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ABSTRACT In recent years, the adoption of statistical process monitoring (SPM) techniques in healthcare
has been successful. For instance, biosurveillance and biosignal monitoring have demonstrated direct
benefits. As the latest reviews of the literature show, parametric SPM techniques have been implemented to
evaluate the quality-of-service hospitals provide, track medical equipment, monitor safety markers, or assess
the improvements made by quality projects. However, as shown in this research, world-trending topics in
data science that include data-driven approaches integrated with SPM have not been reviewed. To bridge
this gap and shed light on new research, a systematic review of scientific databases and a taxonomic
literature analysis were performed. For the scientometric analysis, a set of bibliometric indicators were
obtained to portray the performance of each subtopic, such as examining growth kinetics, identifying top
authors, journals, countries and affiliations, as well as creating network maps of co-authorship and keyword
co-occurrence. Additionally, the taxonomic analysis involved grouping proposals by methodological
approach. Each approach was explained and discussed to identify the advantages, limitations, and challenges
that researchers and practitioners may encounter. SPM researchers and practitioners require more flexibility
in data-driven approaches to account for frequency unbalance, complexity, dimensionality problems, and
speed. Those working in data-driven and computer-oriented areas can expand their toolbox by incorporating
sequential approaches to enhance the power of their classifiers, assess risk, reduce misspecification, and
adopt model-oriented mindsets.

INDEX TERMS Data-driven, healthcare, scientometric, statistical process monitoring.

I. INTRODUCTION
Statistical process monitoring (SPM), also known as sta-
tistical process control (SPC), encompasses a set of tools
designed to assess process stability and enhance capability
by reducing variability [1]. The core tools of SPM are con-
trol charts, which include a set of sequential approaches for
monitoring the occurrence of process shifts, either isolated
or sustained, in location, scale, or form, to assist the search
and learning through the detection of assignable causes of
variation. Control charts typically consist of a monitoring
statistic that is evaluated against one or more control limits.
These control limits indicate whether the process is assumed
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to be in control (IC) or potentially out of control (OC). If the
charting statistic falls outside the control limits or triggers an
OC signal, the search for assignable causes begins to regain
control [2].

Traditional control charts for both univariate andmultivari-
ate processes can be primarily grouped into four classes [3]:
Shewhart charts, cumulative sum (CUSUM) charts, exponen-
tially weighted moving average (EWMA) charts, and change-
point detection (CPD) charts. Each class has its own strengths
and weaknesses, and they can be implemented to assess
different characteristics of systems or processes. Another
classification of charts can be based on their distributional
assumptions, leading to parametric control charts (PCC)
and nonparametric control charts (NCC) [4]. PCC includes
those charts designed or constructed based on assumed
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TABLE 1. Current applications of SPM Charts in healthcare.

probability distributions, with normality often being the
assumed distribution. However, control charts with other
probability models exist at their core [1]. When the distri-
bution assumption is not met, the performance of the control
chart (i.e., the ability to distinguish whether an event is IC
or OC) can no longer be guaranteed. Based on the subdivi-
sion of methods by Conover depending on their underlying
probability distribution assumption [5], it is considered as
distribution-sensitive charts those whose performance heav-
ily depends on fulfilling the distribution assumption. On the
other hand, charts that exhibit good performance in their
test statistic, even when the distribution assumption is not
met, are considered distribution-robust charts. Furthermore,
anNCC, or distribution-free control chart, maintains the same
performance regardless of the true distribution of the data [4].
While some authors differentiate between nonparametric and
distribution-free concepts, as suggested by Chakraborti and
Graham [4] and Conover [5], we will use both terms inter-
changeably.

Initially developed for industrial applications, SPM con-
trol charts are now being applied in various fields, includ-
ing the economy and healthcare. In healthcare, a collection
of control charts for univariate and multivariate processes
has been used for hospital management purposes and the
assessment of quality improvement projects [2], [6], [7], [8],
[9]. Table 1 provides an overview of common applications
and control charts used in healthcare, as depicted in recent
literature reviews. It is worth noting that most of the charts
in Table 1 are parametric, which raises concerns regarding
the assumption of data distribution. It is well-documented
in the literature that real-world problems rarely conform to
a specific probability distribution, and in many cases, the
distribution is unknown. Consequently, misspecification of
the parametric distribution can result in information loss
and produce misleading or deceptive signals [4], [10], [11].
Furthermore, parametric control charts restrict monitoring to
processes that follow the assumed probability distribution,
leaving unattended areas in healthcare, such as biosurveil-
lance and patient monitoring applications [2], [6]. To address
these challenges and expand on recent reviews [7], [8], [9],

which predominantly focused on PCC for hospital manage-
ment and quality improvement assessment, the use of other
monitoring schemes in SPM literature is suggested. One such
approach is the utilization of nonparametric control charts
(NCC), which do not rely on the assumption of a specific
probability distribution and generalize the monitoring capa-
bilities of the chart regardless of the true distribution of the
data. Additionally, combining SPM with data-driven (DD)
methods, such as popular machine learning models, can fur-
ther enhance monitoring capabilities. By incorporating DD
methods alongside control charts, a wider range of processes
can be effectively monitored, surpassing the limitations of
traditional SPM charts alone (See Section IV).
To the best of our knowledge, an extensive search of scien-

tific literature in Scopus and Web of Science (WoS) revealed
no existing review of nonparametric and DD approaches
combined with SPM charts. As a result, there is a possibility
that other healthcare areas, not covered in recent reviews,
as well as important trends in SPM,may have gone unnoticed.
To fill this gap and shed light on this emerging trend, this
paper aims to search and synthesize current efforts in health-
care using nonparametric and DD approaches with SPM
charts to create novel and synergistic monitoring schemes.
This is achieved through a scientometric analysis of the
retrieved papers and the classification of leading healthcare
applications. By examining the scientific literature, we aim
to identify and consolidate the existing knowledge in this
field, thereby providing valuable insights into the application
of nonparametric and DD approaches with SPM charts in
healthcare.

This study aims to answer the following research questions
through scientometric analysis and the results obtained from
the classification of the retrieved papers:

• What are the current efforts, trends, and applications
in healthcare where DD and nonparametric monitoring
schemes are being used?

• Which existing research networks could scientists col-
laborate with to develop new ideas and methods to fill
the gaps in healthcare monitoring using DD and non-
parametric schemes?
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• What are the potential gaps in current research that
future studies could fill, thereby supporting future
advancements in the field?

This review can be considered as an intersection between
SPM, which has a tradition of model-driven approaches
rooted in probability and statistics, and DD methods, which
involve practical algorithmic assessment of data for various
healthcare monitoring purposes. Readers from both areas
might find value in the descriptions and discussions of the
different methods that complement each other and allow for
an expansion of the paradigm set. Control charts are powerful
tools for monitoring systems, offering low computational
costs. However, they have limitations in terms of data, struc-
ture, and frequency. In contrast, DD approaches might be
perceived as computationally expensive, but they have the
potential to enable or enhance the monitoring capabilities
of control charts, thereby broadening the current scope of
SPM. Simultaneously, SPM methods contribute as a sequen-
tial analysis framework that increases the power to detect
changes when combined with DD techniques.

The remainder of the paper is presented as follows.
Section II presents the methodology followed for paper
retrieval. The summary results of the scientometric analysis
are presented in Section III. Section IV explains the purposes
of DD methods in SPM. Section V consolidates the literature
classification based on healthcare applications. A discussion
of the results and the trends for future research are presented
in Section VI. Finally, conclusions and final remarks are in
Section VII.

II. METHODOLOGY
This review aims to retrieve, classify, and analyze papers
that present nonparametric or DD approaches using control
charts for monitoring healthcare processes. To achieve this,
two major scientific literature databases are consulted to
accomplish the primary task of paper retrieval: Scopus and
WoS. The search is limited to journal articles and confer-
ence papers published in the English language from the year
2000 onwards, ensuring a focus on recent advancements in
the field. To construct an effective search query, three blocks
of keywords are utilized: 1) SPM and control chart keywords,
2) healthcare keywords, and 3) DD and nonparametric key-
words. The final version of the search query, divided by
blocks, is presented in Table 2. The query syntaxes appropri-
ate for Scopus and WoS are provided in Appendices VIII-A
and VIII-B, respectively.
After retrieving the documents from both databases,

a deduplication process was conducted, followed by man-
ual validation to remove any unrelated articles. As a result,
a total of 78 papers were retrieved. Among these, 15 papers
presented NCC, 59 focused onDD approaches, and four both.
Within the DD approaches, 51 papers proposed methods that
use DD approaches before the monitoring process with a
PCC (from now on, referred to as DD-before). Additionally,
eight papers implemented DD approaches after the moni-
toring with a PCC (from now on, referred to as DD-after).

FIGURE 1. The count of documents based on the type of approach (NCC,
DD-before PCC, DD-after PCC, or a combination of DD and NCC) proposed
to monitor a healthcare process.

