

https://iaeme.com/Home/journal/IJCET 89 editor@iaeme.com

International Journal of Computer Engineering and Technology (IJCET)

Volume 16, Issue 3, May-June 2025, pp. 89-108, Article ID: IJCET_16_03_008

Available online at https://iaeme.com/Home/issue/IJCET?Volume=16&Issue=3

ISSN Print: 0976-6367; ISSN Online: 0976-6375; Journal ID: 5751-5249

Impact Factor (2025): 18.59 (Based on Google Scholar Citation)

DOI: https://doi.org/10.34218/IJCET_16_03_008

© IAEME Publication

COMPREHENSIVE OVERVIEW OF SR-IOV FOR

HIGH-PERFORMANCE CLOUD-NATIVE

NETWORKING

Bikash Agarwal,

Principal Engineer, Systems Design, T-Mobile USA, Inc., USA.

Harikishore Allu Balan,

Principal Engineer, Systems Architecture, T-Mobile USA, Inc., USA.

ABSTRACT

Single Root I/O Virtualization (SR-IOV) enables high-performance, hardware-

assisted networking by exposing multiple Virtual Functions (VFs) from a single

Physical Function (PF) on a NIC. In cloud-native and telecom environments, SR-IOV

is critical for delivering low-latency and high-throughput packet processing. This paper

presents an architecture that integrates SR-IOV with Kubernetes, DPDK, and ARP-

based monitoring for fault-tolerant CNF deployments. Each VF is monitored

individually, allowing proactive switchover in case of link failure. Prometheus metrics

and SNMP traps provide real-time observability and fault signaling. Bonding strategies

like balance-xor enable active/active redundancy. We explore worker node setup, CNI

integration, and failover logic. Use cases include 5G UPF, RTP streaming, and network

slicing. Limitations and future enhancements such as vDPA support and mesh-native

observability are discussed. This architecture ensures performance, resiliency, and

operational clarity in SR-IOV-enabled Kubernetes environments.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 90 editor@iaeme.com

Keywords: Virtual Functions (VFs), Physical Function (PF), Cloud-Native

Networking, Kubernetes, Data Plane Development Kit (DPDK), Container Network

Interface (CNI), Fault Tolerance, Prometheus Monitoring, SNMP Traps, Active/Active

Redundancy, Network Interface Bonding, balance-xor, Real-Time Protocol (RTP)

Streaming, 5G User Plane Function (UPF), Network Slicing, vDPA, Observability, Link

Failure Detection, Mesh-Native Networking.

Cite this Article: Bikash Agarwal, Harikishore Allu Balan. (2025). Comprehensive

Overview of SR-IOV for High-Performance Cloud-Native Networking. International

Journal of Computer Engineering and Technology (IJCET), 16(3), 89-108.

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_008.pdf

1. Introduction

Modern cloud-native and telecom infrastructure demand high-throughput, low-latency,

and deterministic networking to support latency-sensitive workloads such as 5G User Plane

Functions (UPF), real-time media processing, and network analytics. Traditional kernel-based

network stacks introduce overhead that can lead to unpredictable performance, increased jitter,

and suboptimal resource utilization.

Single Root I/O Virtualization (SR-IOV) is a hardware-assisted PCIe specification that

addresses these challenges by allowing a single physical network interface card (NIC) to expose

multiple Virtual Functions (VFs) alongside a Physical Function (PF). Each VF acts as a

lightweight, isolated network interface, assignable directly to virtual machines or containers,

bypassing the host kernel for packet I/O.

In Kubernetes environments, SR-IOV is typically integrated using Multus CNI, SR-IOV

CNI plugins, and the SR-IOV Device Plugin, enabling direct VF-to-pod assignment. Combined

with DPDK (Data Plane Development Kit), this approach allows cloud-native network

functions (CNFs) to achieve near line-rate performance with reduced CPU overhead.

