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Disorders of compulsivity: a common bias towards
learning habits
V Voon1,2,3, K Derbyshire4,5, C Rück6, MA Irvine1, Y Worbe2, J Enander6, LRN Schreiber4, C Gillan2,7, NA Fineberg8, BJ Sahakian1,2,
TW Robbins2,7, NA Harrison9, J Wood3, ND Daw10, P Dayan11, JE Grant5 and ET Bullmore1,2,3,12

Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement
of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms,
model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that
measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in
disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This
favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further,
we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our
findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving
compulsion.
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INTRODUCTION
One of the puzzling features of pathological behavior in disorders
such as substance abuse—and even of more mundane daily
choices such as consuming unhealthy foods—is that we repea-
tedly choose some behaviors despite knowledge that it has
strongly negative consequences. A hypothesized explanation for
this dissonance1 is that decisions can arise from two distinct,
parallel systems of instrumental control, called goal-directed and
habitual.2,3 In goal-directed control, we make choices that depend
on their likely affective outcomes as predicted by a model of the
environment. In habitual control, we make choices so as to repeat
the actions that were previously rewarded. To put it in another
way, goal-directed choices are prospective, whereas habitual
choices are retrospective.4 Recent computational models have
proposed that these two sorts of decisions arise from two different
learning mechanisms, known as model-based and model-free
reinforcement learning.5

The habitual system encodes choice tendencies divorced from
their goals, leading to the suggestion that this system specifically
may underlie the compulsive, repetitive action in disorders of
addiction and compulsions.1 Normal behavior depends on the
flexible integration of goal-directed and habitual control; if this
breaks down in favor of just the latter, then pathology may ensue.
Consistent with this idea, subjects with obsessive-compulsive
disorder (OCD), characterized by repetitive thoughts and beha-
viors to avoid harm, exhibit signs of excessively habitual choices.6

Meanwhile, recent experimental work in healthy humans has
introduced tasks that are able to tease apart the differential contri-
bution of model-based and model-free learning mechanisms in

acquiring new instrumental behaviors.4 Here we employ one such
task to, first, examine whether these computational mechanisms
are abnormally engaged in disorders of compulsivity, and, second,
to identify neural substrates supporting both healthy and aberrant
individual differences in these mechanisms.
We employ a two-step sequential learning task used previously

to show that healthy volunteers (HVs) simultaneously engage
model-based and model-free learning processes.4 The task
involves decision preferences that change on a trial-by-trial basis
in a way that is expected to differ for the two sorts of learning,
allowing their contributions to be distinguished. Subjects choose
between pairs of stimuli at two stages (Figure 1). Each choice at
stage 1 leads preferentially to a different stage-2 pair, according to
a fixed probabilistic schedule (P= 70%). Each individual choice at
stage 2 leads to the chance of a reward which varies slowly
between 25 and 75% over trials according to a random walk
(Figure 1). Model-free learning uses the experience of the transi-
tions and outcomes to calculate a reward prediction error which
can reinforce the executed actions, giving rise to habitual
behavior. By contrast, model-based learning builds a model of
the state transitions, which it uses to produce goal-directed
decisions by predicting the future prospects of each choice at
stage 1 based on the updated values of the stimuli pairs at stage 2.
The different characteristics of these two sorts of prediction and
learning allow model-based and model-free adjustments to be
teased apart.
In the first study here, we employed the two-step task to test

subjects with disorders representing a broad range of compul-
sions, towards a natural or drug reward, or to avoid an aversive
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stimulus.7 These groups, comprising obese subjects with and
without binge eating disorder (BED), abstinent psychostimulant
(methamphetamine, Meth)-dependent subjects, abstinent alcohol
dependent (EtOH) subjects and patients with OCD, are compared
with matched HVs. We used the same monetary reward in the task
which acts as a conditioned reinforcer across all behaviors to allow
comparison between disorders. The relationship between obesity
and substance use disorders has been of great interest but there is
only limited evidence available in human studies.8 The rodent
model of sucrose binge eating has many similarities with models
of substance use disorders suggesting that this particular pattern
of food intake, namely binge eating, may be a crucial subtype. We
predicted that subjects with all compulsive disorders, BED, Meth,
EtOH and OCD, would be associated with a shift away from model-
based towards model-free control.
In the second study, we sought neural substrates supporting