These findings are depicted in Fig. 1. Finally, a scientometric
analysis and a classification based on the healthcare applica-
tion were performed.

A. SCIENTOMETRIC ANALYSIS
Scientometrics analyzes a research topic by examining its
quantitative features that describe its scientific production
and trends [12]. Through the application of statistical meth-
ods, we can gather information that helps us understand the
current landscape of the research topic. To achieve this, the
yearly scientific production, as well as the top authors, jour-
nals, affiliations, and countries associated with the topic are
identified. Additionally, the disciplines and categories based
on the journal classification provided by WoS are retrieved
to portray the primary areas of interest within the research
topic and examine them across different regions of the world.
Alongside, network maps of co-authorship and keyword
co-occurrence were developed using the software Gephi.

This scientometric analysis aims to identify potential
global research clusters to promote collaboration with other
researchers and institutions to boost the current state-of-the-
art of the topic at hand.

B. CLASSIFICATION OF DOCUMENTS
The retrieved papers are classified based on the healthcare
application of the study. This classification aids the research
trends identification process and is performed on each cat-
egory individually. The following proposed categories are
used:

1) Patient Monitoring: The process of following up on
patients in a longitudinal study to assess their health
status for a specific disease or based on a (set of)
biomarker(s).

2) Pharmacology Monitoring: Related to the control of
industrial processes in the pharmacology industry,
focused on producing drugs and medicines.

3) Biosurveillance: Related tomonitoring the dynamics of
incidence counts of a specific disease in a geographi-
cally bounded space.
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TABLE 2. Search query for DD approaches and NCC in healthcare.

FIGURE 2. The growth kinetics of publication activity. (a) The annual number of documents published using an NCC, a DD approach in conjunction
with a PCC, or both. (b) Differentiating papers published with a DD approach by year and whether they are DD-before or DD-after.

4) Hospital Management: Encompasses everything
related to the management of a hospital (e.g., control
of its finances, assessing customer support and experi-
ence, and managing internal databases).

5) Surgical Performance: Related to the degree of exper-
tise of surgeons in performing a certain surgery in terms
of surgery time, survival rate, or other metrics.

6) Bioassay Monitoring: Related to the monitoring of bio-
logical experiments in laboratories whose main pur-
pose is intended for human health.

7) Medical Equipment Monitoring: The assessment of the
proper operation of medical equipment.

This classification provides an overview of prevalent mon-
itoring schemes in healthcare applications. It aims to identify
trends, challenges, limits, and gaps in the current state of
research. Furthermore, this information will offer insights
into potential future work in the field.

III. SCIENTOMETRIC ANALYSIS RESULTS
Several quantitativemetrics are obtained to perform the scien-
tometric analysis of the research topic and portray its dynam-
ics. These metrics are frequency summaries of documents

published by year, authors, journals, countries, and affilia-
tions, along with a journal classification to extract the main
interests on the topic. The first metric is the growth kinetics
of publication activity, which illustrates the popularity of the
topic. As shown in Fig. 2.a, here is a positive trend in the
publication rate of papers, with the most prolific year being
2018, with a total of 11 papers. Although the subsequent
years (2019–2022) present a decrease in the number of pub-
lished papers in this domain, we can still observe an overall
growing trend. Each bar in Fig. 2.a is segmented based on
the approach (i.e., NCC, DD approaches in combination with
a PCC, and DD approaches in conjunction with an NCC)
proposed in each paper. The most common proposals, based
solely on the count of papers published on the topic, are DD
approaches. Fig. 2.b is a zoomed-in view of the papers that
present a DD approach in combination with control charts,
whether parametric or nonparametric, dividing them into two
classes: DD-before and DD-after approaches. From Fig. 2.b,
it can be observed that DD-before approaches are the most
common, exhibiting an increasing trend in literature. This
result, as explained in more detail in Section IV, suggests that
DD methods are frequently applied before the monitoring to
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preprocess the data and enable its monitorability using SPM
charts. On the other hand, DD-after approaches, although
useful, remain less popular in comparison.

In the analysis of the most prolific authors, 274 are regis-
tered. Peihua Qiu from the University of Florida emerges as
the leading author. The top 20 authors, those with more than
one publication, are presented in Fig. 3.a. Moving on to jour-
nals and conferences, Fig. 3.b showcases the top journals and
conferences with more than one paper. Out of 61 journals and
eight conferences, only nine journals have published at least
two related papers, with the top one being Medical Physics.
This journal was ranked in 2021, according to Scimago
JR, as Q1 in biophysics, medicine, and radiology, nuclear
medicine and imaging, representing a benchmark in health-
care sciences. Figure 3.c displays the top affiliations involved
in the research. A total of 130 affiliations are registered, with
101 being universities or academic research centers, 21 being
companies (mostly pharmaceutical companies), five being
hospitals, and three being governmental organizations (all
located in the United States). The University of Florida stands
out as a leading affiliation, with seven publications, aligning
with the results of the top authors.

Next, WoS provides a classification of journals bsaed on
the topics they cover. This classification comprises 21 dis-
ciplines with their corresponding categories (254 categories
in total), which describe the scope and interests of each
journal. Understanding the classification of a journal helps
authors select the most suitable for their work and tailor
their manuscripts to match the interests of the journal. Addi-
tionally, understanding the distribution of this classification
among journals publishing papers on a specific topic helps
to illustrate the primary interests of the scientific community
regarding the studied subject. Fig. 4 illustrates the disciplines
covered by this study and provides a breakdown of the top
three ones (clinical medicine (20%), engineering (16%), and
computer science (13%)). The combination of these three
implies that research on this topic is the result of an interdisci-
plinary collaboration involving engineers using computer sci-
ence methods, particularly DD methods, to monitor various
topics in healthcare. This finding suggests that the focus of
the research community is on monitoring new areas in health-
care that were not previously explored solely using PCC,
with the addition of methods coming from other engineering
disciplines.

Based on the geographical location of author affiliations,
authors from 34 countries have contributed to this topic.
In terms of document count, the United States takes the lead
with 33 documents, followed by China with 11 documents,
and the United Kingdom with six documents, as depicted in
Fig. 5. To further explore the interests of different regions
in the world (i.e., North America, Latin America, Europe,
Asia, Africa, and Oceania) regarding the reviewed topic, the
most frequent categories based on the journals’ classification
provided by WoS are identified. Generally, the most com-
mon categories are ‘‘Statistics and Probability’’ and ‘‘Phar-
macology and Pharmacy’’. Additionally, categories related

to computer science, such as ‘‘Computer Science, Artificial
Intelligence,’’ and ‘‘Computer Science, Others’’ (including
‘‘Artificial Intelligence,’’ ‘‘Information Systems,’’ ‘‘Software
Engineering,’’ and ‘‘Theory and Methods’’ for Africa, and
‘‘Artificial Intelligence,’’ ‘‘Interdisciplinary Applications,’’
and ‘‘Theory and Methods’’ for Oceania) are prominent. It is
worth noting that Latin America remains an understudied
topic in this field, with only one document from Brazil. These
results are also visualized in Fig. 5.

In the network maps of co-authorship and keyword
co-occurrence, the size of the nodes and text increases with
the frequency of co-occurrence, indicating the prominence
of certain authors or keywords. The width of the edges
corresponds to the number of times two elements have co-
occurred. Also, the darkness of the color represents the
weight of an edge or node, suggesting the strength or signif-
icance of the connection. In the co-authorship map (Fig. 6),
mainly individual clusters are observed, with almost one clus-
ter per paper, and a few clusters present connections between
them. This indicates that most authors tend to publish only
one paper related to the topic and have limited collaboration
beyond their existing co-author circle.

For the keyword co-occurrencemap, the selected keywords
by the authors are used and filtered to identify the most
frequently occurring ones. During the filtering process, key-
words that appear only once are removed. The map focuses
on the edges where words co-occur in the retrieved papers
at least twice, and unconnected nodes are eliminated. Fig. 7
displays two clusters. The cluster on the left side presents key-
words related to the pharmacology monitoring category. This
cluster illustrates the common strategy of using control charts
combined with DD methods for monitoring applications in
pharmacology. The cluster on the right side, centered around
the main keyword ‘‘statistical process control,’’ portrays the
most popular applications of SPM in healthcare (e.g., ‘‘dis-
ease surveillance,’’ ‘‘online monitoring,’’ ‘‘early detection,’’
and ‘‘dynamic screening’’) and common strategies that let the
user monitor a healthcare application (e.g., ‘‘data decorrela-
tion,’’ ‘‘unequal sampling intervals,’’ ‘‘nonparametric meth-
ods,’’ and ‘‘longitudinal data’’).

