
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348295706

Maximum shortest path interdiction problem by upgrading edges on trees

under hamming distance

Article in Optimization Letters · November 2021

DOI: 10.1007/s11590-020-01687-9

CITATIONS

13
READS

190

4 authors, including:

Zhang Qiao

Southeast University

12 PUBLICATIONS 67 CITATIONS

SEE PROFILE

Xiucui Guan

Southeast University

41 PUBLICATIONS 235 CITATIONS

SEE PROFILE

Panos Pardalos

University of Florida

1,729 PUBLICATIONS 48,483 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xiucui Guan on 17 January 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348295706_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_hamming_distance?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348295706_Maximum_shortest_path_interdiction_problem_by_upgrading_edges_on_trees_under_hamming_distance?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Qiao-8?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Southeast-University?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Florida2?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Panos-Pardalos?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiucui-Guan-2?enrichId=rgreq-782d0fbb1a22492006f22dd10ecaf5c5-XXX&enrichSource=Y292ZXJQYWdlOzM0ODI5NTcwNjtBUzoxMTEzMjE0NTYxNTk1Mzk0QDE2NDI0MjI0NDI4ODI%3D&el=1_x_10&_esc=publicationCoverPdf

Optimization Letters (2021) 15:2661–2680
https://doi.org/10.1007/s11590-020-01687-9

ORIG INAL PAPER

Maximum shortest path interdiction problem by upgrading
edges on trees under hamming distance

Qiao Zhang1 · Xiucui Guan1 · Hui Wang1 · Panos M. Pardalos2,3

Received: 10 September 2020 / Accepted: 8 December 2020 / Published online: 6 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
We consider the maximum shortest path interdiction problem by upgrading edges on
trees under Hamming distance (denoted by (MSPITH)), which has wide applications
in transportation network, networkwar and terrorist network. The problem (MSPITH)
aims to maximize the length of the shortest path from the root of a tree to all its leaves
by upgrading edge weights such that the upgrade cost under sum-Hamming distance
is upper-bounded by a given value. We show that the problem (MSPITH) under
weighted sum-Hamming distance is NP-hard. We consider two cases of the problem
(MSPITH) under unit sum-Hamming distance based on the number K of critical
edges. We propose a greedy algorithm within O(n + l log l) time when K = 1 and a
dynamic programming algorithm within O(n(log n + K 3)) time when K > 1, where
n and l are the numbers of nodes and leaves in a tree, respectively. Furthermore, we
consider a minimum cost shortest path interdiction problem by upgrading edges on
trees under unit Hamming distance, denoted by (MCSPITUH) and propose a binary
search algorithm within O(n4 log n) time, where a dynamic programming algorithm
is executed in each iteration to solve its corresponding problem (MSPITH). Finally,
we design numerical experiments to show the effectiveness of the algorithms.

Keywords Network interdiction problem · Upgrading critical edges · Shortest path ·
Tree · Hamming distance · Dynamic programming algorithm

Research is supported by National Natural Science Foundation of China (11471073) and the Basic
Research Program at the National Research University Higher School of Economics (HSE) for P. M.
Pardalos.

B Xiucui Guan
xcguan@163.com

1 School of Mathematics, Southeast University, Nanjing 210096, China

2 Center for Applied Optimization, Department of Industrial and Systems Engineering, University
of Florida, Gainesville, FL, USA

3 LATNA, Higher School of Economics, Moscow, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-020-01687-9&domain=pdf
http://orcid.org/0000-0002-2653-1868

2662 Q. Zhang et al.

1 Introduction

Network interdiction problems by deleting critical edges (denoted by (NIP-DE)) aim
to delete K edges of a network to make some network performance worse. They have
wide applications in transportation network [1], terrorist network [2,3] and network
war [3]. They have been widely studied on shortest path [3–6], spanning tree [7–11],
maximum matching [12–15], maximum flow [16,17] and center (median) location
[18] problems.

The problem (NIP-DE) was first applied to shortest path problem by Corley and
Sha in [4]. For any K , Bar-Noy et al. [5] showed that it is NP-hard. Khachiyan et al.
[3] showed that it is not approximable within ratio 2. When K = 1 Nardelli et al. [6]
proposed an O(mα(m, n)) algorithm for the problem on undirected networks, where
α is the inverse Ackermann function, m, n are the numbers of edges and nodes in the
network. Bazgan et al. [19] gave an O(mn) algorithm for the shortest path interdiction
problemwhen the increment b = 1 of the length of the path, while the problem ismuch
harder when b ≥ 2. Zhang et al. [20] studied the optimal shortest path set problem in
an undirected graph. The goal is to find a minimum collection of paths for the vehicles
before they start off to assure the fastest arrival of at least one vehicle, no matter which
K edges are blocked. They proposed an O(n2) algorithm when K = 1 and a strong
polynomial time algorithm when K > 1.

Almost all the network interdiction problems are to delete some critical edges.
However, in some practical applications, it is extremely difficult to delete edges in a
network, but to modify the weights of some edges to prolong service since there are
always some emergence or alternative schemes available. In terrorist networks given
in Fig.1 [21], under limited interdiction budget, once a terrorist attacks node k10 which
will cause fire, terrorists want to maximize the shortest path from node k1 to k10 of
fire trucks by interdicting some arcs. Correspondingly, defenders should determine in
advance the risky arc(s) that will be interdicted and present a relatively safety paths
as emergence schemes for the fire trucks. In this case, terrorists can only increase
the lengths of some arcs, but can not increase its lengths to +∞, which corresponds
to deleting those arcs. Therefore, consider the shortest path interdiction problems on
trees by upgrading critical edges.

The maximum shortest path interdiction problem by upgrading edges on trees
(denoted by (MSPIT)) can be defined as follows. Let T = (V , E, w) be an edge–
weighed tree rooted at s, where V = {s, v1, v2, · · · , vn} and E = {e1, e2, · · · , en}
are the sets of vertices and edges, respectively. Note that the edge e j = (vi , v j) is
labelled by the subscript of the endpoint v j which is further to the root s than vi . Let
L = {t1, t2, · · · , tl} be the set of leaves. Letw(e) and u(e) be the original and upgrade
length of edge e ∈ E , respectively, where w(e) ≤ u(e). Let �w(e) = u(e) − w(e).
Let c(e) be a cost to upgrade the edge e. Denote by Ps,tk the unique path from s to tk
in T . Define dw(s, tk) = ∑

e∈Ps,tk
w(e) as the length of path Ps,tk under the vector w.

Define “the shortest root–leaf distance” dw(s, L) = mintk∈L dw(s, tk) as the shortest
distance from the root s to all the leaves.

The problem (MSPIT) aims to find an upgrade scheme w̄ to maximize the shortest
root–leaf distance under w̄ on the premise that the total upgrade cost under some

123

Maximum shortest path interdiction problem… 2663

Fig. 1 A terrorist network consisting of 10 nodes and 26 arcs [21]. The interdiction costs are shown on the
relevant arcs

norm is upper bounded by a given value K . The mathematical model can be stated as
follows.

max min
t∈L dw̄(s, t)

s.t .
∑

e∈E
‖w̄(e) − w(e)‖ ≤ K ,

w(e) ≤ w̄(e) ≤ u(e), e ∈ E .

