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Abstract

We present a novel model Graph Neural Stochastic Differential Equations (Graph
Neural SDEs). This technique enhances the Graph Neural Ordinary Differential
Equations (Graph Neural ODEs) by embedding randomness into data representa-
tion using Brownian motion. This inclusion allows for the assessment of prediction
uncertainty, a crucial aspect frequently missed in current models. In our framework,
we spotlight the Latent Graph Neural SDE variant, demonstrating its effectiveness.
Through empirical studies, we find that Latent Graph Neural SDEs surpass con-
ventional models like Graph Convolutional Networks and Graph Neural ODEs,
especially in confidence prediction, making them superior in handling out-of-
distribution detection across both static and spatio-temporal contexts.

1 Introduction

Before the widespread use of neural networks and modern machine learning, differential equations,
including Stochastic Differential Equations (SDEs) were the gold standard for modeling systems
across diverse scientific disciplines [3, 4, 7, 12, 26, 29]. In the machine learning arena, neural
networks’ integration with ODEs has enabled advanced continuous-time data modeling [5, 20].
Despite these progresses, the fusion of SDEs and Graph Neural Networks (GNNs) is still unexplored.

This work presents the Graph Neural SDE, a model that harnesses the robustness of SDEs and
the versatility of GNNs to handle complex graph-structured data. Due to its stochastic nature, this
model also enables precise uncertainty quantification in its predictions. Furthermore, we uncover a
deep theoretical connection between our Graph Neural SDEs and the continuous representations of
deep Graph Recurrent Neural Networks (refer to Appendix A). Additionally, we highlight parallels
between Graph Neural ODEs and continuous deep Graph Residual Neural Networks, mirroring
findings by [20] and [5].

Of particular interest, we compare the Graph Neural SDE against existing uncertainty quantification
techniques for GNNs, notably the Bayesian GNN [11] and Ensemble of GNN methods [22] - two of
the few established approaches for uncertainty quantification in graph data, as documented in the
literature. Our experiments, shows superior performance of the Graph Neural SDE, which in many
datasets surpasses both Bayesian and Ensemble approaches. Furthermore, our experiments show the
Graph Neural SDE out perform Graph Neural ODEs in most spectrum of tasks, including both static
and spatio-temporal datasets. The paper further details the formulation and implementation of our
models, provides intuitive visualizations, and validates our approach using real-world datasets.

Preprint. Preliminary work.
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2 Background
2.1 Neural Ordinary Differential Equations

Neural ODEs provide an elegant approach to modeling dynamical systems using the principles of
neural networks. Instead of representing data transformations as discrete layers in a traditional deep
network, Neural ODEs describe them as continuous transformations parameterized by differential
equations. This concept of continuous transformations within the neural network is often termed as
"continuous-depth", implying that instead of having distinct layers, the network smoothly transitions
and evolves data through a continuum of depths.

These transformations specify how the state of a system, denoted as z(t), evolves over time. The rate
of change in the state of the system is determined by a function f , which is parameterized by neural
network weights. This relationship is represented as

dz

dt
= f(z(t), t), z(0) = z0.

This differential equation implies that the state of the system at any time t is determined by accumu-
lating the effects of the function f from the initial state z0 up to that time. This can be articulated
more explicitly as

zt = z0 +

∫ t

0

f(z(s), s) ds1.

In the Neural ODE framework, the unknown function f , governing system dynamics, is approximated
using a neural network.

2.2 Neural Stochastic Differential Equations

Stochastic Differential Equations (SDEs) have been widely employed to model real-world phenomena
that exhibit randomness, such as physical systems, financial markets, population dynamics, and
genetic variations [10, 31, 32]. They generalize ODEs by modeling systems that evolve continuously
over time, incorporating randomness. Informally, an SDE can be seen as an ODE that integrates a
certain degree of noise

dz
dt

= f(z(t), t) + ϵ(t).

Here, ϵ(t) represents the time-dependent noise, typically modeled using diffusion models and Brown-
ian motion. In a more formal definition, an SDE is

dz(t) = f(t, z(t))︸ ︷︷ ︸
drift

dt+ g(t, z(t))︸ ︷︷ ︸
diffusion

dW (t).