IV. DATA-DRIVEN METHODS
This section presents a summary and explanation of the DD
methods to help understand the approaches proposed by the
analyzed documents. DDmethods are combined with control
charts for various reasons, but they all converge to improve
the monitoring capabilities of SPM charts. The analysis of the
papers identified seven purposes for the applications of DD
methods. In some cases, DD methods serve more than one
purpose (i.e., variable selection, confidence interval computa-
tion, and baseline model estimation). Among these purposes,
four are used with DD-before, one for DD-after, and two for
both DD approaches. The different purposes, listed in order
of their frequency in the literature, are as follows: 1) baseline
model estimation (40 docs.), 2) response prediction (8 docs.),
3) data classification (5 docs.), 4) feature extraction (4 docs.),
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FIGURE 3. Most prolific (a) authors; (b) journals; and (c) affiliations in reviewed papers.

FIGURE 4. Disciplines covered by journals publishing the reviewed papers and the breakdown of the top three of them.

5) post-signal diagnosis (4 docs.), 6) confidence interval com-
putation (3 docs.) and 7) variable selection (1 doc.).

Each purpose is used differently to improve the monitoring
process that a control chart alone can achieve. A graphical
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FIGURE 5. Bubble world map of documents published by country, along with the distribution of categories based on journals’ classification by world
region (i.e., North America, Latin America, Europe, Asia, Africa, and Oceania).

representation of the purpose of each DD method is depicted
in Fig. 8, where the main steps and the flow of the approach
are illustrated. The improvements achieved are as follows:

Baseline model estimation is utilized to model process
variables using a mathematical function that includes the
principal effect of variables and their interactions as they
change from a predefined probability distribution [13]. Addi-
tionally, these DDmethods are built to address characteristics
commonly found in healthcare applications, such as hetero-
geneity between subjects, time correlation, and dynamic IC
profiles, also known as profile monitoring in the SPM litera-
ture [1], [14]. The resulting baseline and coefficients obtained
for each variable are monitored using a control chart. Several
DD approaches were found to fit the input variables. Some
of these are variants of partial least squares (PLS) [15], [16],
[17] or kernel smoothing [14], [18], [19] via an optimization
algorithm that assigns a coefficient to each variable, allowing
the prediction of future samples.

Response prediction consists of predicting the response of
a fitted model built with a DD method trained from a history
of process variables. This response is evaluated against the
observed value to estimate the residual at each monitored
time. A function of these residuals is then assessed with a
control chart [13]. This category fits inside the baselinemodel
estimation. However, proposals classified under response
prediction cannot be used for profile monitoring since the
only relevant output for monitoring is the response itself as
a forecast or index that summarizes the effect of one or more
input variables. For profile monitoring purposes, not only the

output but also the model structure are relevant to monitor the
sequential evolution of all variables involved in the studied
process, which is not the case for the proposals under this
category where the model structure is intractable. Such is
the case of black box approaches related to neural networks
(NN) [20], [21], [22], [23], decision trees [24], [25], and
support vector machines (SVM) [26], [27].

Before process monitoring, data classification is used to
identify groups or clusters of data with common charac-
teristics that can be used for supervised work. It builds a
control chart with the ‘‘normal’’ data and tests it with the
‘‘abnormal’’ one. For instance, this approach is used to fit an
ensemble model consisting of several classifiers (e.g., ran-
dom forest, bagging, and AdaBoost) for disease occurrence
monitoring [28] or a k-Nearest Neighbor method for a batch-
to-batch drug monitoring [29]. In addition, data classification
can be used after themonitoring process to further classify the
OC event under a predefined label established by the user.
For instance, in Hassan et al. [30], the OC event is fed to
an AdaBoost classifier trained to determine if the shift in
the variables signifies a positive or negative diagnosis for a
particular disease.

Feature extraction is employed to obtain monitorable
variables from the observed raw signals of a process. It might
follow a classification process [31], [32], a geometrical trans-
formation or signal decomposition [33], [34]. One exam-
ple is extracting features when a heartbeat happens in an
electrocardiogram (ECG) by identifying the R-peak using a
wavelet function [34]. This method denoises the biosignal by
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FIGURE 6. Co-authorship network map.

smoothing it and detecting when the highest peak, which
indicates the ventricular contraction of the heart, occurs.
A control chart can be constructed using normal beats and
tested with abnormal ones with this information.

After an OC signal is triggered during a monitoring pro-
cess, post-signal diagnosis is usedwith amultivariate control
chart to identify the responsible variables. Unlike a univariate
process, where the OC event is directly related to the moni-
tored variable, the charting statistic in a multivariate control
scheme summarizes the effect of all involved variables in one
value. This creates difficulty in detecting which variables are
in charge of the shift [35], [36]. Therefore, extra aid is needed.
One example is implemented in Loggini et al. [37], where a

decision tree is trained to find a set of simple rules for variable
selection, performing a binary split of the data that separates
subjects into normal (IC) and abnormal (OC), and producing
an explainable model, where variables selected are the ones
considered to be responsible for the OC events.

Confidence interval computation enables the computa-
tion of the control limits that a control chart will employ
to discriminate between IC and OC. It is especially used
when the process does not follow a defined probability dis-
tribution [13]. The most common DDmethod is re-sampling,
whether used to set up a control chart [38] or applied after-
ward to update limits [39]. Bootstrap, a popular re-sampling
technique, takes a sample of size n from the original sample of
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FIGURE 7. Keyword co-occurrence network map.

the same size, with replacement, and calculates the charting
statistic to create an artificial history of events. This estimates
the cumulative distribution function (CDF) of the charting
statistic, which is used to set control limits based on the
desired error level (also referred to as α).

Variable selection weighs variables of a process based on
their participation in the observed response. It makes it possi-
ble to discard non-significant variables to reduce the set to a
smaller number of explanatory variables capable of represent-
ing and explaining the process behavior [40]. An example is
Erfanian et al. [41], where a subset of variables is selected by
applying a backward stepwise logistic for a generalized addi-
tive model (GAM). The model starts by fitting all variables
and obtaining their corresponding p-values and the associated
measure of the Akaike Information Criterion (AIC). Then,
the non-significant variables, p > 0.05, are removed, and
the model has fitted again. The process is repeated until the
number of significant variables generates the smallest AIC.
Afterward, multivariate control charts are built to monitor the
process with the subset of variables. This step is critical for
high-dimensional processes since multivariate control charts
can only manage up to a dozen variables [42] before their
power is reduced too much.

V. RESULTS OF THE CLASSIFICATION OF DOCUMENTS
As described in Section II-B, the selected papers are
classified into seven categories based on the healthcare
application. These categories are listed in descending order
according to the number of classified documents, including:
1) patient monitoring (28 papers), 2) pharmacology moni-
toring (16 papers), 3) biosurveillance (15 papers), 4) hospi-
tal management (11 papers), 5) surgical performance (five
papers), 6) bioassay monitoring (two papers), and 7) medical
equipment monitoring (one paper).

The following subsections provide a detailed review of
each category, including a list of the specific healthcare
applications, the type of control chart used in the approach

(i.e., DD, NCC, or a combination), the number of variables
considered (univariate or multivariate), and the type of DD
methods used and their purposes. This will allow researchers
and companies to identify and pinpoint trends that can aid in
proposing new research topics or changing their focus.

A. PATIENT MONITORING
As shown in Fig. 9.a-c, a variety of control chart methods
are proposed for patient monitoring, which is grouped into
six general classes: 1) patient safety & survival, 2) disease
occurrence monitoring, 3) biomarker monitoring, 4) disease
occurrence monitoring, 5) electrocardiogram (ECG) moni-
toring, and 6) electroencephalogram (EEG) monitoring. It is
important to clarify that the term ‘‘multivariate’’ does not
imply the use of a multivariate control chart. Instead, it means
that the analyzed process is multivariate. In certain control
charts, the most relevant feature after a principal component
analysis (PCA) [43], or the difference between the observed
value and the predicted response [20], [21], [22], [44], [45],
is controlled.

The most common purpose of using a DD-before approach
(13 out of 19 documents) is to estimate a baseline model,
which allows monitoring of a process by modeling an IC
function that encompasses its normal behavior. As cdis-
cussed later in this paper, this is the case for most cate-
gories. Additionally, DD-before methods are used for feature
extraction from complex biosignals (e.g., ECG and EEG) as
demonstrated in [33] and [34]. On the other hand, DD-after
approaches are utilized for tasks such as data classification,
post-signal diagnosis, and confidence interval computation.
The complete summary of the documents classified under this
category is presented in Table 3.

Two trends are spotted in the documents that employ a DD-
before approach. In both trends, the DD method estimates a
baseline model, which enables the monitoring of the health-
care process using a univariate control chart. The distinction
between the two trends lies in the charting statistics calculated
from the baseline. In the first group of papers [20], [21],
[22], [44], [45], [46], and [47], the residuals are computed
by taking the difference between the baseline model predic-
tion and the observed online value. These residuals are then
accumulated using a univariate memory-based control chart
(e.g., EWMA, CUSUM, and a variation of the GLR chart
with exponential weights). In the second group of papers,
the deviation from the baseline (i.e., a distance) is calculated
and monitored using either a k chart [48] or a variation of
the Double-EWMA (DEWMA) chart using the sum-square
approach in the charting statistic equation [49].