When theweighted l1 norm is applied to the upgrade cost, Zhang,Guan andPardalos
[22] proposed a linear time algorithm for the problem (MSPIT1) under unit l1 norm,
and a primal dual algorithm within O(n2) time for the problem (MSPIT1) under
weighted l1 norm. They also devised an O(n2) time algorithm to solve the problem
of minimizing the cost by upgrading edges such that the length of the shortest path is
lower bounded by a value.

When the Hamming distance is applied to the upgrade cost, the problem (MSPIT)
under Hamming distance (denoted by (MSPITH)) can be formulated as the following
form.

max min
t∈L dw̄(s, t)

s.t .
∑

e∈E
c(e)H(w̄(e), w(e)) ≤ K ,

w(e) ≤ w̄(e) ≤ u(e), e ∈ E, (1)

where the Hamming distance between w̄(e) and w(e) is defined as

H(w̄(e), w(e)) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

123

2664 Q. Zhang et al.

Table 1 The relationship between the previous research and our research

Type Graph Problem K/b/c Complexity Reference

Deleting
edges

General
graph NIP

on
shortest

path

any K
NP -hard [4]

Not approximable
within ratio 2 [14]

Undirected
networks

K = 1 O(mα(m, n)) [17]
b = 1 O(mn) [5]
K = 1 O(n2) [25]
any K

Strongly
polynomial time

Updating
edges

General
graph MCPIP

any K

any c
Strongly
polynomial time [16]

Tree

MCSPIT1
c = 1 O(n)

[26]any c O(n2)

MSPIT1
c = 1 O(n)
any c O(n2)

SPITUH c = 1 Exponential time [24]

MSPITH
any c NP -hard Section 2

K = 1 c = 1 O(n + l log l) Alg. 1
any K c = 1 O(n(logn + K3)) Alg. 2

MCPITUH any K c = 1 O(n4 logn) Alg. 3

Mohammadi and Tayyebi [23] solved the maximum capacity path interdiction
problem (MCPIP) on general graphs with fixed costs by binary search in strongly
polynomial time. The main difference between the problem (MCPIP) and (MSP-
ITH) is the definition of the length of a root-leaf path, which is the minimum edge
weight of a path in the problem (MCPIP) and the sum of edge weights of a path in the
problem (MSPITH). Zhang, Guan etc. [24] considered the shortest path improvement
problem on rooted trees under unit Hamming distance, denoted by (SPITUH), whose
aim is to minimize the number of modified edges satisfying l(e) ≤ w̄(e) ≤ w(e) and
the modified shortest distance dw̄(s, tk) is upper bounded by a given value dk(tk ∈ L).
They proposed a dynamic programming algorithm to solve the problem, whose time
complexity is exponential time in theworst case. The relationship between the previous
research and our research can be shown in Table 1.

The paper is organized as follows. In Sect. 2,wefirst proved the problem (MSPITH)
is NP–hard as its subproblem can be transformed into a 0–1 knapsack problem. In Sect.
3 and 4, we proposed a greedy algorithm and a dynamic programming algorithm to
solve the problem (MSPITH) under unit Hamming distance when K = 1 and K > 1
within time complexities O(n + l log l) and O(n(log n + K 3)), respectively. In Sect.
5, we considered a minimum cost shortest path interdiction problem by upgrading
edges on trees under unit Hamming distance and proposed an O(n4 log n) algorithm
based on a binary search technique. In Sect. 6, computational experiments were given
to show the effectiveness of the algorithms. In Sect. 7, we drew a conclusion and put
forward future research.

2 The time complexity of the problem (MSPITH)

In this section, we will discuss the time complexity of the problem (MSPITH) under
the weighted Hamming distance. We first prove that the problem (MSPITH) defined
on a chain is NP–hard by transforming it into a 0–1 knapsack problem. Thenwe extend
the NP–hardness to the problem (MSPITH) defined on a chain tree, whose degrees

123

Maximum shortest path interdiction problem… 2665

(except the root and the leaves) are all 2. Finally, we can conclude that the problem
(MSPITH) defined on general rooted trees is still NP–hard.

Theorem 1 The problem (MSPITH) defined on a chain is NP–hard.

Proof Suppose a tree T degenerates to a chain Ps,t , where s is the root and t is the
only leaf node in L . Then the problem (1) can be transformed as follows.

max
∑

e∈Ps,t

w̄(e)

s.t .
∑

e∈Ps,t

c(e)H(w̄(e), w(e)) ≤ K ,

w(e) ≤ w̄(e) ≤ u(e), e ∈ Ps,t . (2)

For convenience, we substitute H(w̄(e), w(e)) by x(e), where

x(e) =
{
0, if w̄(e) = w(e),
1, if w̄(e) �= w(e).

The objective function can be calculated below.

max
∑

e∈Ps,t

w̄(e) = max
∑

e∈Ps,t

(w(e) + x(e)(w̄(e) − w(e))

= max
∑

e∈Ps,t

(w(e) + x(e) · �w(e))

=
∑

e∈Ps,t

w(e) + max
∑

e∈Ps,t

�w(e) · x(e)

Hence, the problem (2) is equivalent to the following problem.

max
∑

e∈Ps,t

�w(e) · x(e)

s.t .
∑

e∈Ps,t

c(e)x(e) ≤ K ,

x(e) =
{
0, if �w(e) = 0,
1, if �w(e) �= 0.

(3)

The problem (3) is just a 0–1 knapsack problem which is NP–hard [25]. �	
Definition 1 A tree is a chain tree if the degrees of its vertices (except the root and
the leaves) are all 2.

The tree as shown in Fig. 2 is a chain tree.
Notice that a chain tree is a combination of chains rooted at the same root. Then

we can obviously conclude that

123

2666 Q. Zhang et al.

Fig. 2 A chain tree

Corollary 2 The problem (MSPITH) defined on a chain tree is NP–hard.

Without loss of generality, a general rooted tree is combined with chains and chain
trees. Hence we can conclude that

Corollary 3 The problem (MSPITH) defined on rooted trees is NP–hard.

Notice that the problem (MSPITH) only concerns whether an edge is upgraded or
not. The larger the upgrade weight is, the better the objective value of the problem (1)
is. Hence, the following theorem holds.

Theorem 4 If the edge length vector w̄ is an optimal solution to the problem (MSP-
ITH), so is w∗ defined below.

w∗(e) =
{

w(e), if w̄(e) = w(e),
u(e), if w̄(e) �= w(e).

Proof Obviously,
∑

e∈E H(w∗(e), w(e)) = ∑
e∈E H(w̄(e), w(e)) and w(e) ≤

w∗(e) ≤ u(e), thus, w∗ is a feasible solution of the problem (MSPITH). We next
show that w∗ is an optimal solution of the problem (MSPITH).

For convenience, denote by Ps,t ′ the shortest path under w̄ and let ei be the any
one upgrade edge with w̄(ei) �= w(ei) . Then the relationship between ei and Ps,t ′
contains the following three cases.