This paper introduces a robust, production-ready SR-IOV framework that includes per-

VF ARP-based health monitoring, failover orchestration, telemetry with Prometheus, and

SNMP trap-based alarming, ensuring high availability and operational visibility in mission-

critical CNF deployments.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 91 editor@iaeme.com

2. SR-IOV Architecture and Components

Single Root I/O Virtualization (SR-IOV) is a PCIe-based specification developed by the PCI-

SIG that allows a single physical device, such as a Network Interface Card (NIC), to be shared

efficiently and securely among multiple virtual machines (VMs) or containers. It does this by

exposing multiple lightweight PCIe interfaces called Virtual Functions (VFs) in addition to

the full-featured Physical Function (PF).

2.1 Physical Function (PF)

The PF is the primary interface on the NIC with full control over device configuration,

management, and resets. It is visible to the host operating system and is responsible for creating

and maintaining the VFs. All administrative operations, including firmware updates, VF

provisioning, and advanced offload configurations (e.g., VLAN filtering, queue steering), are

performed through the PF.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 92 editor@iaeme.com

2.2 Virtual Functions (VFs)

VFs are lightweight PCIe functions that inherit a subset of capabilities from the PF. They

appear as individual network interfaces to the guest OS or container and can be directly assigned

using PCI passthrough. Each VF contains its own transmit (TX) and receive (RX) queues,

interrupt vectors, and hardware filters. Crucially, VFs allow data plane traffic to bypass the

kernel and be processed in user space, especially when used with DPDK.

2.3 NIC Firmware and SR-IOV Capability

The NIC firmware plays a critical role in SR-IOV. It maintains the mapping between PF

and VFs and ensures isolation, resource fairness, and queue separation. The number of VFs a

PF can support depends on NIC hardware limits and BIOS settings. Enabling SR-IOV is

typically done via system firmware or Linux’s sysfs interface.

bash

CopyEdit

echo 8 > /sys/class/net/<interface>/device/sriov_numvfs

2.4 VF-to-Workload Mapping

Once created, VFs are exposed to the host system and can be:

• Bound to user-space drivers (e.g., vfio-pci or igb_uio) for DPDK applications

• Assigned to Kubernetes pods using SR-IOV CNI plugins

• Managed and advertised to the scheduler via the SR-IOV Device Plugin

2.5 Security and Isolation

Each VF is hardware-isolated from others through separate DMA mappings and queue

control. This ensures that a compromised or misbehaving guest cannot interfere with traffic

assigned to other VFs or the PF. However, misconfiguration at the PF level (e.g., enabling

promiscuous mode) can expose vulnerabilities if not managed correctly.

2.6 Performance Advantages

Because VFs bypass the kernel and interact directly with NIC hardware:

• Latency is reduced by 40–60% compared to virtio or bridge-based interfaces.

• CPU utilization is minimized, especially under high packet-per-second (PPS)

workloads.

• Jitter is significantly improved, which is critical for real-time and telecom

applications.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 93 editor@iaeme.com

3. SR-IOV in Kubernetes Environments

Kubernetes, by default, provides a simplified virtual networking model where all pods

communicate over a flat, software-defined overlay network. While this model works well for

general-purpose applications, it falls short for high-performance, latency-sensitive workloads

typical in telecom, edge computing, and NFV (Network Function Virtualization).

To meet these demands, SR-IOV is integrated into Kubernetes using specialized

components that enable direct hardware access to containerized applications while preserving

the benefits of orchestration and automation.

3.1 SR-IOV Kubernetes Architecture

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 94 editor@iaeme.com

The architecture for SR-IOV in Kubernetes typically includes the following components:

Component Description

SR-IOV Capable NIC A NIC that supports PF/VF exposure via SR-IOV specification.

Physical Function (PF) Configured and managed by the host OS to create and control VFs.

Virtual Functions

(VFs)

Exposed to pods through PCI passthrough. Each pod can be assigned one or

more VFs.