This category presents limitations and challenges that may
result in incorrect modeling or monitoring of a process:

• The correct modeling of the time series behavior
depends on the complex characteristics of the data (e.g.,
dynamic IC distributions and temporal autocorrelation).

• They must be adjusted or retrained to monitor other
diseases or patients with different phenotypic and geno-
typic backgrounds.
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FIGURE 8. Data-driven method classification. The trapezoid with the uppercase sigma letter represents the calculation of the corresponding
charting statistic.

• Data scarcity and quality are hard to handle since the
available healthcare-related datasets usually have fewer
subjects than an industrial dataset.

Finally, three gaps are identified that could be addressed in
future research:

• Normality is assumed for the monitored residuals with
PCC, but it is not tested, or at least not shown in the text;
hence, the performance of the PCC in terms of the false
alarm rate could be compromised.

• Timeseries in multivariate processes could be mis-
aligned in the observation times (e.g., hourly, daily,

weekly, etc.) they present, disabling the monitoring with
off-the-shelf designs of SPM charts.

• Comparisons with other DD-based proposals are usually
missing, leaving room for doubt as to whether the pro-
posal is better than others already published.

B. PHARMACOLOGY MONITORING
This category presents documents that propose using NCC
alone or DD-before in combination with a PCC or an NCC
(see Fig. 9.d). Among the papers with DD implementation,
13 out of 14 papers, the most repeated application uses DD
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TABLE 3. Patient Monitoring documents overview.

methods to generate a baseline model estimation, usually
choosing the PLS method or one of its variants (see Table 4).
As depicted in Fig. 9.e, most implementations are mul-

tivariate; however, monitoring is often conducted with uni-
variate charts. Similar to the scenarios in Sec. V-A, two
approaches are prevalent: monitoring of the most rele-
vant variables [15], [50], [51], [52] or monitoring of their
residuals [17].

Pharmacology monitoring encompasses various
applications, including freeze-drying, protein PEGylation,
hot-melt extrusion, drug crystallization, fluid bed granu-
lation, liquid-liquid extraction, gel manufacturing process,
liquid chromatography process, and fermentation process.
These applications are closely related to reliable manufac-
turing, where products, as opposed to patience-to-patience
monitoring, are homogeneous in nature, allowing for tighter
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FIGURE 9. An overview of healthcare applications in patient monitoring: (a) the proposed approach, (b) number of variables monitored, and
(c) application type; in pharmacology monitoring: (d) proposed approach, and (e) number of variables monitored; in biosurveillance: (f) the proposed
approach, (g) number of variables monitored, and (h) application type; in hospital management: (i) the proposed approach, and (j) number of
variables monitored; and in surgical performance: (k) the proposed approach, and (l) number of variables monitored.

tolerance limits and high reliability. Consequently, the con-
trol charts typically employed are parametric methods with
conventional control limits set at±3 standard deviations. The
usual way to control these processes follows the idea of batch-
to-batch monitoring, where observations are collected and
plotted on a control chart each time a sample is obtained.

A trending strategy using the DD-before approach involves
dimensionality reduction. In particular, PLS or one of its
variants is used to monitor selected components. An example
of monitoring scores derived from the PLS model is the
use of Hotelling’s T 2 chart in combination with a control
chart for monitoring the Squared Prediction Error (SPE).
Common choices for control charts in this context include the
Q chart [15], [16], [51], [52], [53], [54], [55], [56], [57], [58],
X-bar charts [51] and X-charts [15], [17], [50], [52], [59].

The limits and challenges identified for this category align
with traditional limits and challenges found in SPM literature,
for instance:

• Batch production reduces the monitoring horizon to a
finite size, where calibration for a finite horizon produc-
tion can reduce error and increase detection power.

• The accurate modeling of complex characteristics of
time-series data, such as stationarity, outliers, and tem-
poral autocorrelation, is often overlooked.

• The curse of high dimensionality, arising from a large
number of samples and variables, is prevalent in this
industrial context due to the high volume of products and
the abundance of data-collecting sensors.

The following gaps are identified:
• The usual monitoring scheme used is PCC, but the
probability distribution of the data is not tested;
hence, the use of NCC or other DD-based charts
could improve the monitoring performance in these
applications.

• While using ±3 standard deviations as control limits for
SPM charts is considered the gold standard, it may be
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TABLE 4. Pharmacology Monitoring documents overview.

beneficial to consider tailor-made control limits that are
more appropriate for specific situations.

• Temporal autocorrelation is typically disregarded in
these applications; hence, the use of data decorrelation
techniques could be explored.

• The use of a hybrid variable selection strategy that com-
bines dimensionality reduction algorithms with experts’
opinions has the potential to enhance the monitoring
performance of SPM charts.

• The use of finite horizon modeling instead of assum-
ing an infinite production for pharmacology monitoring
applications could be more adequate.

• The comparison with other proposals could help
researchers identify the best monitoring approaches in
this category.

C. BIOSURVEILLANCE
Papers in this category can be divided into three groups based
on the type of monitoring: 1) implementing the DD-before
approach combined with a PCC, 2) monitoring with an NCC,
and 3) monitoring with a combination of DD-before and an
NCC (Fig. 9.f). When selecting a DDmethod, baseline model
estimation tops the list of use cases.

As seen in Fig. 9.g), the applications in this category
encompass bothmultivariate and univariate scenarios. Inmul-
tivariate processes, monitoring is typically conducted using

a univariate control chart by considering either the residu-
als [14], [19] or the resulting distance between the observed
value and the model constructed using the DD method [38].

Based on their application, biosurveillance can be further
categorized, as seen in Fig. 9.h, into incidence rate moni-
toring & outbreak detection, survival analysis, and disease
occurrence monitoring. Analyzing Table 5 reveals that, for
all univariate processes within the incidence rate monitoring
& outbreak detection group, only the temporal effect (i.e.,
samples at different time points) is taken into account for
monitoring, while the spatial effect (i.e., samples at different
geographical locations) is neglected.

When considering the method, two main trends are iden-
tified. First, whenever there is a DD-before approach, the
DD method is used, except in two cases, for baseline model
estimation. The specific DDmethod used varies, but the most
common technique is kernel smoothing in combination with
an algorithm to address temporal decorrelation (e.g., the AR
model, Cholesky decomposition, and ARIMA model) along
with a univariate memory-based control chart (e.g., EWMA
and CUSUM) [14], [19], [60]. Secondly, the standardized
sequential rank statistic is the most commonly implemented
nonparametric transformation. It is used for monitoring a dis-
ease with a MEWMA Chart [61], [62], where Liu et al. [62]
enhance the approach by incorporating anARmodel to decor-
relate the data and obtain a baseline model for monitoring.
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Some limits and challenges are identified:
• Lack of genericity, as the monitoring methods may not
be applicable to every disease or geographical location.

• Data quality could improve the model accuracy by
focusing on incidence rate and including other clinically
relevant variables and biomarkers.

• Accurate modeling of time-series behavior is important,
and techniques such as ARIMA or its variants can be
used to address model misspecification.

The gaps identified for this category are the following:
• The robustness of memory-based PCC could be insuffi-
cient, and exploring monitoring approaches with NCC
or DD-based charts that do not rely on distributional
assumptions could be beneficial.

• The comparison with other proposals could help
researchers identify the best monitoring approaches in
this category.

• It is important to optimize the hyperparameters of DD
methods as a common practice to ensure the best moni-
toring design for the specific process.

D. HOSPITAL MANAGEMENT
The category of hospital management is broad in terms of
the variety of applications, with a lean toward service and
transactional operations. Based on the monitoring approach,
three main categories can be distinguished: 1) DD-before
combined with PCC, 2) NCC, and 3) the DD-after with PCC
(see Fig. 9.i). Furthermore, the category includes propos-
als with different numbers of variables, including univari-
ate, multivariate, and even a combination of both (Fig. 9.j).
In cases where a multivariate process is monitored with a
univariate chart, the monitoring is typically focused on a
response variable from amodel, as demonstrated in the works
of Minne et al. [25] and Zini & Carcasci [101], or using a
proportion with a p-chart [63].

The papers in the hospital management category can be fur-
ther divided based on their approach: 1) DD-before, focusing
on baseline model estimation and response prediction, and
2) DD-after, involving post-signal diagnosis. While the mon-
itoring is performed on a single variable, such as counting
cancellations or medical expenses, several potential explana-
tory variables are examined to explain an observed out-of-
control signal. Characteristics of papers under this category
are given in Table 6.
Due to various applications and approaches, detecting a

specific trend in this category is difficult. Nevertheless, it is
worth noting that the processes and approaches in this cate-
gory are closely related to SPM research in traditional quality
engineering schemes. In several cases, variables monitored
are counts, proportions, or raw measures evaluated with a
Shewhart-type chart with the usual ±3 sigma limits. TMore
detailed information on this topic can be found in the reviews
by Suman & Prajapati [7], Slyngstad [8], andWolfe et al. [9].