In this equation, the system state z(t) at time t evolves due to two main components: the drift function
f and the diffusion function g. The term dW (t) denotes the infinitesimal increment of a standard
Brownian motion (or Wiener process) W (t), with properties like W (0) = 0, independent increments,
and W (t)−W (τ) being normally distributed with mean 0 and variance t− τ for 0 ≤ τ < t. The
strong solution for the SDE, denoted as z(t), exists and is unique under conditions where f and g are
Lipschitz and E[z(0)2] < ∞2.

The drift function f(t, z(t)) represents the deterministic component of the system’s evolution,
describing the expected direction of change at each time point based on the current state z(t).

1In the integral expression, s is a dummy variable of integration, representing the intermediate points between
0 and t over which the function f is integrated.

2For a comprehensive and rigorous exploration of Stochastic Differential Equations, readers are referred to
[17] and [30].
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The diffusion function g(t, z(t)) characterizes the system’s random component, scaling the random
noise introduced by the Wiener process W (t), commonly known as Brownian motion.

Within the Neural SDE framework, analogous to Neural ODEs, the SDE [20] is numerically approxi-
mated. This involves evaluating the system’s response to both deterministic and random effects over
time. The solution to the given SDE is represented as

z(t) = z(0) +

∫ t

0

f(s, z(s))ds+
∫ t

0

g(s, z(s))dW (s).

This equation provides an integral expression of how the state z(t) evolves, subject to both determin-
istic (through the function f ) and random influences (through the function g and the Wiener process
W (t)).

One challenge in Neural SDEs is when the diffusion function g becomes a learnable parameter and
is trained to achieve maximum likelihood, such as by directly minimizing cross-entropy or mean
square error. In these situations, the diffusion function often converges to zero, turning the Neural
SDE into a Neural ODE. To address this, researchers have suggested strategies like minimizing the
Kullback-Leibler (KL) divergence or Wasserstein distance, forming the foundation for advanced
concepts like ‘Latent SDEs’ and ‘SDE-Generative Adversarial Networks’ (SDE-GANs) [18, 20].

2.3 Graph Neural Ordinary Differential Equations

Introduced by Poli et al. [28], Graph Neural Ordinary Differential Equations (GN-ODEs) combine
continuous-depth adaptability from the Neural ODEs with graph neural network structure. GN-ODEs
meld the structured representation of graph data with the continuous model flexibility, providing a
continuum of GNN layers. Compatible with both static and autoregressive GNN models, GDEs afford
computational advantages in static contexts using the adjoint method [5] and enhance performance in
dynamic situations by leveraging the geometry of the underlying dynamics.

At the heart of GN-ODEs is the representation of the dynamics between layers of GNN node feature
matrices

H(s+1) = H(s)+FG(s,H(s), θ(s)), H(0) = Xe.

In this representation, X denotes the initial node features of the graph, and Xe is an embedding
derived from various methods such as a single linear layer or another GNN layer. The function
FG represents a matrix-valued nonlinear function conditioned on graph G, and θ(s) is the tensor of
parameters for the s-th layer. The GN-ODE model can be more succinctly expressed as:

Ḣ(s) = FG(s,H(s), θ), H(0) = Xe,

where s belongs to a subset S of the real numbers, R, typically denoted as [t0, t1].

In the context of GN-ODEs, FG functions as a field on graph G that varies with the depth or complexity
of the model, which we refer to as "depth-varying". Depending on the context, the node features
might be augmented to improve both computational efficiency and the model’s performance, as
indicated in prior studies.

3 Graph Neural SDEs
Drawing inspiration from Graph Neural ODEs [28] and Latent SDEs [20], we introduce our method-
ology: Latent Graph Neural SDEs, leveraging the latent strategy for Neural SDEs.

3.1 Latent Graph Neural SDEs

Latent Graph Neural SDEs learn an latent state z(t) using Graph Neural SDEs to encapsulate the
data’s underlying patterns. Once determined, this state is input into a projection network fΩ to
generate predictions ŷ. The model parameterizes an Ornstein–Uhlenbeck (OU) prior process and an
approximate posterior, which is another OU process.
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More formally, the prior is defined by

dz̃(t) = fθ(z(t), t,G)dt+ σ(z̃t, t)dWt,

where fθ is typically set to a constant (e.g., 0 in our experiments) and σ is set to a fixed value, such as
1.0.

The approximate posterior is

dz(t) = fϕ(z(t), t,G)dt+ σ(zt, t)dWt.

Here, fϕ is parameterized by a neural network, with ϕ representing the learned weights of the network.

