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ABSTRACT 

Single Root I/O Virtualization (SR-IOV) enables high-performance, hardware-

assisted networking by exposing multiple Virtual Functions (VFs) from a single 

Physical Function (PF) on a NIC. In cloud-native and telecom environments, SR-IOV 

is critical for delivering low-latency and high-throughput packet processing. This paper 

presents an architecture that integrates SR-IOV with Kubernetes, DPDK, and ARP-

based monitoring for fault-tolerant CNF deployments. Each VF is monitored 

individually, allowing proactive switchover in case of link failure. Prometheus metrics 

and SNMP traps provide real-time observability and fault signaling. Bonding strategies 

like balance-xor enable active/active redundancy. We explore worker node setup, CNI 

integration, and failover logic. Use cases include 5G UPF, RTP streaming, and network 

slicing. Limitations and future enhancements such as vDPA support and mesh-native 

observability are discussed. This architecture ensures performance, resiliency, and 

operational clarity in SR-IOV-enabled Kubernetes environments. 
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1. Introduction 

Modern cloud-native and telecom infrastructure demand high-throughput, low-latency, 

and deterministic networking to support latency-sensitive workloads such as 5G User Plane 

Functions (UPF), real-time media processing, and network analytics. Traditional kernel-based 

network stacks introduce overhead that can lead to unpredictable performance, increased jitter, 

and suboptimal resource utilization. 

Single Root I/O Virtualization (SR-IOV) is a hardware-assisted PCIe specification that 

addresses these challenges by allowing a single physical network interface card (NIC) to expose 

multiple Virtual Functions (VFs) alongside a Physical Function (PF). Each VF acts as a 

lightweight, isolated network interface, assignable directly to virtual machines or containers, 

bypassing the host kernel for packet I/O. 

In Kubernetes environments, SR-IOV is typically integrated using Multus CNI, SR-IOV 

CNI plugins, and the SR-IOV Device Plugin, enabling direct VF-to-pod assignment. Combined 

with DPDK (Data Plane Development Kit), this approach allows cloud-native network 

functions (CNFs) to achieve near line-rate performance with reduced CPU overhead. 

This paper introduces a robust, production-ready SR-IOV framework that includes per-

VF ARP-based health monitoring, failover orchestration, telemetry with Prometheus, and 

SNMP trap-based alarming, ensuring high availability and operational visibility in mission-

critical CNF deployments. 
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2. SR-IOV Architecture and Components 

Single Root I/O Virtualization (SR-IOV) is a PCIe-based specification developed by the PCI-

SIG that allows a single physical device, such as a Network Interface Card (NIC), to be shared 

efficiently and securely among multiple virtual machines (VMs) or containers. It does this by 

exposing multiple lightweight PCIe interfaces called Virtual Functions (VFs) in addition to 

the full-featured Physical Function (PF). 

 

 

2.1 Physical Function (PF) 

The PF is the primary interface on the NIC with full control over device configuration, 

management, and resets. It is visible to the host operating system and is responsible for creating 

and maintaining the VFs. All administrative operations, including firmware updates, VF 

provisioning, and advanced offload configurations (e.g., VLAN filtering, queue steering), are 

performed through the PF. 
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2.2 Virtual Functions (VFs) 

VFs are lightweight PCIe functions that inherit a subset of capabilities from the PF. They 

appear as individual network interfaces to the guest OS or container and can be directly assigned 

using PCI passthrough. Each VF contains its own transmit (TX) and receive (RX) queues, 

interrupt vectors, and hardware filters. Crucially, VFs allow data plane traffic to bypass the 

kernel and be processed in user space, especially when used with DPDK. 