The following limits and challenges were identified:
• The curse of high dimensionality is attributed to the
varied applications in this category.

• The misspecification of the hyperparameters of DD
methods increases the likelihood of obtaining a subopti-
mal model or overfitting.

• Correctly modeling time-series behavior is complicated
because of its complex structure (e.g., stationarity, out-
liers, and temporal autocorrelation).

The gaps for this category are as follows:

• Normality is assumed for the monitored residuals with
PCC but not tested; thus, the reported performance of
PCC could be incorrect.

• The probability distribution of the data is not tested,
and a parametric distribution is assumed; hence, the use
of NCC or other DD-based charts could improve the
monitoring performance in these applications.

• The current proposal could benefit from using a data
decorrelation technique to alleviate the effect of tempo-
ral autocorrelation present in these processes.

• The comparisons with other proposals and hyperparam-
eter optimization are lacking, resulting in the possibility
of presenting a non-optimal model.

E. SURGICAL PERFORMANCE
As shown in Fig. 9.k, the papers in this category belong to the
monitoring with DD-before and DD-after with PCC, as well
as monitoring with an NCC. Approaches with DD-before
techniques were applied to estimate a baseline function or
to predict a response based on process variables, while also
considering subjects’ heterogeneity and the dynamic IC func-
tions of the analyzed variables. DD-after approaches were
implemented for post-signal diagnosis to identify the root
cause of an OC event.

Based on the number of variables studied for each docu-
ment (Fig. 9.l), two papers are classified as univariate and
three as multivariate. One paper used a univariate control
chart to monitor a multivariate process [26], achieved by
monitoring the residuals of a predictionmodel. A summary of
characteristics found in this category is presented in Table 7.

Regarding trend identification, it is not possible to estab-
lish a specific trend due to the low total count of current
papers (five papers). However, it can be observed that cardiac
surgery performance monitoring is the most frequent applica-
tion [36], [64], [94], [109].

The limits and challenges that were spotted are the
following:

• Data scarcity because the available datasets usually have
few entries; data quality since the performance of the
models in this category relies on correctly modeling the
heterogeneity of subjects.

• Lack of homogeneity between surgeries and surgeons.

Lastly, the gaps for this category are the following:

• Similar to previous categories, normality is assumed for
the monitored residuals with PCC but not tested, raising
concerns about the accuracy of the reported performance
of PCC.
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TABLE 5. Biosurveillance documents overview.

TABLE 6. Hospital Management documents overview.

• The lack of comparison with other proposals limits
the ability to assess whether the proposed monitoring
schemes outperform similar methods already published.

F. BIOASSAY MONITORING
Two documents are classified under this category. Both of
them incorporate DD-before techniques, one using a PCC
and the other an NCC. The purpose of all DD methods is to
estimate the baseline model, allowing the creation of a mon-
itorable function or response, even under online conditions.

Furthermore, both documents deal with multivariate pro-
cesses. A multivariate control chart is used in [65] and [66] to
monitor the process after estimating the baseline. Due to the
limited number of papers in this category, it is not possible to
identify a specific trend. Nevertheless, more applications in
this field could bemonitored using theDDmethod to estimate
the baseline, followed by a multivariate control chart. These
results are summarized in Table 8.

The observed limits and challenges in this category are the
following:
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TABLE 7. Surgical Performance documents overview.

TABLE 8. Bioassay Monitoring documents overview.

TABLE 9. Medical Equipment Monitoring documents overview.

• The correct modeling of time-series behavior is due to
the complex characteristics of the data, such as station-
arity, outliers, and temporal autocorrelation.

• Time-series alignment regarding the unequal observa-
tion times between samples violates the assumptions
made by the control charts.

Ultimately, the gaps for this category are the same as the
ones in the surgical performance category:

• The normally distributed residuals assumption is not
tested.

• There is no comparison with other proposals.

G. MEDICAL EQUIPMENT MONITORING
Only one document [31], summarized in Table 9, monitors
a univariate process with a DD-before approach combined
with a PCC, where the DD method is employed for feature
extraction. In this approach, the variable monitored was the
proportion of false alarms presented by a ventilator with a
p-chart.

Precisely for [31], the perceived limits and challenges are:

• The proposed method is unsuitable for online monitor-
ing due to the variability of scenarios and a lack of
generality.

• An extra sensor system is required to assess the status of
an alarm, whether genuine or false.

The gaps for this paper are the following:

• The distribution assumption is not tested; thus, mon-
itoring with NCC or DD-based charts that avoid this
assumption could be explored.

• The implementation of data decorrelation techniques
could improve the performance of the proposed method.

• The comparison of this proposal with other methods is
lacking; hence, the proposal could be outperformed by
others already published for similar processes.

Finally, even though there is only one paper in this cate-
gory, it is important to include it as it represents a significant
area in the healthcare field where researchers and experts can
propose more applications and approaches.

H. CLASSIFICATION SUMMARY
The present summary primarily focuses on the impact of
incorporating a DD method into the monitoring process.
As shown in Fig. 1, it is evident that the most common
approach is to include a DD method, whether before or after
the chart, whereas the use of anNCC alone is still an emerging
area in healthcare. Thus, NCC approaches are not considered
in this summary, and future work using these charts is sug-
gested.

In Table 10, three aspects are described for each category:
1) main advantages, 2) limits and challenges, and 3) gaps.
These aspects are obtained from the inherent characteristics
of each category application and the purpose for which a DD
method is applied.

‘‘Main advantages’’ show how a DD method enables the
monitoring of a process or how the DD method improves
it. ‘‘Limits & challenges’’ describe how capable approaches
are and to what extent they can manage the nature of the
data, and ‘‘gaps’’ present some aspects that ought to be
considered to demonstrate the correct functioning of the pro-
posed approach.

Moreover, by comparing Table 10 with the summary of
previous reviews on the topic in Table 1, it can be noticed
the positive impact on healthcare monitoring that the use of
DD methods combined with a control chart has. This impact
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TABLE 10. A summary table of DD methods combined with SPM charts for healthcare applications.

can be observed through various healthcare applications that
have been made monitorable, as well as in the monitoring of
multivariate processes.

VI. DISCUSSION OF RESULTS: HEALTHCARE OVERVIEW
According to our findings in this review, traditional PCC
and NCC are limited when dealing with a large number of
unstructured flows or random variables. The modeling capa-
bilities of DD methods greatly assist the sequential analysis
of a monitoring technique before or after the monitoring.

When applied before, a structure is created into a statistic
or profile to be assessed. When applied after the monitoring,
a root cause analysis facilitates a post-signal diagnosis not
limited to the in-control structure of monitored variables (see
Section IV for a further explanation of DD methods’ pur-
poses). Additionally, as demonstrated in a significant number
of proposals, PCC and NCC charts can be used to address
scores generated by DD methods. The sequential analysis
scheme provided by PCC and NCC boosts the sensitivity
of scores, metrics, and responses obtained by DD methods.
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As reinforced in this section, these techniques complement
each other positively. However, not only advantages are sum-
marized (see Section VI-A), but limits & challenges (see
Section VI-B), and gaps (see Section VI-C) identified in the
literature are also discussed, which should be considered for
future research and practical applications in healthcare.

Asmentioned earlier, themonitoringwithNCC alone is not
extensively discussed due to a lack of information to establish
trends among the retrieved papers on the grounds of being
an emerging area for healthcare applications. Additionally,
it is worth mentioning that this review is delimited by the
trends appearing in healthcare literature. We acknowledge
that there are other trends involving DD and nonparamet-
ric approaches in SPM (e.g., zero-inflated methods, fuzzy
logic methods, neutrosophic methods, and repetitive sam-
pling methods, among others). However, not all of these
trends are discussed in this review as they have not been part
of the healthcare literature.

A. ADVANTAGES OF USING DATA-DRIVEN METHODS
COMBINED WITH A CONTROL CHART
The introduction of DD methods into the SPM field has
enabled the monitoring of new and more complex processes
in healthcare. This advancement has been made possible due
to the following advantages:

Design and develop novel control charts, such as
k-charts, derived from support vector data description
(SVDD), and deviation charts, using kernel-based methods
(e.g., SVM, NN, KDE, clustering algorithms, one-class clas-
sifiers, among others) for their formulation [67].

Recognition of abnormal patterns in the data that are
hidden or unknown to the human eye expert using kernel-
based methods, specially NN and SVM, among others [67].