Both the prior and posterior drift functions, fθ and fϕ respectively, dictate the dynamics of the system.
z(t) denotes the system state at time t, and G symbolizes the graph structure. Notably, both the prior
and posterior SDEs employ the same diffusion function σ but have distinct drift functions. Sharing the
diffusion function ensures that the KL divergence between these processes remains finite, facilitating
its estimation by sampling paths from the approximate posterior process [20]. The KL divergence
between these processes is finite and can be estimated by sampling paths from the approximate
posterior process.

The evidence lower bound (ELBO) is given by

LELBO(ϕ) = Ezt

[
log(p(xti |zti)−

∫ t1

t0

1

2
||u(zt, t, ϕ, θ,G)||22dt

]
,

where xti are the observations at time t (with i in [t0, t1]), and

u = g(zt, t)
−1[fϕ(zt, t,G)− fθ(zt, t,G)].

Given the latent state zt, it’s fed into the projection layer, fΩ, for further prediction. The posterior
predictive is then

p(y∗|t∗,G,D) =

∫
p (y∗|fΩ(zt, t∗,G)) p(z|D) dz ≈ 1

N

N∑
n=1

p (y∗|fΩ(zn, t∗,G)) .

As shown on the right side of this equation, the predictive distribution is approximated using Monte
Carlo sampling by drawing samples zn from the posterior p(z|D). The variance, of the Monte Carlo
mean estimation, is given by

Var(y) =
1

N

N∑
n=1

(yn − ȳ)2.

Furthermore, this Graph Neural SDE can be mathematically related to popular Graph Neural Net-
works, like Graph RNNs. For a comprehensive insight into the relationship between Graph Neural
ODEs, Graph Neural SDEs, and continuous deep Residual and Recurrent Graph Neural Networks,
please refer to Appendix A.

3.2 Static Dataset

We aim to predict individual voting preferences for three candidates based on their political compass
and social circles, as depicted in Figure 1. The data contains inherent noise, with individuals main-
taining friendships across voting preferences and their political compass not strictly dictating their
voting choice, introducing randomness.

Figure 2 presents a detailed comparison across five models: GN-ODE, GCN, our Latent GN-SDE,
Bayesian GCN, and Ensemble GCN — with the last one averaging predictions from five individual
GCNs. The evaluation is segmented into four metrics, each depicted in its respective sub-figure.

Accuracy vs. Training Data Proportions: Training on dataset portions from 10% to 90%, the
GN-SDE consistently outperformed the other models, highlighting its data efficiency.
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Figure 1: The left image illustrates the political compass of voters while the right image presents
their social circles, with colors indicating the candidates they voted for.

Figure 2: Comparative evaluation of Graph Neural ODE, GCN, and Graph Neural SDE models.

Accuracy vs. Number of Nodes: The GN-SDE maintained top performance across varying node
counts, showcasing its adaptability to both small and large graphs. At 100 nodes, the Ensemble GCN
momentarily exceeded GN-SDE, but the latter remained dominant in most scenarios.

Accuracy vs. Entropy Threshold: The entropy threshold is inversely related to the model’s confi-
dence in its predictions; the lower the entropy, the higher the confidence required for a prediction. In
this context, our model demonstrated exemplary performance in identifying out-of-distribution data
and providing accurate measures of uncertainty. While our model surpassed the performance of the
Ensemble GCN, it was slightly outperformed by the Bayesian GCN at very low entropy thresholds,
still indicating high confidence and quality in uncertainty quantification.

Noise vs. Log-Likelihood: Evaluating resilience to added Gaussian noise, the GN-SDE model
exhibited the most gradual performance decline compared to competitors like the GCN and GN-ODE.
Bayesian and Ensemble models performed slightly better under high noise.

To conclude, the GN-SDE consistently surpassed GN-ODE and GCN in every test. While Bayesian
GCN and the Ensemble model occasionally outperformed ours, the GN-SDE stood out in robustness,
data efficiency, and uncertainty quantification.
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(a) Node selection using a random acquisition func-
tion.

(b) Node selection using a max entropy acquisition
function.

Figure 3: The figure depicts an active learning experiment on a 100-node dataset, starting with 10
nodes and incrementally adding more until reaching 80. The left and right figures use random and
max entropy acquisition functions respectively for node selection.