this variation both among HVs, and also in aberrant compulsion,
here represented by BED. In particular, we assessed the relation-
ship between model-free or model-based biases and gray matter
volume specifically focusing on regions identified in previous
studies including striatal regions, orbitofrontal, lateral prefrontal
and parietal cortex.4,9,10 Lesion studies in rodents and imaging
studies in humans have particularly pointed to ventromedial pre-
frontal and orbitofrontal cortices and dorsomedial striatum (dorsal
caudate) as supporting goal-directed behaviors.11,12 Accordingly,
we predicted that a bias towards habit formation would be asso-
ciated with lower volumes in these regions. We further predicted
that obese subjects with BED would similarly be associated with
lower orbitofrontal and caudate volume relative to obese subjects
without BED.

METHODS
The recruitment strategy has been reported previously13 and is described
in Supplementary Materials. Subjects abstinent from Meth (1 week to
1 year abstinence) or EtOH (2 week to 1 year abstinence; at least 1 week off
long-acting benzodiazepines), Obese subjects with and without BED and

OCD subjects and their matched HVs were tested in the behavioral study.
A subset of the obese subjects with and without BED returned for the
imaging study. A different set of young HVs were recruited for the mag-
netic resonance imaging study. The study was approved by the University
of Cambridge Research Ethics Committee and the University of Minnesota
Institutional Review Board and informed consent obtained from all
participants.

Task
Subjects underwent extensive computer-based instructions explaining
concepts and providing practice examples of changes in transition and
probability, and the two-stage task structure.4 Instructions were self-paced
and lasted 15 to 20min. Subjects chose between a stimulus-pair at stage 1.
The choice of a stimulus at stage 1 led with a fixed probability to one of
two stimuli-pairs at stage 2 (P=0.70 or 0.30) with the other stimulus
leading to the two stimuli-pairs with opposite probability (P= 0.30 or 0.70).
Choice of a stimulus at stage 2 led to a reward with probability varying
slowly and independently over time (between P= 0.25 to 0.75) (Figure 1).
Four different reward probability distributions were used which was
counterbalanced in each group. Subjects were given 2 s to make a decision
at each stage. The transition between stage 1 to stage 2 was 1.5 s. The
stimulus chosen in stage 1 remained on the screen in stage 2 as a
reminder. The stimulus chosen in stage 2 remained on the screen in the
feedback stage as a reminder. The outcomes were images of £1 in the
United Kingdom and $1 USD in the United States. Subjects completed 201
trials divided into three sessions (7.5 s per trial, 8.38 min per session). The
task was run using MATLAB 2011a.

Computational model (adapted from Daw et al.)
The task has three states: the first-stage state sA, and two second-stage
states sB and sC; the two actions at each state are denoted aA and aB.

4

Model-free temporal difference algorithm (habit)
The SARSA (λ) temporal difference (TD) algorithm was used to model the
habitual strategy. Choices are based on the predicted long-run value
(called QTD (s, a) of each action a at each state s, with the predictions being
taught using the TD reward prediction error (δ; Figure 1).

Figure 1. Sequential task. (a) Subjects chose between a stimulus-pair at the first stage leading with fixed probability to one of two stimuli-pairs
in the second stage. Stimulus selection in the second stage leads probabilistically to a reward. (b) Example of reward probabilities for second-
stage stimuli.

Habit formation in addiction and OCD
V Voon et al

346

Molecular Psychiatry (2015), 345 – 352 © 2015 Macmillan Publishers Limited



Each trial t includes a first-stage state s1,t ( = sA) in which an action a1,t is
chosen; this is followed by a second-stage state s2,t (either sB or sC) and
action a2,t and these by a reward r2,t ( = £1 or £0). A prediction error δi,t
occurs following each stage i ( = 1,2) of each trial t: when the second-stage
state is revealed, and at the terminal reward. Each of these updates the
value QTD of the preceding state si,t and action ai,t:

QTD si:t ; ai;t
� � ¼ QTD si:t ; ai;t

� �þ αiδi;t

where

δi;t ¼ ri;t þ QTD siþ1;t ; aiþ1;t
� �� QTD si;t:ai;t

� �

These expressions first update the stage-1 action value according to the
value of the resulting stage-2 state, QTD (s2,t,a2,t) (with r1,t= 0 as no reward
is received at this stage). Next, the stage-2 value is updated in light of the
reward r2,t; here the terminal value QTD (s3,t,a3,t) is defined as 0. A separate
learning rate parameter is included for each stage’s update (α1, α2).
In addition to being updated by the stage-1 prediction error as

described above, the first-stage action value is again updated according to
the stage-2 prediction error at the conclusion of each trial, when the
reward r2,t is received. This update is added to the earlier one:

QTD s1;t; a1;t
� � ¼ QTD s1;t ; a1;t

� �þ α1λδ2;t

The extent of this update is determined by the eligibility trace parameter λ.