2.3 NIC Firmware and SR-IOV Capability 

The NIC firmware plays a critical role in SR-IOV. It maintains the mapping between PF 

and VFs and ensures isolation, resource fairness, and queue separation. The number of VFs a 

PF can support depends on NIC hardware limits and BIOS settings. Enabling SR-IOV is 

typically done via system firmware or Linux’s sysfs interface. 

bash 

CopyEdit 

echo 8 > /sys/class/net/<interface>/device/sriov_numvfs 

2.4 VF-to-Workload Mapping 

Once created, VFs are exposed to the host system and can be: 

• Bound to user-space drivers (e.g., vfio-pci or igb_uio) for DPDK applications 

• Assigned to Kubernetes pods using SR-IOV CNI plugins 

• Managed and advertised to the scheduler via the SR-IOV Device Plugin 

2.5 Security and Isolation 

Each VF is hardware-isolated from others through separate DMA mappings and queue 

control. This ensures that a compromised or misbehaving guest cannot interfere with traffic 

assigned to other VFs or the PF. However, misconfiguration at the PF level (e.g., enabling 

promiscuous mode) can expose vulnerabilities if not managed correctly. 

2.6 Performance Advantages 

Because VFs bypass the kernel and interact directly with NIC hardware: 

• Latency is reduced by 40–60% compared to virtio or bridge-based interfaces. 

• CPU utilization is minimized, especially under high packet-per-second (PPS) 

workloads. 

• Jitter is significantly improved, which is critical for real-time and telecom 

applications. 
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3. SR-IOV in Kubernetes Environments 

Kubernetes, by default, provides a simplified virtual networking model where all pods 

communicate over a flat, software-defined overlay network. While this model works well for 

general-purpose applications, it falls short for high-performance, latency-sensitive workloads 

typical in telecom, edge computing, and NFV (Network Function Virtualization). 

To meet these demands, SR-IOV is integrated into Kubernetes using specialized 

components that enable direct hardware access to containerized applications while preserving 

the benefits of orchestration and automation. 

 

3.1 SR-IOV Kubernetes Architecture 
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The architecture for SR-IOV in Kubernetes typically includes the following components: 

 

Component Description 

SR-IOV Capable NIC A NIC that supports PF/VF exposure via SR-IOV specification. 

Physical Function (PF) Configured and managed by the host OS to create and control VFs. 

Virtual Functions 

(VFs) 

Exposed to pods through PCI passthrough. Each pod can be assigned one or 

more VFs. 

SR-IOV Device Plugin 
A DaemonSet that discovers and advertises available VFs as allocatable 

resources to Kubernetes. 

SR-IOV CNI Plugin 
Responsible for binding a VF to a pod's network namespace and configuring 

its IP, VLAN, etc. 

Multus CNI 
A meta-plugin that allows pods to attach to multiple networks (e.g., default 

CNI + SR-IOV). 

 

3.2 Pod NetworkAttachmentDefinition Example 

To use SR-IOV in a pod, a NetworkAttachmentDefinition must be created: 

yaml 

CopyEdit 

apiVersion: k8s.cni.cncf.io/v1 

kind: NetworkAttachmentDefinition 

metadata: 

  name: sriov-net 

spec: 

  config: '{ 

    "cniVersion": "0.3.1", 

    "type": "sriov", 

    "name": "sriov-net", 

    "ipam": { 

      "type": "static", 

      "addresses": [ 

        { 

          "address": "192.168.1.100/24", 
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          "gateway": "192.168.1.1" 

        } 

      ] 

    } 

  }' 

A pod is then annotated to attach to the SR-IOV network: 

yaml 

CopyEdit 

metadata: 

  annotations: 

    k8s.v1.cni.cncf.io/networks: sriov-net 

 

3.3 VF Lifecycle and Binding Process 

 

1. Configure VFs on the NIC using sysfs or systemd units. 

2. Deploy the SR-IOV Device Plugin as a DaemonSet on each worker node. 

3. Kubelet receives updated allocatable resources (intel.com/sriov_netdevice). 

4. Multus + SR-IOV CNI Plugin bind the VF to the pod when scheduled. 

5. Pod accesses VF directly, bypassing the kernel and any software bridges. 

 

3.4 Benefits in Kubernetes 

 

Benefit Description 

Zero-copy I/O Packets flow directly to user space (e.g., DPDK). 