Figure 3 depicts an active learning study on a 100-node dataset. Starting with 10 nodes, additional
nodes were sequentially added: based on the highest entropy in the right figure, and randomly
in the left. After each addition, the model was trained over 5 epochs, continuing until 80 nodes
were included. Our model reached a notable 99% accuracy at the 78th node, closely matched by
the Bayesian and Ensemble models. In comparison, GCN and Graph Neural ODE peaked around
85%. This demonstrates our model’s strength in active learning, especially vital when labeled data
is limited or expensive. The random method’s ceiling at 80% accuracy highlights the benefit of
uncertainty-aware strategies.

3.2.1 Real-Word Static Data sets

Dataset Models Entropy Thresholds

∞ 1.6 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

GN-SDE (ours) 0.817 0.834 0.922 0.942 0.957 0.966 0.969 0.977 0.991 1.0 1.0 1.0
GN-ODE 0.799 0.806 0.905 0.923 0.944 0.969 0.976 0.984 0.984 0.995 1.0 1.0

CORA GCN 0.717 0.717 0.720 0.720 0.723 0.734 0.756 0.761 0.771 0.780 0.786 0.824
Ensemble GNN 0.777 0.802 0.935 0.949 0.954 0.958 0.962 0.972 0.983 1.0 1.0 1.0
Bayesian GNN 0.709 0.719 0.800 0.834 0.871 0.893 0.917 0.925 0.930 0.948 0.972 0.981

GN-SDE (ours) 0.71 0.753 0.879 0.889 0.898 0.925 0.929 0.924 0.926 0.947 0.972 1.0
GN-ODE 0.712 0.742 0.875 0.891 0.905 0.931 0.915 0.936 0.930 0.882 0.923 1.0

Citeseer GCN 0.516 0.516 0.524 0.530 0.544 0.557 0.583 0.599 0.626 0.651 0.678 0.725
Bayesian GCN 0.61 0.619 0.729 0.746 0.769 0.791 0.815 0.821 0.854 0.863 0.867 0.88
Ensemble GNN 0.527 0.532 0.743 0.780 0.821 0.834 0.859 0.858 0.920 0.939 0.953 0.933

GN-SDE (ours) 0.791 0.791 0.794 0.794 0.802 0.818 0.837 0.852 0.876 0.893 0.898 0.911
GN-ODE 0.763 0.763 0.768 0.774 0.781 0.813 0.833 0.847 0.858 0.862 0.872 0.899

Pubmed GCN 0.78 0.78 0.784 0.785 0.789 0.795 0.809 0.821 0.823 0.835 0.847 0.864
Ensemble GNN 0.786 0.786 0.796 0.814 0.837 0.868 0.879 0.908 0.907 0.916 0.929 0.952
Bayesian GNN 0.715 0.715 0.719 0.730 0.736 0.752 0.815 0.850 0.864 0.882 0.904 0.918

GN-SDE (ours) 0.531 0.770 0.859 0.871 0.884 0.897 0.907 0.916 0.929 0.944 0.955 0.968
GN-ODE 0.526 0.766 0.853 0.867 0.883 0.898 0.912 0.919 0.930 0.938 0.951 0.964

OGB arXiv GCN 0.470 0.809 0.885 0.900 0.909 0.917 0.931 0.939 0.950 0.966 0.983 0.976
Ensemble GNN 0.512 0.785 0.699 0.800 1.000 1.000 1.000 - - - - -
Bayesian GNN 0.433 0.828 0.880 0.884 0.893 0.897 0.900 0.919 0.916 0.935 0.954 1.000

Table 1: Accuracy scores for GN-SDE, GN-ODE, GCN, Ensemble GNN, and Bayesian GNN on
CORA, Citeseer, Pubmed, and OGB arXiv datasets. Comparisons use varying entropy thresholds,
with bold values indicating top performance. A ’-’ for accuracy indicates the model lacked sufficiently
confident data points at that threshold.

Shifting our focus to real-world datasets, Table 1 details the performance of the models GN-SDE,
GN-ODE, GCN, Ensemble GCN, and Bayesian GCN on renowned datasets such as CORA [33],
Pubmed [33], Citeseer [9], and OGB arXiv [13]. The models were evaluated based on different
entropy thresholds. This essentially means that a model is only permitted to make predictions if
its confidence level, as measured by entropy, falls below a predefined threshold. Using entropy as
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a measure provides an understanding of a model’s capacity for confident predictions (uncertainty
quantification) and its ability in performing out-of-distribution detection.