Model-based reinforcement learning algorithm (goal-directed)
The model-based reinforcement learning algorithm calculated the stage-1
action value (QMB) for each action, based on the probabilities that that
action would lead to each stage-2 state (P(sB|sA,aA) = 0.7; (P(sB|sA,aB) = 0.3;
and conversely for sC) and the values of those states. Thus, for each action
aj (j=A, B):

QMB sA; aj
� � ¼ P sB9sA; aj

� �
max

k
QTD sB; akð Þ þ P sC9sA; aj

� �
max

k
QTD sC ; akð Þ

Here, the value of the stage-2 states is taken as the model-free value of the
better action there, as model-free and model-based values coincide at the
terminal state.
A net action value for each stage-1 action was then calculated,

according to the weighted sum of the model-free and model-based values:

Qnet sA; aj
� � ¼ wQMB sA; aj

� �þ 1� wð ÞQTD sA; aj
� �

where w is the weighting parameter; w=0 indicates a reliance on
model-free (habit) strategies and w= 1 indicates a reliance on model-based
(goal-directed) strategies. At the second stage, QNET=QTD.
Finally, the probability of a choice at each stage was calculated using the

softmax equation in Qnet:

P ai;t ¼ a9si;t
� �

pexp βi Qnet si;t; a
� �þ p � repðaÞ� �� �

The inverse temperature parameter βi is an index of choice reliability at
each stage (β1, β2) with a lower value indicating greater choice
randomness. The final parameter p controls perseveration (P>0) or
switching (Po0) in the first-stage choices. Here, rep(a) is a binary indicator
which is 1 if a is a stage-1 action and a= a1,t-1, and 0 otherwise.
The primary outcome of this analysis, w, along with other model

parameters were compared between each patient group and their own HV
using multivariate tests. Subject characteristics were compared using
independent t-tests or Fishers Exact Test (Supplementary Tables S1 and
S2). Parameters were tested for normality using Shapiro–Wilks test and
square root transformation was used for Po0.05. Levene’s test was used
to test for equality of variance. In Meth subjects, HIV+ and HIV− subjects
and high nicotine (>1 pack per day) and low or no nicotine (o1 pack
per day) were compared with multivariate analysis for model parameters.
In the patient group, which had sufficient sample size (OCD) to compare
between subjects on the same medication (antidepressants) and
medication-free status, multivariate analysis was used to compare model
parameters. The relationship between w and measures of severity for each
disorder was assessed: BED (Binge Eating Scale), OCD (YBOCS), EtOH
(AUDIT and duration of abstinence), Meth (duration of abstinence, duration
of stimulant use and Penn Craving Scale) using Pearson correlation.
Bonferroni correction applied for each disorder was used to assess
significance. Other exploratory relationships between all model parameters
and age, IQ, BDI (Beck Depression Inventory), UPPS Impulsive Behaviour
Scale and gender using Pearson correlation and Chi square analysis. Matlab
R2011A and SPSS 20 used for the modeling and statistics respectively.

Behavioral outcomes
In the computational model, parameter values are determined by
integrating effects associated with sequences of many choices. A more
direct, though less powerful, way of assessing group differences is to
examine pairs of successive choices, studying how any tendency of
subjects to stay with the same stage-1 choice or switch following outcome
(reward or no reward) depends on the frequency of the stage-1 to stage-2
transition (common (P=0.70) or rare (P= 0.30)). Under the habitual system,
a stage-1 choice would be more likely to be repeated (stay) when followed
by reward, regardless of whether the transition was common or rare. Thus
a habitual strategy would reflect a main effect of outcome in stay proba-
bility (Supplementary Table S3 and Supplementary Figure S1). Conversely,
a goal-directed strategy would tend to switch its subsequent stage-1
choice if it was rewarded but the transition was rare. Given knowledge of
the task structure, the other choice at stage-1 would more likely lead to the
rewarded stage-2 choice. Thus, a goal-directed strategy would reflect an
interaction between outcome × frequency.
We used a mixed effects logistic regression for the stay probability

analysis with outcome (reward or no reward), frequency (rare or common),
and group as factors, comparing all subject groups and HVs. Outcome,
frequency, their interaction and the intercept were taken as random
effects, that is, varying across subjects. We estimated the regression
coefficients using the lme4 linear mixed effects package in the R statistical
environment.
The imaging acquisition and analysis are described in Supplementary

Materials.