Deterministic latency Avoids software bridges and overlays. 

Low jitter Ideal for RTP, GTP, and SCTP traffic. 

High PPS support Suitable for UPF, gateways, and packet brokers. 
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3.5 Challenges and Considerations 

 

Challenge Mitigation 

Static VF assignment Use resource-aware scheduling and node affinity. 

Reduced portability Use labels and Taints/Tolerations for VF-capable nodes. 

VF exhaustion Monitor available VFs via Prometheus or node-exporter. 

Complex cleanup Implement hooks or scripts to unbind and reset VFs on pod termination. 

 

SR-IOV transforms Kubernetes from a generic platform into a telco-grade network 

function host, enabling true NFV deployments while retaining container orchestration 

flexibility. 

 

4. ARP-Based VF Monitoring and Failover 

In high-performance cloud-native network functions (CNFs), ensuring reliable link 

availability and fast switchover between Virtual Functions (VFs) is critical to maintaining 

service continuity. Traditional Linux networking tools are insufficient in SR-IOV environments 

because VFs often bypass the kernel network stack. To address this, a userspace ARP-based 

monitoring mechanism is introduced for each VF. 

 

4.1 Core Monitoring Logic 

Each VF in the system is paired with a lightweight ARP monitor agent that periodically 

sends ARP probe packets to one or more pre-defined target IP addresses on the network. 

• Default settings: 

o Retries: 3 

o Interval: 2 seconds 

o Multiple Targets: Supported to reduce false positives 

• Logic Flow: 

1. Send ARP probe(s) to all configured targets. 

2. Wait for reply within timeout. 

3. Count failed retries. 

4. If threshold exceeded → trigger corrective action. 
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4.2 Switchover Decision Tree 

 

Condition Action 

ARP response received Link is considered healthy – no action taken. 

No ARP response from active VF Perform VF reset and switch traffic to standby VF. 

No ARP response from both active and 

standby VFs 

Notify platform and failover to standby vLB running on 

another node. 

This logic ensures granular fault detection and automated recovery, even in 

active/active bond setups using balance-xor. 

 

4.3 Multi-Target ARP Probing 

To prevent false failovers caused by unreachable individual targets, multiple ARP 

targets per VF can be configured. The system evaluates majority response success/failure 

before declaring a VF unhealthy. This enhances resilience in complex routing environments. 

 

4.4 Integration with Telemetry and Alarming 

The ARP monitoring agent exports real-time metrics and alerts: 

 

Metric Description 

arp_probe_total Total ARP requests sent 

arp_response_total Successful responses received 

vf_switchover_total Number of VF resets and switchovers triggered 

vlb_switchover_notification_total Number of vLB failover notifications sent 

 

SNMP traps are generated on switchover events to inform upstream network 

management systems like mOne or Netcool. 

 

4.5 Implementation Considerations 

• Monitoring should be implemented per VF, not per pod, to isolate failures accurately. 

• Switchover actions (reset, rebind, rebalance) must be non-blocking and idempotent. 

• Platform-level alarms should include VF ID, pod name, node name, and timestamp. 



Bikash Agarwal, Harikishore Allu Balan 

https://iaeme.com/Home/journal/IJCET 98 editor@iaeme.com 

By enabling ARP-based VF health tracking, operators can ensure fast, accurate, and 

autonomous recovery from link failures without relying on reactive human intervention or 

higher-layer retries. 

 

5. Telemetry and SNMP Integration 

In a production-grade SR-IOV-enabled Kubernetes environment, observability is 

essential for monitoring network health, analyzing failover events, and enabling closed-loop 

automation. The system integrates Prometheus-based telemetry and SNMP-based alerting 

to provide both granular metrics and real-time failure notifications. 