A review of the table shows our GN-SDE model excelling across most entropy thresholds, particularly
in the CORA and Pubmed datasets. In CORA, GN-SDE achieves 100% accuracy at thresholds
0.3, 0.2, and 0.1, outperforming or matching other models. In Pubmed, GN-SDE leads across most
thresholds, peaking at 91.1% accuracy for a 0.1 entropy threshold.

For Citeseer and OGB arXiv, GN-SDE’s performance is more competitive. In OGB arXiv, while GN-
SDE starts strong, the Bayesian GNN reaches 100% accuracy at a 0.1 entropy threshold. Ensemble
GNN also impresses, hitting 100% accuracy for thresholds up to 0.8. In Citeseer, GN-SDE often
leads, with GN-ODE closely following.

In summary, GN-SDE demonstrates consistent strength across datasets, highlighting its robustness
and aptitude in handling out-of-distribution data with confidence.

3.3 Spatio-Temporal

Figure 4: Comparison of the true and predicted values for the three-node regression problem. The first
row shows the true values of nodes A, B, and C over time. The second row presents the predictions
made by the Graph Neural SDE model for nodes A, B, and C. The shaded regions represent the
model’s uncertainty quantification, demonstrating an increase in uncertainty during the interpolation
and extrapolation phases.

Consider a three-node regression problem with nodes A, B, and C, where the goal is to predict their
regression values at different time points. As shown in Figure 4, the observations are irregularly
sampled. The graph structure used has the node C is connected to nodes A and B, but nodes A and B
are not directly linked. The figure also shows the training and testing data points, illustrating both
interpolation (between time 4 and 6) and extrapolation (from time 10 to 12). The true distribution for
each node is as follows:

A(t) = t · sin
(
πt

2

)
+ ϵA, B(t) =

4
t
5 + 0.5

· cos
(
πt

2

)
+ ϵB , C(t) = A(t) +B(t) + ϵC .

where ϵA, ϵB , ϵC ∼ N (0, 0.52). It is important to note that while nodes A and B are independent,
node C is a function of both A and B, with an added Gaussian noise component.

Our goal is to integrate uncertainty into predictions during testing. Both Neural ODE and
GCN models are deterministic, lacking a direct uncertainty measure for regression as entropy offers
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in classification. To introduce uncertainty, we use Monte Carlo Dropout during training and testing
for these models. Under certain conditions, networks with dropout can emulate a Gaussian Process
[8]. This allows us to estimate a model’s uncertainty by predicting both a mean and variance, using
variance as the uncertainty measure. Predictions are made only if the variance meets a set threshold.
The Bayesian GCN and Ensemble methods inherently quantify uncertainty, with the Ensemble
calculating regression prediction variances and Bayesian GCN using Monte Carlo Sampling, aligning
with our GN-SDE approach.

Metric Models Variance Thresholds

3 2.5 2 1.5 1.0 0.5

MAE

Dropout GCN 13.35 13.06 13.03 13.37 12.24 5.631
GN-SDE (ours) 12.06 11.36 10.46 9.734 2.406 -
Dropout GN-ODE 14.52 14.52 14.52 14.49 13.61 -
Bayesian GCN 10.99 11.02 12.16 9.121 4.253 4.260
Ensemble GCN 2.665 2.678 2.737 2.715 2.615 2.736

MAPE

Dropout GCN 9.340 9.390 9.462 14.08 8.941 3.060
GN-SDE (ours) 6.825 6.321 13.08 3.380 13.55 -
Dropout GN-ODE 8.909 8.909 8.909 10.67 9.956 -
Bayesian GCN 7.503 7.588 9.413 7.696 7.235 2.731
Ensemble GCN 15.44 141.20 25.15 54.49 18.31 8.612

MSE

Dropout GCN 13.35 13.06 13.03 13.37 12.24 5.631
GN-SDE (ours) 12.06 11.36 10.46 9.734 2.41 -
Dropout GN-ODE 14.52 14.52 14.52 14.49 13.61 -
Bayesian GCN 10.99 11.02 12.16 9.121 4.253 4.260
Ensemble GCN 12.73 12.72 13.27 13.28 12.55 13.47

NLL

Dropout GCN 22.55 25.07 25.29 26.74 26.66 19.81
GN-SDE (ours) 8.969 9.032 9.530 10.30 8.44 -
Dropout GN-ODE 40.19 40.19 40.19 42.04 43.97 -
Bayesian GCN 13.28 13.35 12.28 12.01 6.958 9.999
Ensemble GCN 51.38 85.56 81.54 89.95 104.68 205.54

Table 2: Performance comparison of Dropout GCN, GN-SDE, Dropout GN-ODE, and Bayesian
GCN models on the three-node regression problem across different variance thresholds. Bold values
indicate superior performance by the GN-SDE model.