SR-IOV Device Plugin
A DaemonSet that discovers and advertises available VFs as allocatable

resources to Kubernetes.

SR-IOV CNI Plugin
Responsible for binding a VF to a pod's network namespace and configuring

its IP, VLAN, etc.

Multus CNI
A meta-plugin that allows pods to attach to multiple networks (e.g., default

CNI + SR-IOV).

3.2 Pod NetworkAttachmentDefinition Example

To use SR-IOV in a pod, a NetworkAttachmentDefinition must be created:

yaml

CopyEdit

apiVersion: k8s.cni.cncf.io/v1

kind: NetworkAttachmentDefinition

metadata:

 name: sriov-net

spec:

 config: '{

 "cniVersion": "0.3.1",

 "type": "sriov",

 "name": "sriov-net",

 "ipam": {

 "type": "static",

 "addresses": [

 {

 "address": "192.168.1.100/24",

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 95 editor@iaeme.com

 "gateway": "192.168.1.1"

 }

]

 }

 }'

A pod is then annotated to attach to the SR-IOV network:

yaml

CopyEdit

metadata:

 annotations:

 k8s.v1.cni.cncf.io/networks: sriov-net

3.3 VF Lifecycle and Binding Process

1. Configure VFs on the NIC using sysfs or systemd units.

2. Deploy the SR-IOV Device Plugin as a DaemonSet on each worker node.

3. Kubelet receives updated allocatable resources (intel.com/sriov_netdevice).

4. Multus + SR-IOV CNI Plugin bind the VF to the pod when scheduled.

5. Pod accesses VF directly, bypassing the kernel and any software bridges.

3.4 Benefits in Kubernetes

Benefit Description

Zero-copy I/O Packets flow directly to user space (e.g., DPDK).

Deterministic latency Avoids software bridges and overlays.

Low jitter Ideal for RTP, GTP, and SCTP traffic.

High PPS support Suitable for UPF, gateways, and packet brokers.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 96 editor@iaeme.com

3.5 Challenges and Considerations

Challenge Mitigation

Static VF assignment Use resource-aware scheduling and node affinity.

Reduced portability Use labels and Taints/Tolerations for VF-capable nodes.

VF exhaustion Monitor available VFs via Prometheus or node-exporter.

Complex cleanup Implement hooks or scripts to unbind and reset VFs on pod termination.

SR-IOV transforms Kubernetes from a generic platform into a telco-grade network

function host, enabling true NFV deployments while retaining container orchestration

flexibility.

4. ARP-Based VF Monitoring and Failover

In high-performance cloud-native network functions (CNFs), ensuring reliable link

availability and fast switchover between Virtual Functions (VFs) is critical to maintaining

service continuity. Traditional Linux networking tools are insufficient in SR-IOV environments

because VFs often bypass the kernel network stack. To address this, a userspace ARP-based

monitoring mechanism is introduced for each VF.

4.1 Core Monitoring Logic

Each VF in the system is paired with a lightweight ARP monitor agent that periodically

sends ARP probe packets to one or more pre-defined target IP addresses on the network.

• Default settings:

o Retries: 3

o Interval: 2 seconds

o Multiple Targets: Supported to reduce false positives

• Logic Flow:

1. Send ARP probe(s) to all configured targets.

2. Wait for reply within timeout.

3. Count failed retries.

4. If threshold exceeded → trigger corrective action.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 97 editor@iaeme.com

4.2 Switchover Decision Tree

Condition Action

ARP response received Link is considered healthy – no action taken.

No ARP response from active VF Perform VF reset and switch traffic to standby VF.

No ARP response from both active and

standby VFs

Notify platform and failover to standby vLB running on

another node.

This logic ensures granular fault detection and automated recovery, even in

active/active bond setups using balance-xor.

4.3 Multi-Target ARP Probing

To prevent false failovers caused by unreachable individual targets, multiple ARP

targets per VF can be configured. The system evaluates majority response success/failure

before declaring a VF unhealthy. This enhances resilience in complex routing environments.