(1) If ei /∈ Ps,t ′ , then dw∗(s, L) = dw̄(s, L) = dw̄(s, t ′) .
(2) If ei ∈ Ps,t ′ and there is another one path Ps,t ′′ that is also the shortest path

under w̄, we have dw∗(s, L) = dw̄(s, L) = dw̄(s, t ′′).
(3) If ei ∈ Ps,t ′ and Ps,t ′ is the only shortest path under w̄, it follows that w∗(ei) =

u(ei) > w̄(ei), then

dw∗(s, L) ≥ dw∗(s, t ′) = dw∗(Ps,t ′ \{ei }) + w∗(ei)
= dw̄(Ps,t ′ \{ei }) + u(ei)

> dw̄(Ps,t ′ \{ei }) + w̄(ei)

= dw̄(s, t ′) = dw̄(s, L).

123

Maximum shortest path interdiction problem… 2667

Thus, we have dw∗(s, L) > dw̄(s, L), which contradicts with that w̄ is an optimal
solution of the problem (MSPITH).

Hence, w∗ is also an optimal solution of the problem (MSPITH). �	

Since the problem (MSPITH) on rooted trees is NP–hard, we will focus on the
problem (MSPIT) under unit Hamming distance when c = 1, which is denoted by
(MSPITUH) and can be formulated as follows. We can only upgrade at most K
critical edges in a rooted tree to maximize the shortest root-leaf distance of the tree in
the problem (MSPITUH).

max min
t∈L dw̄(s, t)

s.t .
∑

e∈E
H(w̄(e), w(e)) ≤ K

w(e) ≤ w̄(e) ≤ u(e), e ∈ E . (4)

In the next two sections, we will design a greedy algorithm and a dynamic pro-
gramming algorithm to solve the problem (MSPITUH) when K = 1 and K > 1,
respectively.

3 Solve the problem (MSPITUH) when K = 1

When K = 1, the problem (MSPITUH) aims to upgrade one critical edge tomaximize
the shortest root–leaf distance of a rooted tree. We first analyze some properties of the
problem, then present a greedy algorithm with time complexity O(n + l log l).

Definition 2 Define L(e) = {tk |e ∈ Ps,tk , k = 1, 2, · · · , l} as the set of leaves tk to
which Ps,tk passes through e. If tk ∈ L(e), we say the edge e control the leaf tk , that
is, tk is a leaf controlled by edge e.

Firstly, sort the values of dw(s, tk)(k = 1, 2, · · · , l) in an ascending order and
rearrange the label of the leaves, such that

dw(s, t∗1) ≤ dw(s, t∗2) ≤ · · · ≤ dw(s, t∗l).

Then we have dw(s, t∗i) ≤ dw(s, t∗j) when i < j .
In order to maximize the shortest root–leaf distance by updating only one edge, this

edge must locate on the path Ps,t∗1 , which is the shortest path among all the root–leaf
paths. To determine which edge to be upgraded on the path Ps,t∗1 , for any edge e, we
introduce two leaves with minimum labels that controlled and not controlled by the
edge e, respectively.

t ′(e) = t∗k′ , k′ = min{k|t∗k ∈ L(e), k = 1, 2, · · · , l}, (5)

t ′′(e) = t∗k′′ , k′′ = min{k|t∗k ∈ L\L(e), k = 1, 2, · · · , l}. (6)

123

2668 Q. Zhang et al.

For any ei ∈ Ps,t∗1 , let

w̄i (e) =
{
u(e), e = ei ,
w(e), e �= ei .

(7)

Then t ′(ei) = t∗1 and

dw̄i (s, t∗1) = dw̄i (s, t ′(ei)) = min
tk∈L(ei)

dw̄i (s, tk),

since the lengths of the paths Ps,tk (tk ∈ L(ei)) increase by �w(ei) simultaneously.
On the other hand, the lengths of the paths Ps,tk (tk ∈ L\L(ei)) do not change since
such leaves tk are not controlled by ei , then we have

dw̄i (s, t ′′(ei)) = dw(s, t ′′(ei)) = min
tk∈L\L(ei)

dw(s, tk).

Thus, the minimum value between dw̄i (s, t∗1) and dw̄i (s, t ′′(ei)), which is denoted by
d̄(ei), will be the shortest distance when the edge ei ∈ Ps,t∗1 is upgraded.

To maximize the shortest path, for all edges ei on path Ps,t∗1 , we only need to

calculate the relevant value d̄(ei), then upgrade the edge eθ with the maximum value
of d̄(eθ) = maxei∈Ps,t∗1

d̄(ei).

Theorem 5 For all ei ∈ Ps,t∗1 , let

d̄(ei) = min{dw̄i (s, t∗1), dw̄i (s, t ′′(ei))} (8)

and d̄(eθ) = maxei∈Ps,t∗1
d̄(ei). Then w̄θ is an optimal solution of the problem

(MSPITUH) when K = 1.

Proof We prove it by contradiction. Suppose w̄θ is not an optimal solution, but w̄τ

is, where eτ ∈ Ps,t∗1 and w̄τ (e) =
{
u(e), e = eτ ,

w(e), e �= eτ .
Then we have mint∈L dw̄τ (s, t)

> mint∈L dw̄θ (s, t) and

min
t∈L dw̄τ (s, t) = min{ min

t∈L(eτ)
dw̄τ (s, t), min

t∈L\L(eτ)
dw̄τ (s, t)}

= min{dw̄τ (s, t∗1), dw̄τ (s, t ′′(eτ))} = d̄(eτ).

Similarly, we have

min
t∈L dw̄θ (s, t) = d̄(eθ) < d̄(eτ),

which contradicts to the condition d̄(eθ) = maxei∈Ps,t∗1
d̄(ei). Thus, w̄θ is an optimal

solution. �	

123

Maximum shortest path interdiction problem… 2669

Notice that formula (8) can also be presented as:

d̄(ei) = min{dw̄i (s, t∗1), dw̄i (s, t ′′(ei))}
= min{dw(s, t∗1) + �w(ei), dw(s, t ′′(ei))}. (9)

According to the analysis above, we propose the following greedy algorithm to
solve the problem (MSPITUH) when K = 1.

Algorithm 1 A greedy algorithm to solve the problem (MSPITUH) when K = 1.
Require: A tree T rooted at s, the set L of leaves and two edge weight vectors w and u.
Ensure: The upgraded edge eθ , the optimal value d̄(eθ) and the optimal solution w̄θ .
1: Rearrange the value of dw(s, tk) for all k = 1, 2, · · · , l in an ascending order such that

dw(s, t∗1) ≤ dw(s, t∗2) ≤ · · · ≤ dw(s, t∗l).

2: for any edge ei ∈ Ps,t∗1 do

3: Calculate the value of d̄(ei) according to (9), where t
′′(ei) is defined by (6).

4: end for
5: The upgraded edge is eθ = argmaxei∈Ps,t∗1

d̄(ei), the optimal value is d̄(eθ) and the optimal solution

is w̄θ (e) =
{
u(e), e = eθ ,

w(e), e �= eθ .