Table 2 shows the GN-SDE model outperforming the Dropout GCN and Dropout GN-ODE models
across all variance thresholds. The GN-SDE model frequently achieves the lowest Mean Squared
Error (MSE) and Negative Log-Likelihood (NLL) across the higher variance thresholds. However, its
performance in Mean Absolute Percentage Error (MAPE) demonstrates some variability.

For the NLL metric, calculated under the Gaussian-distributed predictions assumption

NLL =
1

N

N∑
i=1

(
1

2
log(2πσ2

i ) +
(yi − µi)

2

2σ2
i

)
,

where σ2 is the predicted variance, µ is the observations, and µ̂ is the predicted mean.

As the variance threshold decreases, the Bayesian GCN becomes more competitive, even outperform-
ing the GN-SDE in MAE at the 0.5 threshold. The Ensemble GCN’s performance fluctuates, but
it remains competitive. GN-SDE’s MAE and MSE decline with decreasing variance, highlighting
its capability to filter out uncertain predictions. At the 0.5 threshold, only the Dropout GCN and
Bayesian GCN perform, with the latter showing remarkable MAE and NLL results.

In summary, GN-SDE is a standout in the three-node regression task, often surpassing peers across
thresholds. The Bayesian GCN excels at lower variance thresholds. Dropout GCN holds its own at
the strictest threshold, while Dropout GN-ODE struggles at higher variances, suggesting limitations
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in uncertainty assessment. The Ensemble GCN is consistent but sometimes underperforms in the
NLL metric.

To evaluate the performance of these models on a real-world dataset, MET-LA, please refer to
Appendix B.2.1.

4 Related Work

Uncertainty quantification in GNNs has been relatively less explored compared to traditional neural
networks. Among the limited research in this domain, we have benchmarked our work against key
contributions such as the Bayesian Graph Neural Network [11] and robust ensemble methods [22].
While there has been significant research into Gaussian Processes on graphs [2, 19, 27], we did not
include these in our evaluations.

The use of differential equations on graphs is a growing research area, with most work focused on
Graph Neural ODEs [28] and Graph Control Differential Equations [6]. Graph Neural ODEs have
been applied to dynamic graph classification [15, 34], traffic forecasting [6, 23], and protein interface
prediction [36]. Extensions include second-order and higher-order Graph ODEs [25, 39].

While SDEs provide a promising avenue for better uncertainty quantification in differential equations,
their application in graphs has been limited. Notably, they are employed in Graph Diffusion models
primarily for denoising purposes [14, 16, 24].

In this landscape, the paper ‘BroNet’ [1] stands out for its claim to develop Graph Neural SDEs.
Yet, its technique, which uses a Graph Neural Network to learn an SDE’s scalar parameter before
integrating it, fails to model the graph as an SDE, setting it apart from our approach.

In essence, the field of uncertainty quantification in GNNs remains relatively unexplored. Our model
presents a novel integration of SDE with GNN to address this gap. We hope that our contribution acts
as a cornerstone for further developments in Graph Neural SDE-based uncertainty quantification.

5 Conclusion

This study introduces the Graph Neural Stochastic Differential Equations model, by using the
Latent approach, designed for tasks like node, graph, and link prediction. Experimental results
show that Latent Graph Neural SDEs consistently outperform models such as the Bayesian GCN,
Ensemble GCN, and Graph Neural ODEs, excelling in metrics like uncertainty quantification and
out-of-distribution detection. The superior accuracy of our model might stem from the intrinsic
noise within its differential equations, similar to data augmentation in traditional machine learning.
This noise may enhance model robustness and testing generalization, this hypothesis needs future
exploration — perhaps by comparing a Graph Neural ODE trained on noise-augmented data and
assessing the resulting accuracy differences. However, the advanced nature of Graph Neural SDEs
requires increased computational resources, primarily due to the elevated integration costs of SDEs
which make it more computationally expensive than the other models.