Architecture Diagram 

 

 

 

5.1 Prometheus Telemetry Export 

A telemetry exporter module runs alongside the ARP monitoring agent. It exposes 

runtime metrics in Prometheus format, which are scraped periodically by a central monitoring 

service or platform (e.g., Prometheus + Grafana stack). 
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Key Exported Metrics: 

 

Metric Name Description 

arp_probe_total Total number of ARP requests sent by the agent. 

arp_response_total Number of successful ARP replies received. 

vf_switchover_total Count of VF-level switchovers performed due to failure. 

vlb_switchover_notification_total Number of vLB failover events triggered. 

arp_probe_latency_ms Average round-trip time for ARP probe acknowledgments. 

 

Metrics are labeled by VF ID, pod name, node name, and target IP for detailed, per-entity 

tracking. 

 

5.2 Use Cases for Telemetry 

• Dashboards: Real-time status of all VFs, switchover trends, and failure hotspots. 

• Alerts: Threshold-based alerting for frequent VF failures or high ARP latency. 

• Capacity Planning: Insights into VF utilization patterns and resilience efficiency. 

• Root Cause Analysis: Correlate VF switchovers with packet loss, latency, or pod 

restarts. 

 

5.3 SNMP Trap Generation 

While Prometheus provides time-series analytics, many telecom and enterprise systems 

rely on SNMP-based alerting for operational awareness. To support this, the monitoring 

system also emits SNMP traps during critical events: 

 

Trap Events: 

Trap Name Trigger Condition 

VF_Switchover_Trap VF reset and switch due to ARP failure. 

vLB_Failover_Trap Traffic migrated to standby vLB node. 

VF_Multiple_Target_Failure All ARP targets for a VF unreachable. 
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Each trap includes: 

• Timestamp 

• Node hostname 

• VF PCI address or pod name 

• Event reason 

 

SNMP traps can be received by traditional NMS platforms like Netcool, OpenNMS, or 

mOne, allowing seamless integration with legacy telco monitoring systems. 

 

5.4 Implementation Notes 

• SNMP traps should be sent in v2c or v3 format with a defined enterprise OID. 

• Telemetry endpoint should run as a sidecar or background service in the same pod as 

the VF consumer. 

• All exported data must be tagged and stored with tenant-level labels in multi-tenant 

platforms. 

 

By combining Prometheus for rich metric collection and SNMP for immediate alerting, 

the architecture provides both depth and speed in fault detection and observability — crucial 

for telco-grade service assurance. 

 

 

 

6. Active/Active Bonding Mode (Balance-XOR) 

Active/Active bonding allows multiple network interfaces to operate simultaneously, 

increasing fault tolerance and bandwidth. In SR-IOV-based Kubernetes environments, 

balance-xor (mode 2) is commonly used to implement active/active behavior across multiple 

Virtual Functions (VFs) within a single pod or container. 



Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking 

https://iaeme.com/Home/journal/IJCET 101 editor@iaeme.com 

 

6.1 What is Balance-XOR? 

Balance-XOR is one of the modes provided by Linux bonding drivers. It selects which 

interface (VF) to use for each packet based on a hash of the source and destination MAC 

addresses. This ensures that: 

• Each network flow is consistently handled by the same VF. 

• Different flows can be distributed across different VFs. 

• Link aggregation occurs without a centralized switch dependency. 

Hash formula: 

selected_interface = hash(src_mac XOR dst_mac) % number_of_active_VFs 

 

6.2 Implementation in SR-IOV CNFs 

In CNF architectures: 

• Two or more VFs from different NICs (or ports) are bonded inside the container or 

pod. 

• The container uses ifenslave or in-container bonding drivers to configure bonding in 

mode 2. 

• A typical bonding setup includes bond0 (master interface) with vf0 and vf1 as slaves. 