Theorem 6 When K = 1, the problem (MSPITUH) can be solved by Algorithm 1 in
O(n + l log l) time.

Proof In Algorithm 1, sorting the values dw(s, tk), k = 1, 2, · · · , l in Line 1 can be
done in O(l log l) time, where dw(s, tk) can be calculated in O(n) time. In Lines 2-4,
d̄(ei) for any ei ∈ Ps,t∗1 can be obtained by (9) in a constant time. Since |Ps,t∗1 | = O(n),

then lines 2-4 can be finished in O(n) time. Then the maximal value d̄(eθ) can be
obtained in Line 5 in O(n) time. Hence, Algorithm 1 runs in O(n + l log l) time. �	

4 Solve the problem (MSPITUH) when K > 1

In this section, we first introduce several important definitions and a special data struc-
ture of left-subtrees. Then a dynamic programming algorithm with time complexity
O(n(log n + K 3)) is proposed. Finally we give an example to execute the algorithm
and some numerical experiments to test the effectiveness of the algorithm in Sect. 6.

We firstly introduce a concept of Tab(v) given in [24], but we use a different
definition as in [22].

Definition 3 For edge e j = (vi , v j), where vi is closer to the root s, we call vi is the
father of v j . Define Tab(s) := 1 and the Tab of any other vertex v ∈ V \ {s} by

Tab(v) :=
{
Tab(f ather(v)), if deg(v) ≤ 2,
Tab(f ather(v)) + 1, if deg(v) > 2.

123

2670 Q. Zhang et al.

Fig. 3 A tree with Tab(v) in red
on node v and layer number
LN (e) in white on edge e

Definition 4 [24] For each edge e = (u, v) ∈ E , if Tab(u) ≤ Tab(v), we define
LN (e) := Tab(u) as the layer number of the edge e.

As is shown in Fig. 3, Tab(s) = 1, degree(v1) = 4 > 2, f ather(v1) = s, thus,
Tab(v1) = 1 + 1 = 2; degree(v5) = 2, f ather(v5) = v1, thus, Tab(v5) = 2;
degree(v7) = 3, f ather(v7) = v1, then Tab(v7) = 2 + 1 = 3. For edge e5 =
(v1, v5), Tab(v1) ≤ Tab(v5), so LN (e5) = Tab(v1) = 2.

For convenience, denote by V ∗ = {v ∈ V \{s}|degree(v) > 2} the set of nodes
whose degrees are more than 2.

Definition 5 [24] For the any node v ∈ V ∗ ∪ {s}, we define a set of critical children
(denoted by CC(v)) as follows. Let v be in the path from s to u. If degree(u) > 2 and
Tab(u) = Tab(v) + 1, then u ∈ CC(v); if u is a leaf node with Tab(u) = Tab(v),
then u ∈ CC(v).

Now we find the set of critical children of v1 ∈ V ∗ in Fig. 3. Notice that
degree(v2) > 2 and Tab(v2) = 3 = Tab(v1) + 1. Thus, v2 as well as v7, is a
critical child of the node v1. Notice that v6 is a leaf node with Tab(v6) = Tab(v1).
Then v6 ∈ CC(v1). Hence, CC(v1) = {v2, v6, v7}.

In the following parts of this paper, for any v ∈ V ∗ ∪ {s}, let CC(v) =
{vh1, vh2 , · · · , vh p } be the set of critical children of the node v, where

p =
{
degree(v), v = s,
degree(v) − 1, v ∈ V ∗. (10)

Lemma 7 Supposew′ is an optimal solution of the problem (4). If�w(ei) < �w(e j),
w′(ei) > w(ei), w′(e j) = w(e j), LN (ei) = LN (e j) and L(ei) = L(e j), then w∗ is

also an optimal solution of the problem (4), where w∗(e) =
⎧
⎨

⎩

w(e), e = ei ,
u(e), e = e j ,
w′(e), otherwise.

123

Maximum shortest path interdiction problem… 2671

Proof Obviously,
∑

e∈E H(w∗(e), w(e)) = ∑
e∈E H(w′(e), w(e)) and w(e) ≤

w∗(e) ≤ u(e), thus, w∗ is a feasible solution of the problem (4). We next show
that w∗ is an optimal solution of (4).

For convenience, denote by Ps,t ′ the shortest path under w′. Then the relationships
among the two edges ei , e j and Ps,t ′ contain the following three cases.

(1) If ei /∈ Ps,t ′ and e j /∈ Ps,t ′ , then dw∗(s, L) = dw′(s, L) = dw′(s, t ′) .
(2) If ei ∈ Ps,t ′ and e j ∈ Ps,t ′ and there is another one path Ps,t ′′ that is also the

shortest path under w′, we have dw∗(s, L) = dw′(s, L) = dw′(s, t ′′).
(3) If ei ∈ Ps,t ′ and e j ∈ Ps,t ′ and Ps,t ′ is the only shortest path under w′, it follows

from �w(ei) < �w(e j), which is equivalent to u(ei) − w(ei) < u(e j) − w(e j),
that u(e j) + w(ei) > u(ei) + w(e j). Since w′(e j) = w(e j), then

dw∗(s, L) ≥ dw∗(s, t ′) = dw∗(Ps,t ′ \{ei , e j }) + w∗(ei) + w∗(e j)
= dw′(Ps,t ′ \{ei , e j }) + w(ei) + u(e j)

> dw′(Ps,t ′ \{ei , e j }) + u(ei) + w(e j)

≥ dw′(Ps,t ′ \{ei , e j }) + w′(ei) + w′(e j)
= dw′(s, t ′) = dw′(s, L).

Thus, we have dw∗(s, L) > dw′(s, L), which contradicts with thatw′ is an optimal
solution of (4).

Hence, w∗ is also an optimal solution of the problem (4). �	

Based on the lemma above, without loss of generality, we can rearrange the edges
with the same layer number on the same path such that their values of�w(e) are sorted
non-increasingly. Notice that if the K upgraded edges have the same layer number on
the same path, we can update the first K edges in this layer on this path.

For any v ∈ V ∗ ∪ {s}, CC(v) = {vh1, vh2 , · · · , vh p } is the set of critical children,
where p is defined as in (10), we define the left q−subtree as follows.

Definition 6 Define the left q−subtree rooted at v as T 1:q
v := Pv,vh1

∪ Tvh1
∪ Pv,vh2

∪
Tvh2

∪ · · · ∪ Pv,vhq
∪ Tvhq

, q = 1, 2, · · · , p, where Tvhi
is the subtree rooted at vhi

and Tvhi
:= ∅ if vhi is a leaf. Specially, T

1:p
v can be denoted by Tv and T 1:0

v := ∅.
As shown in Fig. 4, the area labeled in red and black are the left 2-subtree T 1:2

v and
the left q−subtree T 1:q

v of Tv = T 1:p
v , respectively.

Now we define the following two functions g(Pv,vh , k) and f (T 1:q
v , k) to obtain a

dynamic programming algorithm for the problem (MSPITUH) when K > 1.