Adequate modeling of highly autocorrelated datasets
using kernel-based methods, NN, and SVM, among others,
to decrease the false alarm rate of the control chart [67].

The ability to perform forecasts and build monitorable
residuals of data with unknown distributions using NN or
PLS [46], [54], [67]; or with special characteristics, such
as autocorrelated data with NN and SVM [67], or sur-
vival and censored data with the Cox proportional hazards
model [44], [68].

Extraction and construction of trackable variables
coming from complex data structures, such as a biosignal
(e.g., ECG or EEG), applying PCA, independent component
analysis (ICA), or wavelet transformation combined with NN
or SVM methods [22], [33], [34], [48].

Selection of a subgroup of variables capable of capturing
most of the variability of the process to deal with the curse
of high dimensionality using NN, PLS, and decision trees or
their ensembles [40], [46], [67].

Formulation of explainable models to gain insight into
the process behavior by applying decision trees or their
ensembles [40], [67] for post-signal diagnosis, outper-
forming traditional decomposition methods [35], [69] that

establish the participation of each variable in the statistic
plotted outside the control limits.

B. CHALLENGES & LIMITATIONS OF USING DATA-DRIVEN
METHODS COMBINED WITH A CONTROL CHART
DD methods grant advantages to the monitoring process
but also present limitations and challenges where work and
research are still needed. Some of these are listed below:

Non-stationary processes: It is important to assess the
stationarity of the process to model it correctly; otherwise,
the abnormal patterns of the non-stationary component of
the process could be missed, and the rate of false alarms
in the resulting chart could be larger than expected [67],
[70]. Healthcare examples are in disease outbreak detection
studies [14], [19], where the disease has a seasonal com-
ponent and where the IC distributions of the biomarkers in
longitudinal studies of patients change through time [44],
[71]. By this point, a proposal on how to model and manage
the non-stationary component of the process prior to and
during the monitoring is still needed. Another challenge,
which is especially important when performing a post-signal
diagnosis, is the change in the stationarity of the process when
it becomes OC. In other words, the process can transit from a
stationary behavior when it is IC to a non-stationary onewhen
it is OC, meaning that the assumptions for the IC distribution
no longer hold for the OC events. This is especially relevant
when addressing a post-signal diagnosis.

High-reliability processes: A limitation arises when
datasets do not have enough OC data to train most DD
methods offline [67], [70]. There are some proposed strate-
gies, such as one-class classifiers [73], [74], or artificial
contrasts [75], but more work is needed.

High-dimensional processes: DD methods can perform
feature selection for dimensionality reduction; however, cer-
tain questions about this feature selection still need to
be answered [67], [76]. For example, what features are
appropriate for a big data monitoring problem considering
the data structure (e.g., continuous, discrete, or categorical)?
What is the acceptable number of variables needed to avoid
overfitting or considerable loss of information?

Optimization or misspecification of hyperparameters:
A surprising issue encountered in DD-based control chart
proposals is that, in many cases, a hyperparameter optimiza-
tion step is not provided, and there is no evidence of the exis-
tence of this step at all [67]. It is common to see ‘‘the popular’’
hyperparameters used for the DD methods in the literature,
leading to a misspecification problemwhere the results might
be misleading.

Unequally spaced observation times: Control charts are
intended to monitor equally spaced observation times. How-
ever, a common feature of healthcare data, particularly in
longitudinal studies, is patient inconsistency in attending
follow-up appointments on time. Therefore, modifications
to these charts are needed to accommodate the observations
adequately. Examples are given with an EWMA chart in
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You & Qiu [44], and a DEWMA chart in Ashraf et al [71],
along with the suggestion of not using ARL (Average Run
Length) metrics to measure chart performance for unequally
spaced observations, and instead use other metrics such as the
average time to signal (ATS) [44], [47], [72]. Nevertheless,
modifications for other SPM charts have not been proposed.

Data quality and scarcity: One main difference between
industrial processes and healthcare applications is the quan-
tity of available data. Typically, data acquisition involves high
costs, time, and effort in healthcare applications, resulting
in poor-quality data that does not accurately represent the
process or is insufficient to train a DDmethod adequately [6].
Moreover, there are several real-world problems where the
occurrence of a disease is so rare, such as the ones listed in
the NORD Rare Disease Database,1 that modeling it with a
DD method could not be done [76].

Monitoring image data: It is still a big challenge due
to the high correlation between the variables and the high
dimensionality of the process [67]. Usually, these problems
involve millions of variables (i.e., one variable per pixel),
whereas multivariate control charts can deal with up to a
dozen [42]. Therefore, there is still a chance to develop
creative and intelligent approaches using SPM for healthcare
applications in the imaging field (e.g., MRIs, X-rays, and CT
scans), such as the design of charts capable of monitoring big
data.

C. GAPS IN USING DATA-DRIVEN METHODS COMBINED
WITH A CONTROL CHART
Whether in an industrial or healthcare context, a mistake
remains a mistake. However, while in the industry, an error
could represent an economic loss, in healthcare, it couldmean
an impaired quality of life for a patient or several deaths,
depending on the specific application. For that reason, it is
crucial to be aware of the current gaps that DD methods
present in the monitoring of healthcare processes, which are
presented below:

Improper control chart selection and design. A relevant
aspect that must be considered for the monitoring of any
process is the selection of a certain control chart and its
characteristics, such as the size of the subgroups, the desired
control limits based on a performance metric (commonly the
desiredARL value), and the size of the shift to be detected [1],
[4]. It is important to know the process components and
behavior to be monitored to select the best control chart or
a set of control charts to compare with. Also, it is impor-
tant to identify deceiving trends in certain types of control
charts recalled in the SPM literature [77], [78], [79], [80],
[81] to avoid their use. If these recommendations are not
followed, the number of false alarms or undetected signals
could increase significantly. This issue is crucial when even
an undetected OC event could mean the death of a patient in
a patient monitoring case or the death of several people in a
biosurveillance context.

1https://rarediseases.org/rare-diseases/

Deletion of missing data in a monitoring scheme. Another
challenging task is collecting all the desired measurements
(i.e., variables) from the patients, leading to the issue of
missing data. Whether a patient lost an appointment, a nurse
or physician performed a test incorrectly, or the physician
did not recommend a certain test, it could lead to faulty
readings and missing data [82]. One common practice in
machine learning and statistical communities is to disregard
these subjects [82]. Still, this could be a difficult, if not
impossible, task for the medical community due to the usual
small size of healthcare databases. In addition, healthcare
data, especially data from patients’ physical conditions, has
heterogeneity characteristics [83] that several industrial pro-
cesses lack. Every patient is unique, and despite presenting
distinct measurements for a specific variable, they can be
healthy (or IC) depending on the context of the patient and the
studied problem, which means omitting a patient due to miss-
ing data may result in information loss, whereas imputing
data may mask an OC event. Common advice is to estimate
the missing data and declare the assumptions made with the
data. Nevertheless, this question remains unanswered: ‘‘What
is the correct way to proceed with missing data?’’

Dimensionality reduction, specifically in the Patient
Monitoring case. A common practice in dealing with
high-dimensional processes is to apply a dimensionality
reduction technique. In this case, the major concern lies when
the user is also interested in detecting OC events and know-
ing why. For instance, suppose it is only about discerning
between IC and OC events. Then, the only risk is to not
select a variable with the potential to detect a certain OC
event, which in theory, the probability of information loss is
minimal. However, the rejection of a less important variable
or a redundant one due to the level of correlation with another
selected variable [76] could lead to the ignoring of an organ
or a complete system that is also damaged and relevant to the
patient’s condition. Another concern is miscommunication
and poor collaboration between the medical and statistical
fields. For instance, whether it is of interest why an OC event
occurs or not, it is evident when the strategy to select variables
relies only on the reduction strategy techniques. Their clinical
relevance is ignored, meaning that the expert’s opinion (i.e.,
healthcare professionals) is neglected, which could lead to a
partial solution that, in the end, is still not enough to assist a
healthcare professional in solving the real health problem.

Misspecification and performance comparison of
DD-based control charts. Misspecification and comparison
of the DD-based control chart proposal with other DD-based
control charts is another point of miscommunication between
the statistical community and the machine learning com-
munity when assessing the performance of their proposals,
specifically when a combination of a DD method and a
control chart is introduced. An important step in proposing
a new approach is evaluating different scenarios to challenge
it. Usually, the statistical community challenges its control
charts by studying several scenarios that could be present
(e.g., different numerical examples, shift sizes, and subgroup
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sizes). Still, they do not report how are they challenging the
DD methods they include in their proposals. For instance,
a common practice in the machine learning community, anal-
ogous to the control chart challenge, is the optimization of the
hyperparameters of the proposed DD method and comparing
its DDmethod to others. However, in several retrieved articles
in this review, the hyperparameters used were the ‘‘popular’’
ones. There were no comparisons between their DD-based
control charts with other DD-based control chart proposals,
but only with control charts alone. Therefore, the resulting
model could be misspecified, resulting in non-optimal imple-
mentations.