 

Example configuration: 

bash 

CopyEdit 

echo +vf0 > /sys/class/net/bond0/bonding/slaves 

echo +vf1 > /sys/class/net/bond0/bonding/slaves 

echo 2 > /sys/class/net/bond0/bonding/mode 

 

6.3 Failure Handling with ARP Monitoring 

Without ARP monitoring: 

• A VF failure may silently degrade performance as traffic continues being hashed to a 

failed path. 

With ARP monitoring: 

• The agent detects VF failures using ARP probes. 

• Only the impacted flows (~50%) are redirected to the standby VF. 

• Complete failure of all bonded VFs triggers failover to a standby vLB instance. 
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6.4 Performance Trade-Offs 

 

Advantage Limitation 

Utilizes both VFs simultaneously Debugging becomes complex due to split traffic 

Improves bandwidth and redundancy Requires static hashing — may not balance perfectly 

Reduces failover recovery time Per-flow steering can cause reordering if failover is partial 

 

6.5 Best Practices 

• Use multiple targets per VF in ARP monitoring to avoid false positives. 

• Disable LRO/GRO in bonded VFs to minimize latency spikes. 

• Ensure VFs in the bond come from different physical NICs for fault domain separation. 

 

By using balance-xor bonding in SR-IOV-based CNFs, operators can achieve higher 

resilience and throughput, while relying on ARP monitoring to gracefully handle link 

failures in an active/active topology. 

 

 

 

7. Use Cases and Performance Benefits 

SR-IOV is a foundational technology in high-performance and real-time networking 

environments, especially where deterministic performance, low latency, and high throughput 

are required. By enabling direct NIC access for containerized applications, SR-IOV eliminates 

the bottlenecks typically introduced by kernel-based network stacks and software switches. 
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7.1 Telecom and 5G Network Functions 

SR-IOV is extensively used in Cloud-Native Network Functions (CNFs) deployed in 

5G core and edge networks. It is ideally suited for: 

• User Plane Function (UPF): High throughput packet forwarding in the 5G core 

• Session Border Controllers (SBC): Low-latency, jitter-sensitive VoIP traffic 

• Packet Gateways (PGW-C/PGW-U): Real-time traffic classification and tunneling 

• RAN Fronthaul Gateways: Precision timing and deterministic Ethernet (TSN) 

compatibility 

7.2 Data Center and Edge Applications 

• Distributed Edge Analytics: SR-IOV reduces compute load on edge nodes by allowing 

DPDK-based analytics to process packets directly from the NIC. 

• Low-Latency Trading Systems: Financial systems benefit from microsecond-level 

deterministic performance. 

• High-Frequency Intrusion Detection Systems (IDS): Real-time inspection of high-

volume traffic with minimal packet drops. 

7.3 Containerized Packet Processing Pipelines 

In Kubernetes, SR-IOV allows: 

• Assigning one or more VFs directly to a pod via Multus CNI 

• Integrating with DPDK applications for zero-copy, user-space packet processing 

• Reducing latency spikes caused by kernel interrupt processing 

7.4 Measurable Performance Gains 
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7.5 Benefits Summary 

 

Metric SR-IOV + DPDK VirtIO Linux Bridge 

Latency ~12–20 μs ~45–60 μs ~60–80 μs 

Throughput 9–10 Gbps (line-rate) ~6 Gbps ~4 Gbps 

CPU Utilization Low Moderate High 

Packet Loss (under load) 0–0.5% 1–3% 5–10% 

 

SR-IOV transforms Kubernetes from a generic compute platform into a network-aware, 

telecom-grade infrastructure capable of hosting high-demand workloads with deterministic 

guarantees. 

 

 

 

8. Limitations and Best Practices 

While SR-IOV enables near-native performance in containerized workloads, it introduces 

several operational and architectural limitations. Understanding these limitations and applying 

best practices ensures that SR-IOV-based deployments remain reliable, maintainable, and 

scalable in modern cloud-native infrastructure. 



Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking 

https://iaeme.com/Home/journal/IJCET 105 editor@iaeme.com 

8.1 Limitations of SR-IOV 

 

Limitation Description 

Static VF Allocation 
VFs must be configured in advance and are statically assigned to nodes, 

limiting dynamic scaling. 