1. The function g(Pv,vh , k) defined on the chain Pv,vh .

For any v ∈ V ∗ ∪ {s} and any vh ∈ CC(v), let Pv,vh := {ei1 , ei2 , · · · , eiβ } with
�w(ei1) ≥ �w(ei2) ≥ · · · ≥ �w(eiβ), where β = |E(Pv,vh)|. Define g(Pv,vh , k) as
the sum of the edge lengths when the first k edges are upgraded on the chain Pv,vh ,
where 0 ≤ k ≤ β. Let E(Pv,vh , k) be the set of upgraded edges on the chain Pv,vh .

123

2672 Q. Zhang et al.

Fig. 4 The subtree Tv = T 1:p
v is shown. The area labeled in red and black are the subtrees T 1:2

v and T 1:q
v ,

respectively

We can calculate all the values g(Pv,vh , k) for all the chains in the tree T according
to the formula below.

g(Pv,vh , k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β∑

j=1
w(ei j), if k = 0,

β∑

j=1
w(ei j) +

k∑

j=1
�w(ei j), if 1 ≤ k ≤ β.

(11)

E(Pv,vh , k) =
k⋃

j=1

{ei j }. (12)

2. The function f (T 1:q
v , k) defined on the non-chain T 1:q

v .

For all v ∈ V ∗ ∪ {s}, define f (T 1:q
v , k) := maxmin

t∈T 1:q
v ∩L

dw̄(s, t) as the optimal

value of T 1:q
v when k edges are upgraded, where 0 ≤ k ≤ |E(T 1:q

v)| and let E1:q
v (k)

be the corresponding set of k upgraded edges. Specially, denote E1:p
v (k) by Ev(k) for

simplicity.
We consider two cases to calculate the optimal value f (T 1:q

v , k).

Case 1. when q = 1.

We have T 1:1
v = Pv,vh1

∪ Tvh1
as shown in Fig. 4.

f (T 1:1
v , k) = max{g(Pv,vh1

, k1) + f (Tvh1
, k2)}

s.t . k1 + k2 = k,

k = 0, 1, 2, · · · , |E(T 1:1
v)|,

k1 = 0, 1, 2, · · · ,min{k, |E(Pv,vh1
)|},

k2 = 0, 1, 2, · · · ,min{k, |E(Tvh1
)|}. (13)

If the optimal value f (T 1:1
v , k) = g(Pv,vh1

, k∗
1)+ f (Tvh1

, k−k∗
1) is obtained when

k1 = k∗
1 , then the set of upgraded edges is

E1:1
v (k) = E(Pv,vh1

, k∗
1) ∪ Evh1

(k − k∗
1). (14)

123

Maximum shortest path interdiction problem… 2673

Specially, when vh1 is a leaf, E(Tvh1
) = ∅ and |E(Tvh1

)| = 0, thus, k2 = 0,
f (Tvh1

, k2) = f (Tvh1
, 0) = 0,

f (T 1:1
v , k) = g(Pv,vh1

, k). (15)

E1:1
v (k) = E(Pv,vh1

, k). (16)

Case 2: when q ≥ 2.

For any v ∈ V ∗ ∪ {s}, CC(v) = {vh1, vh2 , · · · , vh p } is the set of critical children.

Then T 1:q
v = T 1:(q−1)

v ∪ Pv,vhq
∪ Tvhq

, q = 2, · · · , p.

f (T 1:q
v , k) = maxmin{g(Pv,vhq

, k1) + f (Tvhq
, k2), f (T 1:(q−1)

v , k3)},
s.t . k1 + k2 + k3 = k,

k = 0, 1, · · · , |E(T 1:q
v)|,

k1 = 0, 1, · · · ,min{k, |E(Pv,vhq
)|},

k2 = 0, 1, · · · ,min{k, |E(Tvhq
)|},

k3 = 0, 1, · · · ,min{k, |E(T 1:(q−1)
v)|}. (17)

If the optimal value

f (T 1:q
v , k) = max{g(Pv,vhq

, k∗
1) + f (Tvhq

, k∗
2), f (T 1:(q−1)

v , k − k∗
1 − k∗

2)}

is obtained when k1 = k∗
1 , k2 = k∗

2 , then its set of upgraded edges is

E1:q
v (k) = E(Pv,vhq

, k∗
1) ∪ Evhq

(k∗
2) ∪ E1:(q−1)

v (k − k∗
1 − k∗

2). (18)

Specially, when vhq is a leaf, E(Tvhq
) = ∅ and |E(Tvhq

)| = 0, thus, k2 = 0,

f (Tvhq
, k2) = f (Tvhq

, 0) = 0, T 1:q
v = T 1:(q−1)

v ∪ Pv,vhq
,

f (T 1:q
v , k) = maxmin{g(Pv,vhq

, k1), f (T 1:(q−1)
v , k − k1)}, (19)

If the optimal value f (T 1:q
v , k) = max{g(Pv,vhq

, k∗
1), f (T 1:(q−1)

v , k−k∗
1)} is obtained

when k1 = k∗
1 , then its set of upgraded edges is

E1:q
v (k) = E(Pv,vhq

, k∗
1) ∪ E1:(q−1)

v (k − k∗
1). (20)

To sum up, traverse the rooted tree T from leaves to the root s to calculate all the
function values g(Pv,vh , k) and f (T 1:q

v , k). Then f (Ts, K) is the optimal value of the
problem (MSPITUH), Es(K) is the set of upgraded edges and an optimal solution is

w̄(e) =
{
u(e), e ∈ Es(K),

w(e), e /∈ Es(K).
(21)

123

2674 Q. Zhang et al.

According to the analysis above, we have the following dynamic programming
algorithm for the problem (MSPITUH) when K > 1.

Algorithm 2 A dynamic programming algorithm [Es(K), w̄, f (Ts, K)] =
MSP ITUH(T , L, w, u, K)

Require: A tree T rooted at s, the set L of leaves, two edge weight vectors w and u and the number K of
upgraded edges.

Ensure: The set Es (K) of upgraded edges, the upgraded length vector w̄ and the optimal value f (Ts , K).
1: (Breath-First Search (BFS).) Let V ∗ = {v ∈ V \{s}|degree(v) > 2}. Start from the root s and label

each node v by Lab(v) when using the breath-first search strategy on T , where Lab(s) = 1. While
executing the BFS, calculate Tab(v) for each node v and LN (e) for each edge e. Find the sets CC(v)

of critical children for each v ∈ V ∗ ∪ {s}.
2: For each v ∈ V ∗ ∪ {s} and each vh j ∈ CC(v), find all the chains Pv,vh j

, and rearrange the edges

in each chain Pv,vh j
such that the values �w(e) := u(e) − w(e) are in non-increasing order, where

j = 1, · · · , p, and p is as defined in (10).
3: for any v ∈ V ∗ ∪ {s} do
4: for vh ∈ CC(v) do
5: Calculate the value g(Pv,vh , k) and the set E(Pv,vh , k) of upgraded edges by (11) and (12), for

each k = 0, 1, · · · ,min{K , |E(Pv,vh)|}.
6: end for
7: end for
8: for any v ∈ V ∗ ∪ {s} in descending order of the labels Lab(v) of nodes do
9: for q = 1 : p do
10: for k = 0 : min{K , |E(T 1:q

v)|} do
11: Calculate the value f (T 1:q

v , k) by (13), (15), (17) and (19), and obtain the set E1:q
v (k) of

upgraded edges by (14), (16), (18) and (20).
12: end for
13: end for
14: end for
15: For the root s, calculate the optimal value f (Ts , K), the set Es (K) of upgraded edges and the optimal

solution w̄ given by (21).

