2
1
− 4P1

�
R1 − z

�

2
�
q2 − q1

�
⎫
⎪⎬⎪⎭

10

p2 − p1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

X

p1b1

=
1

(�(5) − �(−5))

⎡⎢⎢⎢⎣
�

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q1 − p2q2 ±
�

(Q1)
2 − 4P1

�
R1 − x

�

2
�
q2 − q1

��
p2 − p1

�
⎫⎪⎬⎪⎭
10

⎞⎟⎟⎟⎠
− �

⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩

p1q1 − p2q2 ±
�

Q2
1
− 4P1

�
Q1 − p1q1

�

2
�
q2 − b1

��
p2 − p1

�
⎫⎪⎬⎪⎭

=

�

��
p1q1−p2q2±

√
Q2

1
−4P1(R1−x)

2(q2−q1)(p2−p1)

�
10

�
− �(−5)

�(5) − �(−5)

(86)𝜇XY (z) =

⎧
⎪⎨⎪⎩

𝜀
𝜑(𝜏1)−𝜑(−5)
𝜑(5)−𝜑(−5)

; p1q1 ≤ z < p2q2

𝜀; z = p2q2

𝜀
𝜑(5)−𝜑(𝜏2)
𝜑(5)−𝜑(−5)

; p2q2 ≤ z < p3q3

w h e r e  �1 = 10

�
−Q1+

√
Q2

1
−4P1(R1−z)−P1

2P1

�
 a n d 

�2 = 10

�
−Q2−

√
Q2

2
−4P2(R2−z)+P2

2P2

�
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