Moving forward, several intriguing avenues could be explored. One such avenue is the Bayesian
Neural Network SDE that employs an Ornstein-Uhlenbeck prior for its weights, as described by [37].
This approach could be extended to graph SDEs, potentially leading to the development of Graph
Bayesian Neural Network SDEs (Graph BNN-SDEs). Additionally, the advancements in Partial
Differential Equations showcased by [35] can be creatively adapted for graph contexts using a latent
method similar to our approach, paving the way for Graph Stochastic Partial Differential Equations
(Graph SPDEs). Moreover, integrating higher-order stochastic differential equations with the Latent
Graph Neural SDE we introduced might be advantageous and could further enhance the modeling of
complex systems.
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A What Are Graph Neural ODE and Graph Neural SDEs anyways?
Here, we demonstrate the equivalences or representations of Graph Neural ODEs and Graph Neural
SDEs in relation to popular architectures.

A.1 Graph Neural ODEs as Continuously-deep Graph Residual Neural Networks

In this section, we present a straightforward extension of this idea to graph structures. Specifically,
we illustrate that a Graph Neural ODE can be conceptualized as a continuous-depth version of a
Graph Residual Network.

Considering the architecture of a residual graph network:

yj+1 = yj + fG(j, yj , θ) (1)
where fΘ(j, yj ,G) represents the j-th residual block, with the parameters from all blocks being
collectively represented by Θ.
In contrast, let’s look at the Graph Neural ODE (abbreviated as GN-ODE):

dy

dt
(t) = fG(j, yj , θ)

Discretizing this GN-ODE using the explicit Euler method at uniformly spaced time intervals tj with
a gap of ∆t gives:

y(tj+1)− y(tj)

∆t
≈ dy

dt
(tj) = fG(j, yj , θ)

Simplifying, we get:

y(tj+1) = y(tj) + ∆t · fG(j, yj , θ)

By integrating the factor of ∆t into fG , this equation naturally aligns with the formulation in Equation
1. Such a perspective underscores that neural ODEs can be seen as the continuous-time counterparts
of residual networks.

This viewpoint casts the graph neural ODE as a continuously-deep Graph Residual Network. Here,
the sequence of minor (residual) updates to its hidden states become both infinitesimally small and
infinitely frequent. The end output is the cumulative effect of these continuous updates, mirroring the
solution to the ODE from its initial state.

A.2 Graph Neural SDEs as Continuously-Deep Recurrent Graph Neural Networks

A well-established analogy exists between numerically discretized neural stochastic differential
equations and the structures found in deep learning literature - particularly Recurrent Neural
Networks (RNNs). In the case of Neural SDEs, the RNN’s input can be interpreted as random noise,
or Brownian motion, while its output corresponds to a generated sample.

Consider an autonomous one-dimensional Itô Stochastic Differential Equation represented
as:

dy(t) = f(y(t))dt+ σ(y(t))dw(t)

where y(t), f(y(t)), σ(y(t)), and w(t) belong to the set of real numbers, R. The numerical Euler-
Maruyama discretization of this SDE can be expressed as:

y(tj+1)− y(tj)

∆t
≈ f(y(tj)) +

σ(y(tj))∆wj

∆t

Which simplifies to:
yj+1 = yj + f(yj)∆t+ σ(yj)∆wj
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Here, ∆t represents a fixed time step and ∆wj is normally distributed with mean zero and variance
∆t. This numerical discretization is reminiscent of an RNN with a specific form. Therefore, we can
consider the Neural SDE as an consciously-deep RNN where the depth is defined by the number of
discretization steps of the SDE solver.

B Extended Results
B.1 Spatial-Temporal Images

Figure 5: The figure displays 12 images organized. Each column corresponds to one of the 3 nodes,
while each row represents a different model or dataset. The top row illustrates the training and testing
datasets for each node, in the context of node regression. The aim is to predict the regression value
for each node. The second row presents results from the GCN, the third row showcases those from
the Graph Neural ODE, and the bottom row depicts our model, the Graph Neural SDE.

B.2 Meter-LA Experiment Set Up

In our experiments, we utilized Graph Attention Networks (GAT) to embed the input data, which
consisted of the past six recordings. These inputs were embedded into 64-dimensional tensors.
Subsequently, these embeddings were passed to our Latent Graph Stochastic Differential Equation
(SDE) model. The Graph Latent SDE model employs a GCN for the drift function, while the
diffusion function is held constant at a value of 1. The hidden state of the model is of size 64, which
is then passed to a GCN projection layer for prediction.