RESULTS
Thirty-one obese subjects with BED and 31 without BED, 32 OCD,
23 abstinent Meth subjects and 30 abstinent EtOH subjects were
compared with their own age- and gender-matched healthy HVs.
Each group was matched with HVs in a 3:1 ratio. Thirty-three HVs
were scanned for the first voxel-based morphometry study. Forty
obese subjects with and without BED were scanned for the second
voxel-based morphometry study. Subject characteristics are
reported in Supplementary Materials.
We analyzed the data using a computational model of learning

in which each individual’s trial-by-trial choices were fitted with the
weighted combination of a model-free TD learning algorithm and
a model-based algorithm with the weight being the primary
parameter of interest.4 The best fitting model parameters were
then assessed using multivariate analyses comparing each subject
group with their own matched HVs.
The weighting factor, w, provides an index of the relative

engagement of a model-free (w= 0) versus model-based (w= 1)
strategy. Obese subjects with BED, OCD and Meth subjects all had
lower values of w compared with the matched HVs and thus were
more likely to use habitual model-free processes (Figure 2,
Table 1). Obese controls without BED and EtOH subjects did not
differ from HVs. BED subjects also had lower w (F(3,58) = 4.167,
P= 0.046) and higher perseveration scores (F(3,58) = 4.406, P=0.040)
compared with obese subjects without BED when covaried for age
and gender.
In the BED subjects, higher Binge Eating Scale scores were

negatively correlated with w (R2 = 0.18, Po0.05). In the EtOH
subjects, weeks abstinent were positively correlated with w
(R2 = 0.23, P=0.008). There were no significant differences between
model parameters in OCD subjects on antidepressants (N= 19)
compared with those not on medications (P>0.05).
In the additional model parameters, there were only a few other

differences noted between groups and their HVs. A secondary
index quantifying perseveration at stage 1 (that is, the tendency to
select the same stage-1 stimulus irrespective of reward outcome),
demonstrated that BED subjects were more perseverative
compared with HV. Other groups did not differ significantly from
HV according to this measure. Also, in Meth-dependent subjects,
we found greater choice randomness in stage 2 (lower inverse
temperature parameter β2).
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These results demonstrate that diverse disorders of compulsiv-
ity are accompanied by an excessive tendency toward model-free
learning. We also conducted a parallel analysis of the behavioral
data seeking markers of model-free and model-based learning
more directly in subjects’ raw switching behavior, thereby relaxing
some of the assumptions of the full computational model
and visualizing the effects more directly.4 The results of this
analysis (Supplementary Figure S1,Supplementary Table S3 and
Supplementary Text) were substantially similar to the computa-
tional analysis.
Next, we used voxel-based morphometry in a different set of

HVs (mean age 23.22 (s.d. 2.75); 19 males) to examine how brain
volume related to the relative engagement of model-based
learning, as measured by the parameter w. Taken as an
independent regressor, in HVs, w was positively correlated with
left medial orbitofrontal cortical (OFC) volume (peak coordinates
reported in Montreal Neurological Institute x y z (mm) =− 8
54 − 23, Z= 4.90, cluster size = 69, 87, 10 for three clusters, whole
brain family-wise error (FWE) corrected P= 0.01), with a positive
direction of effect meaning that greater cortical volume was
associated with a stronger tendency toward model-based learning
(Figure 3). Conducting small volume correction (SVC) analyses for
hypothesized regions in striatum, prefrontal and parietal areas, we
found that w was also positively correlated with bilateral caudate
volume (left: − 9 5 6, Z= 3.18, SVC corrected Po0.05; right: 8 6 8,
Z= 3.45, SVC FWE corrected Po0.05; Figure 3) but not putamen or
ventral striatum. Furthermore, w was also positively correlated
with bilateral lateral prefrontal (Brodmann area 46, right: 53 23 26,
Z= 4.11, SVC FWE corrected P= 0.01; left: − 45 20 27, Z= 3.94, SVC
corrected P= 0.02) but not parietal cortex volume. The persevera-
tion index was not associated with any significant correlations. The
inclusion of age and BDI scores as covariates of no interest in a
subanalysis did not change the findings.
Finally, we examined whether these same neural systems were