Theorem 8 ThedynamicprogrammingAlgorithm2can solve theproblem (MSPITUH)
when K > 1 in O(n(log n + K 3)) time, where n is the number of nodes in a given
tree.

Proof In Line 1, the BFS can be executed in O(n) time. Rearranging the edges in each
chain can be finished in O(n log n) time in Line 2.

In Lines 3-7, for a given chain Pv,vh , the value g(Pv,vh , 0) can be obtained in
O(|Pv,vh |) and g(Pv,vh , k + 1) = g(Pv,vh , k) + �w(eik+1) holds. Thus, all the values
g(Pv,vh , k) for k = 0, 1, · · · ,min{K , |E(Pv,vh)|} can be calculated in O(|Pv,vh |).
Therefore for any v ∈ V ∗ ∪ {s} and any vh ∈ CC(v), calculating all the K values
g(Pv,vh , k) are just traversing the edges in every chain. Hence, the total time of Lines
3-7 is

∑
v∈V ∗∪{s},vh∈CC(v) O(|Pv,vh |) = O(n).

In Lines 8-14, for a given subtree T 1:q
v and a value k, f (T 1:q

v , k) can be solved in
O(K 2) by (17), since k3 = k − k1 − k2, k1 and k2 have O(K 2) kinds of possible
combinations and there is only one addictive operation and one comparison for each
pair of combination. Thus, all the K values f (T 1:q

v , k) can be completed inO(K 3) time

123

Maximum shortest path interdiction problem… 2675

in Lines 10-12. For any v ∈ V ∗ ∪ {s}, q = 1, 2 · · · , p,where p is defined as in (10).
in Lines 8-14 we need to solve

∑
v∈V ∗∪{s}(deg(v) − 1) ≤ 2(n − 1) − |V ∗| = O(n)

subproblems defined on the subtrees T 1:q
v . Therefore, the total time complexity of

Lines 8-14 is O(nK 3).
As a conclusion, the time complexity of Algorithm 2 is O(n log n+n)+O(nK 3) =

O(n(log n + K 3)). �	

5 Solve the problem (MCPITUH)

Now we consider a minimum cost shortest path interdiction problem by upgrad-
ing edges on trees under unit Hamming distance, which is similarly denoted by
(MCPITUH). We aim to minimize the total number of upgrade edges on the premise
that the shortest root-leaf distance of the tree is lower bounded by a given value D.

min
∑

e∈E
H(w̄(e), w(e))

(MCSPITUH) s.t . min
t∈L dw̄(s, t) ≥ D,

w(e) ≤ w̄(e) ≤ u(e), e ∈ E . (22)

For convenience, denote by (MSPITUH(K)) and (MCSPITUH(D)) the problem
(MSPITUH)with a given K and the problem (MCSPITUH)with a given D, respec-
tively.

The problem (MSPITUH(K)) can be solved by Algorithm 2 for a given K in Sect.
4. In the problem (MCSPITUH(D)),we are searching for the smallest K ∗ such that the
problem (MSPITUH(K ∗)) generates an upgrade vector w∗ with mint∈L dw∗(s, t) ≥
D. Furthermore, we can obviously observe that for any D′ and D′′ with D′ < D′′, the
number of upgrade edges for the problem (MCPITUH(D′)) is not larger than that for
(MCPITUH(D′′)).

To solve the problem (MCSPITUH), we aim to find the optimal K ∗ among the
values {1, 2, · · · , n} by the binary search method, and in each iteration we solve
a problem (MSPITUH(k)) by Algorithm 2, in which k is the median of the cur-
rent interval [k1, k2] ⊆ [1, n]. Hence, the problem (MCSPITUH) can be solved in
O(n log n(log n + k3)) = O(n log n(log n + n3)) = O(n4 log n), as shown in Algo-
rithm 3.

6 Computational experiments

6.1 An example to show the process of Algorithm 2

For the better understanding of Algorithm 2, Example 1 is given to show the detailed
computing process.

123

2676 Q. Zhang et al.

Algorithm 3 Solve the problem (MCSPITUH).
Require: A tree T rooted at s, the set L of leaves, two edge weight vectors w and u and the lower bound

D of the length of the shortest path.
Ensure: The optimal objective value K ∗, the set E∗ of upgrade edges and an optimal solution w∗.
1: Initialize k1 := 1, k2 := n, i := 1.
2: while k2 �= k1 + 1 do
3: let k := � k1+k2

2 �,
4: Call [E∗, w∗, D∗(i)] = MSP ITUH(T , L, w, u, k).
5: if D∗(i) < D then
6: let k1 := k,
7: else if D∗(i) > D then
8: let k2 := k,
9: else
10: let K ∗ := k,
11: return (K ∗, E∗, w∗).
12: end if
13: Update i := i + 1.
14: end while
15: Update K ∗ := k2.
16: Call [E∗, w∗, D∗(i)] = MSP ITUH(T , L, w, u, K ∗).
17: return (K ∗, E∗, w∗).

Fig. 5 A tree with rearranged
edges

Example 1 As shown in Fig. 5, let V := {s, v1, · · · , v10}, E := {e1, · · · , e10}, t1 :=
v3, t2 := v4, t3 := v6, t4 := v8, t5 := v10, u(e j) := 10 for all j := 1, 2, · · · , 10 and
K := 5. The length vector w := (9, 6, 6, 4, 1, 8, 4, 3, 4, 5) has been rearranged in the
non-increasing order of �w(e) for each chain.

1. Note that V ∗∪{s} := {s, v1, v2, v7}, and the sets of critical children areCC(s) :=
v1,CC(v1) := {v2, v6, v7},CC(v2) = {v3, v4},CC(v7) := {v8, v10}.

2. For every v ∈ V ∗ ∪ {s} and vh ∈ CC(v), calculate the values g(Pv,vh , k) and the
set E(Pv,vh , k) of upgraded edges by (11) and (12) for all k = 0, 1, · · · , |E(Pv,vh)|.
We take the chain Pv1,t3 as an example. Other values g(Pv,vh , k) can be found on the
first three columns in Table 2.