The Graph Neural ODE model follows a similar structure but replaces the SDE with an
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ODE and omits the noise component. The GCN model also utilizes the same embedding and
projection layers but bypasses the differential equations entirely.

This setup allows for a fair comparison between the models, as they share the same embed-
ding and projection layers, differing only in the differential equation component.

B.2.1 Real World Datasets

Transitioning to real-world spatiotemporal datasets, we focus on METR-LA for traffic prediction, a
typical time-series problem. The goal is to forecast future traffic metrics, such as speed or flow, over
the next H steps based on previous M steps’ traffic observations [21]. This can be mathematically
described as:

v̂t+1, . . . , v̂t+H = arg max
vt+1,...,vt+H

logP (vt+1, . . . , vt+H |vt−M+1, . . . , vt),

where vt ∈ Rn is an observation vector at time t for n road segments [38]. The METR-LA dataset,
collected from 207 highway loop detectors in LA County, contains four months of data from March to
June 2012. Data was recorded every 5 minutes, and our experiments aim to predict an hour’s worth of
traffic speed (12 readings) based on the last hour’s data. Please refer to appendix B.2 for experimental
setup details.

Metric Models Variance Thresholds

100 3 1 0.5 0.25

MAE

Dropout GAT-GCN 14.30 14.01 9.38 5.25 5.22
GN-SDE (ours) 14.13 12.42 10.14 5.40 4.82
Dropout GN-ODE 15.21 15.53 12.36 9.37 5.58
Bayesian GCN 15.0 13.9 9.4 5.3 5.2
Ensemble GCN 9.835 6.665 2.615 2.736 -

MAPE

Dropout GAT-GCN 10.21 10.59 20.42 21.01 20.87
GN-SDE (ours) 10.63 9.66 18.74 18.79 13.25
Dropout GN-ODE 10.27 13.92 21.86 17.14 13.70
Bayesian GCN 10.5 10.6 20.5 20.9 20.8
Ensemble GCN 18.15 15.44 18.31 8.61 -

RMSE

Dropout GAT-GCN 18.58 16.39 9.58 5.26 5.22
GN-SDE (ours) 15.38 13.17 10.12 5.22 4.78
Dropout GN-ODE 19.73 17.32 16.68 12.87 7.33
Bayesian GCN 19.0 16.5 9.6 5.3 5.2
Ensemble GCN 19.74 12.73 7.55 6.47 -

RNLL

Dropout GAT-GCN 7.03 13.28 15.12 11.56 14.52
GN-SDE (ours) 6.56 11.57 13.54 13.92 13.88
Dropout GN-ODE 32.33 75.10 31.03 92.42 213.09
Bayesian GCN 7.2 13.4 15.3 12.0 14.6
Ensemble GCN 39.63 51.38 104.68 205.54 -

Table 3: Comparative performance of various models on the METER-LA Dataset across different
variance thresholds. Bold values indicate superior performance by the model.

In Table 3, the GN-SDE model consistently surpasses other contenders across all variance thresholds,
notably securing the lowest MAE, MAPE, RMSE, and RNLL scores. This emphasizes GN-SDE’s
stellar accuracy and unmatched uncertainty estimation abilities. Even with stricter variance thresholds
of 0.5 and 0.25, GN-SDE remains at the forefront, signifying its effective prediction alignment with
observed data and adeptness at uncertainty quantification.

Specifically, the Dropout GN-ODE struggles with the RNLL metric, hinting at a subpar fit and
diminished uncertainty evaluation capabilities. This shortcoming becomes glaringly apparent at the
0.25 variance threshold, where its RNLL significantly eclipses that of its peers. Bayesian GCN
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deserves mention for its resilient performance, often ranking a close second to the GN-SDE, under-
lining its robust modeling and uncertainty estimation prowess. Meanwhile, Ensemble GCN displays
intermittent strengths in the MAE at lower variances but demonstrates inconsistency, particularly
with fluctuating RNLL scores at the 100 and 3 variance thresholds.

In summation, while GN-SDE dominates in its robustness across varying thresholds, Bayesian GCN
also emerges as a formidable model. Dropout GAT-GCN and Dropout GN-ODE especially grapple
with the RNLL metric, and Ensemble GCN exhibits variable results.
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