associated with pathological compulsive disorders, where exces-
sive model-free behavior had been observed. We compared 20
obese subjects with and 20 without BED focusing on the regions
shown to be associated with normal variation in model-free versus

model-based learning in our HV study (medial OFC, caudate and
lateral prefrontal cortex). Obese subjects with BED had lower left
ventral striatal volume (−20 15 − 9, Z= 4.91, cluster size = 9, FWE
whole brain corrected Po0.05) and left lateral OFC volumes (−32
47 − 11, Z= 4.77, cluster size = 5, FWE whole brain corrected
Po0.05) compared with those without BED. Obese subjects with
BED also had lower bilateral medial OFC volume (3 36 − 17,
Z= 3.63, SVC FWE corrected Po0.05) and bilateral caudate
volume (left: − 9 17 − 15, Z= 3.68, SVC FWE corrected Po0.05
and right: 9 14 − 12, Z= 3.42, SVC FWE corrected Po0.05) com-
pared with those without BED (Figure 4). With the addition of the
model-based parameter w from behavior as a covariate, these
group-wise medial OFC, caudate and ventral striatal findings were
no longer significant (no voxels observed in these regions includ-
ing when lowering the threshold to an uncorrected Po0.05)
suggesting that the individual differences in learning bias might
largely explain differences in cortical and striatal volumes between
groups of obese subjects with and without BED.

DISCUSSION
A wealth of preclinical studies and influential theory suggest that
stimulant addiction is associated with abnormal habit expression;1

similar suggestions have been made for repetitive avoidance
behaviors (OCD). Here, we show that these disorders are also
associated with a significant shift in habit formation, evident early
in the learning of a new decision problem, and that the
abnormality can be quantified in terms of a detailed computa-
tional learning mechanism with strong neural foundations, model-
free learning.3,5 Although abstinent EtOH subjects did not differ
from HVs, this lack of a difference may be in part mediated by
abstinence. Early abstinence was associated with greater habit
formation with a shift towards greater goal-directed behaviors
with prolonged abstinence. This relationship suggests a possible
role for top-down volitional control in decreasing habit formation.
We similarly demonstrate greater model-free habit formation in
obese subjects with binge eating behaviors, as compared with
those without, suggesting that this neurocomputational mechan-
ism may be commonly implicated across a broad range of
disorders and in particular supporting similarities between the
subtype of binge eating and substance use disorders.
Our results also implicate defined neural substrates in these

effects. We show that in HVs, lower gray matter volumes in the
caudate, medial OFC and lateral prefrontal cortices were asso-
ciated with a greater shift towards model-free habit formation.
These findings dovetail with rodent lesion and human imaging
studies implicating these regions in model-based goal-directed
behaviors. Blood-oxygen-level dependent activity in various
cortical regions covaries with aspects of model-based learning in
HVs: for instance, the state prediction error, or the discrepancy
between the observed and expected state transition is repre-
sented in the lateral prefrontal cortex and intraparietal sulcus.9

Further evidence of the role of cortical regions comes from rodent
studies showing that their ability to solve (Pavlovian) reversal tasks
when the identity rather than the value of outcomes changes
depends on the orbitofrontal cortex—this is another sign of
model-based rather than model-free processing10,14 although
these regions may be more likely lateral rather than medial
orbitofrontal cortex. Using a three-step decision tree task of which
this current task is its predecessor, model-based and model-free
values were shown to be encoded in the caudate and putamen,
respectively, whereas the ventromedial prefrontal cortex accessed
both systems.15 The present results also tie these systems to
compulsion, in that BED is similarly associated with lower bilateral
caudate and bilateral medial OFC and left ventral striatal gray
matter volumes, though not with lateral prefrontal volume. These
volumetric differences between obese subjects with and without
BED have not been reported in previous studies. Our findings

