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Abstract 

With the increasing proliferation of edge devices and context-aware applications, real-time 

personalization of services is becoming critical in domains such as healthcare, smart homes, 

and mobile computing. Traditional federated learning (FL) models face challenges in 

personalization due to data heterogeneity and latency constraints. This study presents an 

adaptive federated meta-learning (FedMeta) framework that personalizes models in real-time 

across distributed cloud-edge infrastructures. By leveraging model-agnostic meta-learning 

(MAML) and dynamically adjusting client-specific learning tasks, the system ensures fast 

adaptation and minimal communication overhead. Experiments show that FedMeta 

significantly improves personalization accuracy and system responsiveness compared to 

centralized and vanilla FL methods. 
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1.  Introduction 

In distributed applications like wearables, smart homes, and mobile interfaces, models 

must adapt quickly to individual users. However, conventional centralized learning fails to 

address privacy, while basic FL struggles with non-IID data and slow convergence across 

users. Personalized federated learning has emerged as a promising solution, but current 

approaches often lack adaptability at the edge level and require extensive communication. 

To address these challenges, we propose a Federated Meta-Learning framework that 

optimizes for fast personalization using minimal local data while maintaining privacy. Our 

system deploys models trained with MAML, allowing edge devices to fine-tune models 

quickly based on local user context. The adaptive orchestration layer dynamically selects 

which models and clients synchronize based on bandwidth, performance, and learning curves. 
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2. Literature Review 

Recent advances in federated learning address data privacy but struggle with 

personalization and real-time deployment. McMahan et al. (2017) introduced the FedAvg 

algorithm, while Smith et al. (2018) developed MOCHA for multi-task personalization. 

Fallah et al. (2020) proposed FedMeta using MAML to improve personalization on 

heterogeneous datasets. Jiang et al. (2019) extended it to Reptile-based approaches for 

reduced communication. 

Lin et al. (2022) explored adaptive sampling in edge federated systems to minimize 

latency. Zhuang et al. (2021) focused on federated meta-learning in IoT environments using 

curriculum-based model selection. Additionally, privacy-preserving meta-learning techniques 

such as DP-MAML (Papernot et al., 2021) integrate differential privacy into edge learning. 

However, most studies evaluate either personalization or scalability—not both. Our work 

combines meta-learning, adaptive orchestration, and edge deployment for real-time 

personalization in practical cloud-edge infrastructures. 

 

3. System Architecture 

The proposed architecture consists of: 

• Client Layer: IoT/edge devices that collect and process user data locally. 

• Edge Server Layer: Manages lightweight models and personalization tasks close to 

the source. 

• Cloud Aggregator: Coordinates global model updates and aggregates meta-gradients 

across regions. 

Each round of learning involves clients downloading a meta-model from the cloud, fine-

tuning it using a few local samples, and uploading model updates. Edge servers manage local 

personalization buffers and pre-cache frequent model variants for fast adaptation. 

 

4. Methodology 

Our FedMeta system uses: 

• MAML-based initialization to enable few-shot personalization at the edge. 

• Adaptive client selection based on accuracy gradient and model divergence. 

• Federated Orchestration Engine (FOE) that dynamically schedules synchronization 

windows across clusters. 

A round begins with global model broadcasting. Clients perform 1–2 steps of 

personalization using their recent data, and selected clients send gradient updates. The cloud 

meta-aggregator uses these to refine the meta-model, which becomes more adaptable in 

future rounds. 
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5. Experimental Evaluation 

Experiments were conducted using three real-world datasets: 

• SmartHome: Sensor-based activity recognition 

• MobiAct: Posture classification via smartphones 

• RealWorld-HAR: Health monitoring from wearable sensors 

The testbed included 30 simulated clients across heterogeneous edge nodes (Raspberry Pi, 

Jetson Nano) and a cloud server hosted on GCP. Each configuration was evaluated on 

personalization accuracy, system latency, and inference distribution. 

 

6. Results and Analysis 

Table 1: Personalization Accuracy vs. Method 

Learning Method Personalization Accuracy (%) 
Avg. Latency 

(ms) 

Centralized 

Learning 
78.2 310 

Federated Learning 83.1 240 

FedMeta (Ours) 90.4 190 

 

Table 2: Dataset Characteristics Used 

Dataset 
Client

s 
Feature Dim. Task Type 

SmartHome 15 18 Activity Recognition 

MobiAct 25 42 Posture Classification 

RealWorld-HAR 30 51 Health Monitoring 
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Figure 1: Accuracy Comparison Across Learning Methods 

 

Figure 2: Inference Distribution in FedMeta Pipeline 

 

7. Limitations and Future Work 

Although FedMeta achieves strong performance in personalization, it has limitations: 

• Computation load at the edge may affect energy-constrained devices. 

• Client dropouts and irregular participation affect convergence. 
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• Security against model inversion attacks remains an open concern. 

Future work will integrate differential privacy, lightweight MAML variants, and 

reinforcement learning-based orchestration to improve scalability and robustness. 
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