Data assumptions. Other aspects to be concerned with
are relying on data assumptions, for instance: 1) Independent
observations with no autocorrelation [40], [67]; 2) Indepen-
dent and identically distributed data (i.i.d.) [40]; 3) Equally
spaced observations [44]; 4) Time series modeling based on
the ARIMA or its variant assumptions [110]; 5) Quality of
the data, meaning the representativeness of the process with
the available data [6]; and 6) Leap of faith on the usual DD
method hyperparameters [67].

VII. CONCLUSION
Statistical process monitoring charts have been implemented
for various applications in different areas of healthcare.
Beyond what has been described in recent review papers, it is
possible to find different approaches where control charts are
either parametric or nonparametric, or combined with a DD
method before or after the monitoring process. According to
the scientometric analysis, although the number of proposals
is still limited, there is an increasing trend indicated by the
growth kinetics, which instills positive growth expectations
for the coming years.

Nonparametric charts prevent distribution assumptions,
lowering the risk of information loss or misleading results
due to an inadequate probability distribution. Data-driven
methods have proven helpful for monitoring healthcare
applications with unknown distributions and complex charac-
teristics that control charts alone cannot handle. As a result,
the application of statistical monitoring schemes has been
expanded. In a nutshell, data-driven control charts and non-
parametric charts are promising approaches researchers can
use to monitor healthcare applications. However, there are
still concerns and gaps produced by data-driven methods due
to their limitations and the challenges that healthcare data
bring to the table. Thus, there is plenty room for new propos-
als in this promising research area, which can aim to improve
the performance of existing approaches, enhance our under-
standing, and broaden the scope of practical applications.

A. SUGGESTED FUTURE WORK
Based on the suggestions from recent papers and our own
experience, we present a list of ideas and guidelines that
might lead to future work in this collaboration between DD
approaches and SPM methods in healthcare.

Design protocols on how to handle and monitor health-
care data: Healthcare data has several characteristics that
differ from those in the industry. Thus, it is necessary to
design protocols and guidelines on how to proceed and handle
healthcare data. These protocols should provide guidance on
various aspects, such as addressing data assumptions (e.g.,
the i.i.d. assumption), handling non-stationary components,
selecting appropriate control charts, addressing misspecifi-
cation of DD-methods’ hyperparameters, and dealing with
missing entries in healthcare data, among other considera-
tions. By establishing such protocols, researchers can estab-
lish a baseline for studying and addressing these specific
characteristics in healthcare data.

Use of explainable DD methods for post-signal diagno-
sis purposes: In some applications, such as high-reliability
processes, detecting OC events and locating the culprits of
a signal is critical. Explainable DD methods or DD-after
approaches, such as decision trees and their ensembles, can
enhance the understanding of cutoff values and provide
improved diagnoses, particularly in the context of patient
monitoring.

New DD-based control charts to deal with big data: A
call for control charts capable of handling the trend of big
data has been made. So far, current proposals have focused
on applying variable selection techniques or summarizing
the variables into their principal components, disregarding
other variables with possible clinical relevance. To address
this gap, new control chart proposals, either standalone or
combined with DD methods, are required. These proposals
could expand the range of healthcare applications to include
those involving big data, such as imaging data and pharmacol-
ogy monitoring processes. Furthermore, they could enhance
existing applications by incorporating additional variables
with clinical relevance.

Develop more models to evaluate the performance of
the proposed DD-based control charts: To thoroughly eval-
uate the performance of proposed DD-based control charts,
it is essential to develop robust models that assess their
data assumptions and determine the optimal configuration
of DD method hyperparameters. In addition to comparing
the proposed DD-based charts with similar approaches, these
models should cover a wide range of scenarios that may be
encountered in future data. Simulations can be used to test
the charts under various conditions. For example, You &
Qiu [44], tested their proposed method using three differ-
ent longitudinal setups in the context of patient monitoring.
These setups considered within-subject data correlation, tem-
poral path randomness, and non-Gaussian distributions using
a combination of Gamma, Poisson, and standard normal
probability distributions. While this example can serve as a
standard for patient monitoring applications, it is important
to address other healthcare fields that have not received ade-
quate attention.

Modify SPM charts’ design to deal with unequally
spaced observation times: As highlighted in [44] and
[71], current designs of SPM charts are not adequate to
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monitor unequally spaced observations. Although modifica-
tions have been proposed for the design of EWMA [44] and
DEWMA [71] charts, adjustments for other SPM charts are
still lacking.

Avoid distribution assumptions by using NCC: As
shown in Fig. 1 and 2, the increased popularity of combining
DD methods with PCC for monitoring healthcare applica-
tions is evident. However, this approach still relies on dis-
tribution assumptions. In contrast, combining DD methods
with an NCC is rare. Then, to facilitate the use of a solution
in practical scenarios, new proposals could exploit the com-
bination of the latter and explore if it can improve monitoring
accuracy.

Collect new databases: Due to ethical conflicts, costs,
and time, one difficult and vital task in developing a health-
care method is the collection of new databases. Adapting an
approach designed for a particular application is not straight-
forward for other applications. To effectively test current
approaches and develop new ones, it is necessary to gather
a diverse range of databases encompassing various diseases,
patients from different geographical locations, surgeries, and
bioassays. Furthermore, it is essential tomake these databases
accessible to the entire research community, enabling
collaboration and fostering advancements in healthcare
monitoring.

Other ideas in healthcare include the following:
• Finite horizon proposals for drug production: Instead
of assuming an infinite production line, exploring the
use of finite horizon proposals for monitoring drug pro-
duction in pharmacology could be beneficial. This is
particularly relevant for production lines designed to
work in a batch-to-batch fashion, where the process has
a defined end.

• Online monitoring in biosurveillance processes: While
the performance evaluation of biosurveillance models
has been conducted using historical data of diseases or
epidemics, there is a lack of demonstration with actual
real-time online monitoring. Further research is needed
to validate the effectiveness of biosurveillance models in
real-time scenarios.

• Broadening the medical equipment monitoring area:
There is a wide range of critical medical equip-
ment items, such as vital signs monitors, hemodialysis
machines, ECMOs, and anesthesia machines, that have
not been addressed by SPM. This area presents signif-
icant potential for future research and development of
monitoring approaches.

To further enhance the current review, we propose two
additional topics for future work:

1) A comprehensive exploration of risk-adjusted control
charts in healthcare to identify proposals that align with
the search criteria of being data-driven. This analy-
sis would delve into the application of risk-adjusted
control charts within healthcare contexts, specifically
focusing on their adherence to data-driven monitoring
schemes.

2) The identification of appropriate performance mea-
sures for health data monitoring, based on the gen-
eral classification of healthcare areas presented in this
review, along with their specific applications. This
investigation would involve determining suitable met-
rics and indicators to effectively evaluate the perfor-
mance of health data monitoring in various healthcare
domains.

VIII. SEARCH QUERIES
A. SEARCH QUERY FOR SCOPUS
Block 1: SPM & Control Charts Keywords
TITLE-ABS-KEY(((‘‘Control Chart*’’ OR (‘‘Statistical
Process’’ PRE/0 (Control OR Monitor*))) OR (((*CUSUM
AND Chart*) OR (‘‘Cumulative Sum’’ PRE/1 Chart*) OR
‘‘*Parametric Cumulative Sum’’) OR ((*EWMA* NOT
(Newman* OR *Newmar*)) OR ‘‘Exponential* Weighted
Moving Average’’) OR Shewhart OR (*HWMAOR ‘‘Homo-
geneously Weighted Moving Average’’) OR (*GWMA OR
‘‘General* Weighted Moving Average’’) OR (MEC AND
Chart*) OR ((‘‘Progressive Mean’’ PRE/1 Chart*) OR (PM
PRE/1 Chart*)) OR (Synthetic PRE/1 Chart*) OR ((Memory
OR ‘‘Memory Type’’) PRE/1 Chart*) OR (Mix* PRE/1
Chart*) OR (‘‘Profile Monitor*’’ AND Chart*) OR (‘‘Gen-
eral* Likelihood Ratio’’ PRE/1 Chart*) OR (Multivariate
PRE/1 Chart*) OR (Adaptive PRE/1 Chart*) OR ((‘‘Variable
Sample Size’’ OR VSS) AND Chart*) OR ((‘‘Variable Sam-
pling Interval’’ OR VSI) AND Chart*) OR ((Changepoint
OR ‘‘Change point’’) AND (‘‘Control Chart*’’ OR (Model
AND Chart*))) OR ((‘‘Sequential Probability Ratio Test’’
OR SPRT*) AND Chart*) OR (Robust PRE/1 Chart*) OR
(Bootstrap PRE/1 Chart*) OR (PCA PRE/1 Chart*) OR (MD
PRE/1 Chart*) OR ((‘‘Mahalanobis* depth’’ OR ‘‘Maha-
lanobis* distance’’) AND ‘‘Control Chart*’’) OR ((‘‘Runs
Statistic’’ OR ‘‘Runs Test’’) AND ‘‘Control Chart*’’) OR
(Tukey* PRE/1 Chart*) OR ((‘‘Rank based’’ OR Rank)
PRE/1 Chart*) OR (Sign PRE/1 Chart*) OR (‘‘Signed
Rank’’ PRE/1Chart*) OR ((‘‘MannWhitney’’ PRE/1Chart*)
OR (‘‘Mann Whitney Statistic’’ AND Chart*)) OR (Min
PRE/1 Chart*) OR (Median PRE/1 Chart*) OR (‘‘Mean
Rank’’ PRE/1 Chart*) OR (‘‘Scale Rank’’ PRE/1 Chart*) OR
(kLINK PRE/1 Chart*) OR ((k PRE/1 Chart*) OR (Kernel
AND ‘‘Control Chart*’’))))