Figure 2. Computational algorithm parameters. (Top graph) Weight-
ing parameter (w) and (bottom graph) perseveration indices. Patient
group and matched healthy volunteer differences: *Po0.05
**P= 0.001. BED, obese subjects with binge eating disorder; HV,
healthy volunteer; Meth, methamphetamine-dependent; Obese,
obese subjects without binge eating disorder; OCD, obsessive-
compulsive disorder. Error bars represent s.e.m.
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suggest that habit formation related to binge eating may be
mediated by a medial OFC—caudate network, which may also
mediate variation in these functions among HVs.
The neural areas where we see structural differences related to

model-based learning coincide well with areas implicated in goal-
directed behavior in rodent lesion and human imaging studies.
From studies in rodents, we know that lesions of the posterior
dorsomedial striatum or prelimbic cortex prevent the expression
of goal-directed learning instead leaving inflexible habitual
choices that are insensitive to contingency degradation and
outcome devaluation.11,16 Similarly, human functional imaging
studies focusing on the encoding of reward value signals relevant
for action selection implicate the medial orbitofrontal cortex
extending dorsally along the medial prefrontal cortex. These
regions represent action–outcome associations17 separate from
stimulus-related value signals.18 The caudate is also implicated in
the online computation of action–outcome contingency to guide
goal-directed learning.19,20 Our findings are convergent with these
observations, suggesting that greater habit formation may be
related to impaired representation of action–outcome associations

during goal-directed learning with lower caudate and medial OFC
volumes.
Abnormal orbitofrontal and caudate gray matter volume have

also been demonstrated in substance use disorder subjects.
Abstinent stimulant use disorder subjects have decreased medial
orbitofrontal cortex volumes,21 with lower volumes associated
with impaired decisions in a modified gambling task.22 Meth
dependence is similarly associated with decreased orbitofrontal
cortex volume23 and may be related to comorbid nicotine use.24

Meth dependence is also associated with lower striatal D2
receptor availability correlating with lower metabolism in the
OFC.25 Furthermore, active Meth use or early abstinence is
associated with lower caudate volumes independent of comorbid
nicotine use,24 with increases in volume with prolonged
abstinence.26 Thus, greater habit formation in Meth dependence
may be mediated by orbitofrontal cortex and caudate abnorm-
alities, similar to our results in BED here.
Our data are also consistent with marked overlaps in addiction

towards drug and food rewards. In rodents, sugar bingeing
demonstrates addictive-like properties including enhanced

Table 1. Inferred parameters

N w P β1 β2 α1 α2 λ LL

HV 93 0.343
(0.239)

0.187
(0.177)

4.892
(4.002)

3.124
(1.935)

0.416
(0.309)

0.403
(0.276)

0.579
(0.289)

214.724
(41.704)

BED 31 0.242
(0.183)

0.349
(0.360)

3.578
(3.250)

3.435
(2.820)

0.469
(0.318)

0.338
(0.273)

0.588
(0.350)

222.961
(42.450)

F
P

4.562
0.035

12.264
0.001

2.535
0.144

0.395
0.531

0.540
0.464

1.245
0.267

0.007
0.935

0.981
0.324

HV 93 0.345
(0.242)

0.186
(0.175)

4.883
(3.980)

3.200
(1.944)

0.416
(0.305)

0.400
(0.281)

0.585
(0.287)

214.432
(41.077)

Obese 31 0.312
(0.239)

0.203
(0.191)

5.573
(3.939)

2.961
(1.959)

0.435
(0.342)

0.384
(0.295)

0.678
(0.280)

213.165
(48.127)

F
P

0.448
0.504

0.173
0.678

0.780
0.379

0.457
0.500

0.062
0.803

0.069
0.793

2.351
0.128

0.020
0.887

HV 96 0.333
(0.243)

0.173
(0.173)

4.901
(3.922)

3.196
(2.028)

0.411
(0.304)

0.398
(0.276)

0.574
(0.290)

214.496
(41.227)

OCD 32 0.239
(0.211)

0.188
(0.211)

4.937
(4.271)

2.913
(1.780)

0.398
(0.276)

0.380
(0.306)

0.502
(0.332)

217.499
(48.610)

F
P

4.133
0.044

0.009
0.925

0.002
0.964

0.537
0.465

o0.001
0.992

0.110
0.741

1.493
0.224

0.092
0.763

HV 66 0.347
(0.239)