123

Maximum shortest path interdiction problem… 2677

Table 2 The detailed results of Example 1

P
g(P, k)

Tv
f(Tv , k)

Tv1
f(Tv1 , k) f(Ts, K)

Es(K)
k

g(P, k)
E(P, k) k

f(Tv , k)
Ev(k)

k
f(Tv1 , k)
Ev1 (k)

Pv7,t5

0 9
(∅)

Tv7

0 3
∅

Tv1

f(Ts, 5)
= 25

{e2, e4,
e5, e7,
e8}

1 15
{e9} 1 9

({e8})
2 20

{e9, e10} 2 10
{e8, e9}

Pv7,t4
0 3

∅ 3
10

{e8, e9,
e10}

1 10
{e8} 0 7

∅

Pv1,v7
0 4

∅ 1 9
{e7}

1 10
{e7} 2 10

{e5, e7}

Pv1,t3
0 9

∅ 3
13

{e2, e5,
e7}

1 18
{e5} 4

14
{e2, e5,
e7, e8}

2 20
{e5, e6} 5

16
{e2, e4,
e5, e7,
e8}

Pv2,t2
0 4

∅
Tv2

0 4
∅

1 10
{e4} 1 6

{e4}

Pv2,t1
0 6

∅ 2 10
{e3, e4}

1 10
{e3}

Pv1,v2
0 6

∅
1 10

{e2}

Ps,v1
0 9

∅
1 10

{e1}

g(Pv1,t3 , 0) := 9, E(Pv1,t3 , 0) := ∅; g(Pv1,t3 , 1) := 18, E(Pv1,t3 , 1) := {e5};
g(Pv1,t3 , 2) := 20, E(Pv1,t3 , 2) := {e5, e6}.

3. For any v ∈ V ∗ ∪ {s} := {s, v1, v2, v7} and k = 0, · · · ,min{K , |E(T 1:q
v)|},

calculate all the values f (T 1:q
v , k) by (13), (15), (17) and (19).

(1) For v7, CC(v7) := {t5, t4}.
Note that T 1:1

v7
:= Pv7,t5 , it follows from (15) and (16) that

123

2678 Q. Zhang et al.

f (T 1:1
v7

, 0) := g(Pv7,t5 , 0) = 9, E1:1
v7

(0) := E(Pv7,t5 , 0) = ∅;
f (T 1:1

v7
, 1) := g(Pv7,t5 , 1) = 10, E1:1

v7
(1) := E(Pv7,t5 , 1) = {e9};

f (T 1:1
v7

, 2) := g(Pv7,t5 , 2) = 20, E1:1
v7

(2) := E(Pv7,t5 , 2) = {e9, e10}.
Note that Tv7 := T 1:1

v7
∪ Pv7,t4 , it follows from (19) and (20) that

f (Tv7, 0) := min{g(Pv7,t4 , 0), f (T 1:1
v7

, 0)} = min{3, 9} = 3, Ev7(0) = ∅;
f (Tv7, 1) := max{min{g(Pv7,t4 , 0), f (T 1:1

v7
, 1)},min{g(Pv7,t4 , 1), f (T 1:1

v7
, 0)}} =

max{3, 9} = 9, E1:2
v7

(1) := E(Pv7,t4 , 1) ∪ E1:1
v7

(0) = {e8};
f (Tv7, 2) := max{min{g(Pv7,t4 , 0), f (T 1:1

v7
, 2)},min{g(Pv7,t4 , 1), f (T 1:1

v7
, 1)}} =

max{3, 10} = 10, Ev7(2) := E(Pv7,t4 , 1) ∪ E1:1
v7

(1) = {e8, e9};
f (Tv7, 3) := min{g(Pv7,t4 , 1), f (T 1:1

v7
, 2)} = min{10, 20} = 10, Ev7(3) :=

E1:1
v7

(2) ∪ E(Pv7,t4 , 1) = {e8, e9, e10}.
We omit the calculation process of f (Tv2 , k)(k := 0, 1, 2) and f (Tv1 , k)(k :=

0, 1, 2, 3, 4), which can be found in Table 2. We take the calculation of f (Tv1 , 5) as
an example.

f (Tv1, 5) := max{min{g(Pv1,v2 , 0) + f (Tv2 , 0), f (T 1:2
v1

, 5)},min{g(Pv1,v2 , 0) +
f (Tv2 , 1), f (T 1:2

v1
, 4)},min{g(Pv1,v2 , 0)+ f (Tv2 , 2), f (T 1:2

v1
, 3)},min{g(Pv1,v2 , 1)+

f (Tv2 , 0), f (T 1:2
v1

, 4)},min{g(Pv1,v2 , 1)+ f (Tv2 , 1), f (T 1:2
v1

, 3)},min{g(Pv1,v2 , 1)+
f (Tv2 , 2), f (T 1:2

v1
, 2)}} = max{10, 12, 16, 14, 16, 13} = 16,

Ev1(5) := E(Pv1,v2 , 1) ∪ Ev2(1) ∪ E1:2
v1

(3) = {e2, e4, e5, e7, e8};
For s, CC(s) := {v1}, Ts := Ps,v1 ∪ Tv1 , it follows from (13) and (14)that

f (Ts, 5) := max{g(Ps,v1 , 0) + f (Tv1, 5), g(Ps,v1 , 1) + f (Tv1, 4)} = max{25, 24} =
25,Es(5) := E(Ps,v1 , 0) ∪ Es(5) = {e2, e4, e5, e7, e8}.

Thus, when K := 5, the set of upgraded edges is Es(5) := {e2, e4, e6, e7, e8} and
an optimal solution is w̄ := (9, 10, 6, 10, 8, 10, 10, 10, 5, 4) with the optimal value
f (Ts, 5) := 25.

6.2 Computational experiments

Now we present computational experiments of Algorithms 1, 2 and 3. The programs
were coded in Matlab 7.0 and run on a PC Intel(R), Core(TM)i7-8565U CPU @ 1.8
GHz 1.99 GHz under Windows 10. We have tested the algorithms on 8 classes of
random trees, with the number n of vertices varying from 100 to 10000. For each
class, we randomly generate 30 instances. For each instance, we randomly generated
a tree such that the length of each root-leaf path is between Pathmin and Pathmax ,
where Pathmin is a random integer in the range (�n/100�, �n/30�) and Pathmax
is the sum of Pathmin and a random integer in the range (�n/50�, �n/30�). For each
tree, we use the maximum distance λ of the longest root-leaf path to describe the depth
of the tree and the number l of leaves to denote the width of the tree. Let λave and lave

be the average values of λ and l, respectively.We randomly generated two vectorsw, u
satisfying w < u which means that �w = u − w > 0. For each randomly generated
tree, we first solve the problem (MCSPITUH)with K = 1 by Algorithms 1 and 2 for
comparison, respectively. Then solve the problem (MSPITUH) by Algorithm 2 with
randomly generated K > 1. Let T1, T K1

2 , T2 be the average CPU time of Algorithm
1, Algorithm 2 for K = 1 and K > 1 respectively. Let T3 be that of Algorithm

123

Maximum shortest path interdiction problem… 2679

Table 3 Performances of Algorithms 1, 2 and 3

n 100 200 500 1000 3000 5000 7000 10000
λave 5.73 12.90 34.40 64.43 214.33 335.90 452.20 682.78
lave 55.07 81.23 91.27 115.90 304.73 302.87 297.95 262.22
T1 0.02 0.04 0.09 0.18 0.63 1.34 3.15 6.72

TK1
2 0.23 0.41 0.57 0.83 3.27 4.40 8.43 12.55
T2 0.39 1.05 3.87 22.77 181.44 772.52 3533 15975

Kave 27.77 52.13 101.17 238.03 658.93 1172.30 1987.40 3027.30
T2min 0.16 0.50 0.38 1.96 3.53 5.40 35 4320
T2max 0.62 1.79 9.18 63.07 688.18 2255.90 10073 40035

T3 2.27 5.63 21.29 95.01 939.65 4195.30 13646 44108
Lave 47.90 166.77 1392.50 4702.70 20923 66987 124780 266950
T3min 0.49 3.85 15.05 55.96 631.60 2142 6742 30729
T3max 3.35 9.15 27.02 167.63 833.60 7678 24387 71509

3. Let Kave be the average value of 30 randomly generated integers K in the range
(1, �n/2�). Let Lave be the average value of 30 randomly generated integers L in
the range [Lmin, Lmax], where Lmin = mint∈Y dw(s, t) and Lmax = maxt∈Y du(s, t),
respectively. For T2 and T3, the relevantminimumandmaximumrunning time, denoted
by Tmin, Tmax , respectively, are recorded as well.