Block 2: Healthcare Keywords
AND ((Healthcare OR ‘‘Health Care’’ OR ‘‘Health Science’’)
OR ‘‘Public Health’’ OR ‘‘Private Health’’ OR (Bioassay*
OR ‘‘Bio assay*’’) OR (Heart OR Cardiac OR Cardio*)
OR Blood* OR (Paedriatic* OR Pediatric*) OR COVID*
OR Hormone* OR Endocrin* OR (Intestine* OR Entero*)
OR Implant* OR Prosthetic* OR Tissue* OR Medic* OR
Epidem* OR (Biosurveillance OR ‘‘Bio Surveillance’’) OR
Hospital* OR Clinic* OR Patient* OR Physician* OR
(‘‘Emergency Room’’ OR ER) OR (‘‘Intensive Care Unit’’
OR ICU) OR Disease* OR Infectio* OR Illness* OR
Patholog* OR ‘‘Syndromic Surveillance’’ OR Mortalit* OR
Morbidit* OR Forensic* OR Imaging OR Radiolog* OR
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(*Virus* NOT Antivirus) OR Bacter* OR Pancrea* OR Kid-
ney* OR Pharma* OR Drug* OR Psych* OR Pandem* OR
(Bone* NOT Backbone) OR Trauma* OR Skin OR Muscle*
OR (Surger*ORSurgi*) OR (Liver*ORHepato*) OR (Brain
OR Neurol*) OR (Lung* OR Neumo*) OR (Cancer* OR
Tumor* ORCarcinogenic) OR (Biomaterial* OR ‘‘Bio mate-
rial*’’) OR (Gastro* OR Stomach) OR Immun* OR Therap*
OR Biomedic*))

Block 3: Data-driven & Nonparametric Keywords
AND ((‘‘Data Driven’’ OR ‘‘Machine Learning’’ OR ‘‘Arti-
ficial Intelligence’’ OR ‘‘Decision Tree*’’ OR ‘‘Random
Forest*’’ OR ‘‘Gradient Boosting’’ OR ‘‘Support Vector
Machine’’ OR SVM OR ‘‘Neural Network*’’ OR ‘‘Nearest
Neighbor’’ OR kNNOR ‘‘Deep Learning’’ OR ‘‘Partial Least
Squares’’) OR (Nonparametric* OR ‘‘Non Parametric*’’ OR
‘‘Distribution Free’’ OR Semiparametric* OR ‘‘Semi Para-
metric*’’))

B. SEARCH QUERY FOR WEB OF SCIENCE (WoS)
Block 1: SPM & Control Charts Keywords
TS = (((‘‘Control Chart*’’ OR (‘‘Statistical Process’’
NEAR/0 (Control OR Monitor*))) OR (((*CUSUM AND
Chart*) OR (‘‘Cumulative Sum’’ NEAR/1 Chart*) OR
‘‘*Parametric Cumulative Sum’’) OR ((*EWMA* NOT
(Newman* OR *Newmar*)) OR ‘‘Exponential* Weighted
Moving Average’’) OR Shewhart OR (*HWMAOR ‘‘Homo-
geneously Weighted Moving Average’’) OR (*GWMA OR
‘‘General* Weighted Moving Average’’) OR (MEC AND
Chart*) OR ((‘‘Progressive Mean’’ NEAR/1 Chart*) OR
(PM NEAR/1 Chart*)) OR (Synthetic NEAR/1 Chart*) OR
((Memory OR ‘‘Memory Type’’) NEAR/1 Chart*) OR (Mix*
NEAR/1 Chart*) OR (‘‘Profile Monitor*’’ AND Chart*) OR
(‘‘General* Likelihood Ratio’’ NEAR/1 Chart*) OR (Mul-
tivariate NEAR/1 Chart*) OR (Adaptive NEAR/1 Chart*)
OR ((‘‘Variable Sample Size’’ OR VSS) AND Chart*)
OR ((‘‘Variable Sampling Interval’’ OR VSI) AND Chart*)
OR ((Changepoint OR ‘‘Change point’’) AND (‘‘Control
Chart*’’ OR (Model AND Chart*))) OR ((‘‘Sequential
Probability Ratio Test’’ OR SPRT*) AND Chart*) OR
(Robust NEAR/1 Chart*) OR (Bootstrap NEAR/1 Chart*)
OR (PCA NEAR/1 Chart*) OR (MD NEAR/1 Chart*)
OR ((‘‘Mahalanobis* depth’’ OR ‘‘Mahalanobis* distance’’)
AND ‘‘Control Chart*’’) OR ((‘‘Runs Statistic’’ OR ‘‘Runs
Test’’) AND ‘‘Control Chart*’’) OR (Tukey* NEAR/1
Chart*) OR ((‘‘Rank based’’ OR Rank) NEAR/1 Chart*)
OR (Sign NEAR/1 Chart*) OR (‘‘Signed Rank’’ NEAR/1
Chart*) OR ((‘‘Mann Whitney’’ NEAR/1 Chart*) OR
(‘‘MannWhitney Statistic’’ ANDChart*)) OR (MinNEAR/1
Chart*) OR (Median NEAR/1 Chart*) OR (‘‘Mean Rank’’
NEAR/1 Chart*) OR (‘‘Scale Rank’’ NEAR/1 Chart*) OR
(kLINK NEAR/1 Chart*) OR ((k NEAR/1 Chart*) OR (Ker-
nel AND ‘‘Control Chart*’’))))

Block 2: Healthcare Keywords
AND ((Healthcare OR ‘‘Health Care’’ OR ‘‘Health Science’’)
OR ‘‘Public Health’’ OR ‘‘Private Health’’ OR (Bioassay*
OR ‘‘Bio assay*’’) OR (Heart OR Cardiac OR Cardio*)

OR Blood* OR (Paedriatic* OR Pediatric*) OR COVID*
OR Hormone* OR Endocrin* OR (Intestine* OR Entero*)
OR Implant* OR Prosthetic* OR Tissue* OR Medic* OR
Epidem* OR (Biosurveillance OR ‘‘Bio Surveillance’’) OR
Hospital* OR Clinic* OR Patient* OR Physician* OR
(‘‘Emergency Room’’ OR ER) OR (‘‘Intensive Care Unit’’
OR ICU) OR Disease* OR Infectio* OR Illness* OR
Patholog* OR ‘‘Syndromic Surveillance’’ OR Mortalit* OR
Morbidit* OR Forensic* OR Imaging OR Radiolog* OR
(*Virus* NOT Antivirus) OR Bacter* OR Pancrea* OR Kid-
ney* OR Pharma* OR Drug* OR Psych* OR Pandem* OR
(Bone* NOT Backbone) OR Trauma* OR Skin OR Muscle*
OR (Surger*ORSurgi*) OR (Liver*ORHepato*) OR (Brain
OR Neurol*) OR (Lung* OR Neumo*) OR (Cancer* OR
Tumor* ORCarcinogenic) OR (Biomaterial* OR ‘‘Bio mate-
rial*’’) OR (Gastro* OR Stomach) OR Immun* OR Therap*
OR Biomedic*))

Block 3: Data-driven & Nonparametric Keywords
AND ((‘‘Data Driven’’ OR ‘‘Machine Learning’’ OR ‘‘Arti-
ficial Intelligence’’ OR ‘‘Decision Tree*’’ OR ‘‘Random
Forest*’’ OR ‘‘Gradient Boosting’’ OR ‘‘Support Vector
Machine’’ OR SVM OR ‘‘Neural Network*’’ OR ‘‘Nearest
Neighbor’’ OR kNNOR ‘‘Deep Learning’’ OR ‘‘Partial Least
Squares’’) OR (Nonparametric* OR ‘‘Non Parametric*’’
OR ‘‘Distribution Free’’ OR Semiparametric* OR ‘‘Semi
Parametric*’’))
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