0.185
(0.172)

4.806
(3.159)

3.323
(1.768)

0.445
(0.283)

0.417
(0.226)

0.574
(0.317)

215.055
(43.921)

Meth 22 0.224
(0.218)

0.168
(0.236)

4.667
(3.902)

2.283
(1.598)

0.3144
(0.293)

0.336
(0.322)

0.480
(0.310)

230.451
(45.148)

F
P

5.713
0.029

0.149
0.704

0.029
0.856

6.188
0.015

3.583
0.062

1.700
0.196

0.145
0.704

1.928
0.168

HV 90 0.331
(0.237)

0.184
(0.179)

5.131
(4.039)

3.235
(2.073)

0.380
(0.289)

0.394
(0.272)

0.578
(0.295)

212.984
(43.325)

EtOH 30 0.315
(0.269)

0.201
(0.202)

4.588
(3.940)

3.562
(3.119)

0.478
(0.312)

0.229
(0.262)

0.575
(0.312)

220.103
(51.785)

F
P

0.088
0.768

0.187
0.666

0.796
0.374

0.424
0.516

2.439
0.121

8.295
0.005

0.002
0.968

0.547
0.461

Abbreviations: BED, binge eating disorder; EtOH, alcohol dependent; HV, healthy volunteer; Meth, methamphetamine-dependent; OCD, obsessive-compulsive
disorder.
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responding for sugar after abstinence, amphetamine cross-sensi-
tization and nucleus accumbens dopamine release.7 Although
evidence in the preclinical literature points towards such
similarities, evidence to support this link in the human literature
is more limited.8 In humans, food stimulation in BED subjects is
associated with greater striatal dopamine release.27 Similar to
psychostimulant dependence, studies in obese humans demon-
strate lower striatal dopamine D2 receptor binding along with

lower prefrontal metabolism including the medial OFC.28 Body
mass index is also associated with lower OFC volume in older
females.29 Our findings provide convergent data, demonstrating
similar abnormalities in habit formation in stimulant addiction and
binge eating, a specific subtype of obesity, possibly mediated by
caudate or medial OFC impairments.
We compared these groups with patients suffering from OCD, a

seemingly quite different case of compulsion as it is based on
avoidance rather than appetitive motivation. Individuals with OCD
have demonstrated impairments in implicit action–outcome
representation, as reflected in ‘slips of action’ to previously
rewarded stimuli despite negative outcomes, and impaired
explicit recall of action–outcome associations.6 OCD is also asso-
ciated with greater habitual avoidance choices following over-
training with a shock avoidance task and outcome devaluation.30

Decreased OFC volume is commonly observed in OCD in the
region-of-interest-based analyses.31 However, perhaps partly
because of methodological issues, a recent meta-analysis of
volumetric studies in OCD failed to confirm that OFC volumes
were abnormal although it did show significantly enhanced
caudate volumes.32 Impaired functional connectivity of the OFC
has been demonstrated in both OCD and stimulant dependence
suggesting overlapping OFC functional abnormalities that may
link with habit formation.33

Anatomical studies of primates and humans have shown that
the medial OFC projects to the ventral striatum and ventromedial
caudate, and the dorsolateral prefrontal cortex projects to the
dorsal caudate.34,35 Although we showed a relationship between
w and medial OFC and caudate, we did not show a significant
relationship with ventral striatum. Thus, whether these represent
engagement of two different fronto–subcortical pathways in HVs
is not clear. We showed that obese BED have lower volumes in
bilateral medial OFC and caudate and left ventral striatum.
In addition to these shifts in habit formation across groups, we

further show differences between disorders, which may help
explain the differences in clinical presentations. BED subjects
perseverated more in their stage-1 choices irrespective of the
outcome, a measure independent of the habit formation index.
Thus, binge eating is characterized by both outcome-dependent
habitual choices as a function of previously rewarded actions, and
also by greater perseveration irrespective of outcome, suggesting
generalized impairments in cognitive flexibility.
In Meth-dependent subjects, in addition to enhanced habit

formation, we also found greater choice randomness in stage 2
(lower β2). In reinforcement learning models, decreasing β is
exactly equivalent to decreasing the effective magnitude of the
reinforcement outcome (as they always appear multiplied
together). These findings are thus consistent with reports of
decreased sensitivity to monetary rewards in psychostimulant-
dependent subjects including decreased subjective discrimination
of monetary reward gradients,36 and decreased reaction times and
lateral orbitofrontal responsivity to monetary reward outcomes.37