Limited Portability 
Pods with SR-IOV VFs are tied to specific nodes that have available VFs, 

breaking the Kubernetes abstraction of seamless scheduling. 

No Built-in 

SDN/Overlay Support 

SR-IOV bypasses Linux bridges and software switches, making it 

incompatible with overlays like Flannel or Calico BGP. 

Resource 

Fragmentation 

Uneven VF distribution can lead to resource exhaustion on certain nodes, 

requiring manual rebalancing. 

Complex Teardown and 

Cleanup 

Improper pod teardown can leave VFs in a stale or bound state, requiring 

manual intervention or cleanup scripts. 

Security Exposure 
Misconfigured PF or VF settings can inadvertently expose traffic across 

tenants if isolation mechanisms are not enforced. 

Monitoring Gaps 
Standard Kubernetes metrics (e.g., cAdvisor) do not natively expose VF-

level statistics. Additional agents are needed for observability. 

 

 

8.2 Best Practices for Reliable SR-IOV Deployments 

 

Practice Recommendation 

Use Multus CNI 
Allows pods to attach both SR-IOV and default interfaces, enabling flexible 

network design. 

Label SR-IOV Nodes 
Add labels (e.g., feature.node.kubernetes.io/network-sriov.capable=true) 

and use nodeSelector or affinity to bind SR-IOV pods to compatible nodes. 

Implement VF Health 

Monitoring 

Use ARP-based monitoring agents to proactively detect failures and trigger 

resets or switchovers. 

Use Dynamic VF 

Reconfiguration 

Automate VF provisioning using Kubernetes operators or scripts that 

respond to cluster load. 

Tag Prometheus 

Metrics by VF/Pod 

Ensure observability by exporting VF-specific counters (e.g., RX/TX, ARP 

success, reset events). 
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Practice Recommendation 

Enforce Network 

Isolation 

Use NIC features like VLAN filtering or PCI segment isolation to prevent 

traffic leakage. 

Implement Graceful 

Cleanup 

Use lifecycle hooks or termination scripts to release VFs, unbind drivers, 

and reset NIC state cleanly. 

Schedule Capacity 

Audits 

Regularly audit VF allocations per node and redistribute workloads to avoid 

hot spots and fragmentation. 

By following these best practices and proactively addressing SR-IOV’s operational 

constraints, platform operators can achieve deterministic performance without 

compromising cluster resilience and maintainability. 

 

9. Conclusion 

SR-IOV Single Root I/O Virtualization (SR-IOV) has emerged as a critical enabler for 

high-performance, low-latency networking in modern containerized environments. By 

exposing Virtual Functions (VFs) that bypass the host kernel, SR-IOV provides cloud-native 

workloads—especially telecom and real-time applications—with near line-rate throughput, 

deterministic latency, and reduced CPU overhead. 

This journal explored a complete SR-IOV-based networking stack integrated with 

Kubernetes, covering DPDK acceleration, per-VF ARP-based monitoring, proactive 

switchover logic, and real-time observability via Prometheus and SNMP. The inclusion of 

active/active bonding strategies such as balance-xor further enhances resilience, allowing split 

traffic paths and faster recovery. 

Despite its benefits, SR-IOV introduces certain limitations including static VF allocation, 

limited portability, and complex lifecycle management. By following best practices around 

monitoring, node labeling, and cleanup automation, these challenges can be effectively 

mitigated. 

As demand grows for network-intensive containerized workloads—such as 5G UPF, edge 

gateways, and secure analytics pipelines—SR-IOV will continue to serve as the foundation for 

high-throughput, telco-grade infrastructure. Future enhancements, including support for 

dynamic VF orchestration, vDPA abstraction, and service mesh integration, will further evolve 

the SR-IOV ecosystem to meet the performance and flexibility demands of next-generation 

cloud-native platforms. 
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