Compared the time T1 with T K1
2 in Table 3, it can be seen that Algorithm 1 for

the problem (MSPITUH), which has time complexity O(n + l log l), is really more
efficient than Algorithm 2 that runs in O(n(log n + K 3)) time. For general K , the
running timemainly depends on the number K . If K = O(n), then the time complexity
is O(n4). Thus we can see from Table 3 that the running time increases dramatically
as K increases.

7 Conclusion and further research

We consider the problem (MSPITH) for c(e) > 0 and c(e) = 1, e ∈ E . We prove
the problem (MSPITH) is NP-hard by transforming the problem on a chain into a
0-1 knapsack problem. For the problem (MSPITUH) under unit Hamming distance,
we propose a greedy algorithm and a dynamic programming algorithm when K = 1
and K > 1 with time complexity O(n + l log l) and O(n(log n + K 3)), respectively,
where l is the number of leaves. Furthermore, we solve the problem (MCSPITUH)
in O(n4 log n) time by using the binary search method, and in each iteration we call
the algorithm to solve the problem (MSPITUH).

For further research,we can devise approximation algorithm for the problem (MSP-
ITH) under weighted Hamming distance. We can also consider the shortest path
interdiction problem on a general graph. Moreover, we can consider some other net-
work interdiction problems by upgrading critical edges, such as minimum spanning
tree interdiction problems.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs, NJ (1993)

123

2680 Q. Zhang et al.

2. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406(6794),
378–382 (2000)

3. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Rudolf, G., Zhao, J.: On short paths
interdiction problems: total and node-wise limited interdiction. Theory Comput. Syst. 43(2), 204–233
(2008)

4. Corley, H.W., Sha, D.Y.: Most vital links and nodes in weighted networks. Oper. Res. Lett. 1, 157–161
(1982)

5. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of findingmost vital arcs¡¡ and nodes, Technical
Report CS-TR-3539. University of Maryland, Department of Computer Science (1995)

6. Nardelli, E., Proietti, G., Widmyer, P.: A faster computation of the most vital edge of a shortest path
between two nodes. Inf. Process. Lett. 79(2), 81–85 (2001)

7. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proceedings
of the 7th ACM–SIAM Symposium on Discrete Algorithms (SODA 1996), 539–546, (1996)

8. Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the k most vital edges for the
minimum spanning tree problem. Comput. Oper. Res. 39(11), 2888–2898 (2012)

9. Pettie, S.: Sensitivity analysis of minimum spanning tree in sub-inverse- Ackermann time. In: Proceed-
ings of 16th international symposium on algorithms and computation (ISAAC 2005), Lecture notes in
computer science, 3827, 964–73, (2005)

10. Iwano, K., Katoh, N.: Efficient algorithms for finding the most vital edge of a minimum spanning tree.
Inf. Process. Lett. 48(5), 211–213 (1993)

11. Liang, W.: Finding the k most vital edges with respect to minimum spanning trees for fixed k. Dis.
Appl. Math. 113(2–3), 319–327 (2001)

12. Zenklusen, R., Ries, B., Picouleau, C., Werra, D., Bentz, C., de Costa, M.: Blockers and transversals.
Dis. Math. 309(13), 4306–4314 (2009)

13. Zenklusen, R.: Matching interdiction. Dis. Appl. Math. 158(15), 1676–1690 (2010)
14. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges for the assignment problem: complexity

and exact resolution. Oper. Res. Lett. 41, 685–689 (2013)
15. Ries, B., Bentz, C., Picouleau, C., Werra, D., Zenklusen, R., de Costa, M.: Blockers and transversals

in some subclasses of bipartite graphs: when caterpillars are dancing on a grid. Dis. Math. 310(1),
132–146 (2010)

16. Zenklusen, R.: Network flow interdiction on planar graphs. Dis. Appl. Math. 158(13), 1441–1455
(2010)

17. Altner, D.S., Ergun, Z., Uhan, N.A.: The maximum flow network interdiction problem: valid inequal-
ities, integrality gaps and approximability. Oper. Res. Lett. 38, 33–38 (2010)

18. Bazgan, C., Toubaline, S., Vanderpooten, D.: Complexity of determining the most vital elements for
the p-median and p-center location problems. J. Combin. Optim. 25(2), 191–207 (2013)

19. Bazgan, C., Nichterlein, A., et al.: A refined complexity analysis of finding the most vital edges for
undirected shortest paths: algorithms and complexity. Lecture Notes Comput. Sci. 9079, 47–60 (2015)

20. Zhang, H.L., Xu, Y.F., Wen, X.G.: Optimal shortest path set problem in undirected graphs. J. Combin.
Optim. 29(3), 511–530 (2015)

21. Ertugrl, A., Gokhan, O., Cevriye, T.G.: Determining the most vital arcs on the shortest path for fire
trucks in terrorist actions that will cause fire. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(1),
441–450 (2019)

22. Zhang, Q., Guan, X.C., Pardalos, P.M.: Maximum shortest path interdiction problem by upgrading
edges on trees under weighted l1 norm. J. Global Optim. (2020). https://doi.org/10.1007/s10898-020-
00958-0

23. Mohammadi, A., Tayyebi, J.: Maximum capacity path interdiction problem with fixed costs. Asia
Pacific J. Oper. Res. 36(4), 1950018 (2019)

24. Zhang, B.W., Guan,X.C., Pardalos, P.M., et al.: An algorithm for solving the shortest path improvement
problem on rooted trees under unit hamming distance. J. Optim. Theory Appl. 178, 538–559 (2018)

25. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity, Dover
Publications, the second edition, (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

View publication stats

https://doi.org/10.1007/s10898-020-00958-0
https://doi.org/10.1007/s10898-020-00958-0
https://www.researchgate.net/publication/348295706

	Maximum shortest path interdiction problem by upgrading edges on trees under hamming distance
	Abstract
	1 Introduction
	2 The time complexity of the problem (MSPITH)
	3 Solve the problem (MSPITUH) when K=1
	4 Solve the problem (MSPITUH) when K>1
	5 Solve the problem (MCPITUH)
	6 Computational experiments
	6.1 An example to show the process of Algorithm 2
	6.2 Computational experiments

	7 Conclusion and further research
	References