However, importantly, across all the patient groups the differences
in choice at the first level (where model-based and model-free
learning are distinguished) were related specifically to w, which
indexes the relative engagement of these processes. No differ-
ences were noted in the first-stage inverse temperature parameter
β1, which characterize the overall reliability of that behavior given
the modeled quantities. These results suggest that the group
differences were not secondary to overall sloppier performance or
engagement in the task (which would all be expected to translate
into lower β1) but instead to the more specific nature of subjects’
learning strategies. Pathological changes secondary to the drug
use such as reactive microgliosis have been shown in Meth-
dependent subjects in regions including the orbitofrontal cortex,
striatum and midbrain.38 These observations highlight the differ-
ential consequences of drug and food use and may underlie our

Figure 3. Voxel-based morphometry in healthy volunteers. The glass
brain, inflated surface render and graph show a regression analysis
with brain volume and w. The glass brain and surface brain are
shown at FWE corrected Po0.05 and whole brain uncorrected
Po0.005, respectively. The inset shows the same regression analysis
with a striatal mask overlaid on the mean group T1 gray matter
image. FWE, family-wise error; OFC, orbitofrontal cortical.

Figure 4. Voxel-based morphometry. Contrast of obese subjects
with binge eating disorder−obese subjects without binge eating
disorder shown at whole brain uncorrected Po0.005 and with
caudate mask. Volumetric findings are overlaid on the mean group
T1 gray matter image.
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observed behavioral differences and potential changes with
abstinence.
Although we show a relative shift from goal-directed to habit

formation and emphasize the role of habit formation, whether this
is related to a decrease in goal-directed or an increase in habit
formation remains to be established. The effects may be related to
a decrease in goal-directed behavior, which would also be
consistent with the medial OFC and caudate findings. Equally,
goal-directed learning is more cognitively demanding, and so
places greater demands on resources. Even in HVs, the simulta-
neous performance of a demanding task results in a shift towards
habitual behaviors39 and this may be exacerbated in patients
suffering from various psychiatric conditions. Similarly, stress,
which is relevant in disorders of addiction, has been associated
with a decrease in medial prefrontal and caudate volumes, along
with a shift towards greater habits.40 Further studies would be
necessary to disentangle these effects.
There were several limitations to the study. As this is a cross-

sectional study, whether the abnormalities are state-specific and
secondary to the drug or behavior or trait-specific and predispose
towards the addiction process is not known. All subject groups
had higher depression scores relative to HV. Similarly, Meth-
dependent,41 BED42 and OCD43 subjects are commonly associated
with depression. Notably, we show that depression scores are
unrelated to these measures suggesting these factors to be
relatively unimportant. We show a similar direction of effect across
several groups but do not show an increase in goal-directed
behaviors. An increase in goal-directed behaviors has been pre-
viously shown in response to Levodopa44 suggesting that our
findings are related to group differences rather than task
insensitivity. We also use a common conditioned reinforcer of
money across groups to allow for comparisons. Further studies
using group-specific incentive reinforcers are indicated.
Although we did not show any difference between OCD subjects
taking antidepressants or those who were medication-free, this
may be related to sample size issues, so further studies would be
desirable.
The shared patterns of abnormalities we report here suggest

that abnormal habit formation via model-free learning may be
an underlying neurocomputational mechanism, associated with
abnormal caudate and medial OFC volume, which contributes to a
dimension of compulsivity common to these disorders. The
influence of abstinence in EtOH subjects highlights a possible
role for drug exposure in the transition towards habit formation.
Our findings dovetail with the current trend in defining mech-
anistically based dimensional rather than categorical approaches
to psychiatric classifications.45 Similarities in habit formation
highlight overlaps between the subtype of binge eating in obesity
and substance use disorders, explaining in part the pathological
choice towards high-calorie food consumption despite negative
consequences. Crucially, we also identify differences between
disorders, which might underlie the differences in clinical pre-
sentation and the differences between the consequences of drug
and food. Cognitive or pharmacological strategies46 to shift the
bias away from habit formation towards forward planning model-
based goal-directed approaches may be therapeutically useful.
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