4.4 Integration with Telemetry and Alarming

The ARP monitoring agent exports real-time metrics and alerts:

Metric Description

arp_probe_total Total ARP requests sent

arp_response_total Successful responses received

vf_switchover_total Number of VF resets and switchovers triggered

vlb_switchover_notification_total Number of vLB failover notifications sent

SNMP traps are generated on switchover events to inform upstream network

management systems like mOne or Netcool.

4.5 Implementation Considerations

• Monitoring should be implemented per VF, not per pod, to isolate failures accurately.

• Switchover actions (reset, rebind, rebalance) must be non-blocking and idempotent.

• Platform-level alarms should include VF ID, pod name, node name, and timestamp.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 98 editor@iaeme.com

By enabling ARP-based VF health tracking, operators can ensure fast, accurate, and

autonomous recovery from link failures without relying on reactive human intervention or

higher-layer retries.

5. Telemetry and SNMP Integration

In a production-grade SR-IOV-enabled Kubernetes environment, observability is

essential for monitoring network health, analyzing failover events, and enabling closed-loop

automation. The system integrates Prometheus-based telemetry and SNMP-based alerting

to provide both granular metrics and real-time failure notifications.

Architecture Diagram

5.1 Prometheus Telemetry Export

A telemetry exporter module runs alongside the ARP monitoring agent. It exposes

runtime metrics in Prometheus format, which are scraped periodically by a central monitoring

service or platform (e.g., Prometheus + Grafana stack).

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 99 editor@iaeme.com

Key Exported Metrics:

Metric Name Description

arp_probe_total Total number of ARP requests sent by the agent.

arp_response_total Number of successful ARP replies received.

vf_switchover_total Count of VF-level switchovers performed due to failure.

vlb_switchover_notification_total Number of vLB failover events triggered.

arp_probe_latency_ms Average round-trip time for ARP probe acknowledgments.

Metrics are labeled by VF ID, pod name, node name, and target IP for detailed, per-entity

tracking.

5.2 Use Cases for Telemetry

• Dashboards: Real-time status of all VFs, switchover trends, and failure hotspots.

• Alerts: Threshold-based alerting for frequent VF failures or high ARP latency.

• Capacity Planning: Insights into VF utilization patterns and resilience efficiency.

• Root Cause Analysis: Correlate VF switchovers with packet loss, latency, or pod

restarts.

5.3 SNMP Trap Generation

While Prometheus provides time-series analytics, many telecom and enterprise systems

rely on SNMP-based alerting for operational awareness. To support this, the monitoring

system also emits SNMP traps during critical events:

Trap Events:

Trap Name Trigger Condition

VF_Switchover_Trap VF reset and switch due to ARP failure.

vLB_Failover_Trap Traffic migrated to standby vLB node.

VF_Multiple_Target_Failure All ARP targets for a VF unreachable.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 100 editor@iaeme.com

Each trap includes:

• Timestamp

• Node hostname

• VF PCI address or pod name

• Event reason

SNMP traps can be received by traditional NMS platforms like Netcool, OpenNMS, or

mOne, allowing seamless integration with legacy telco monitoring systems.

5.4 Implementation Notes

• SNMP traps should be sent in v2c or v3 format with a defined enterprise OID.

• Telemetry endpoint should run as a sidecar or background service in the same pod as

the VF consumer.

• All exported data must be tagged and stored with tenant-level labels in multi-tenant

platforms.

By combining Prometheus for rich metric collection and SNMP for immediate alerting,

the architecture provides both depth and speed in fault detection and observability — crucial

for telco-grade service assurance.

6. Active/Active Bonding Mode (Balance-XOR)

Active/Active bonding allows multiple network interfaces to operate simultaneously,

increasing fault tolerance and bandwidth. In SR-IOV-based Kubernetes environments,

balance-xor (mode 2) is commonly used to implement active/active behavior across multiple

Virtual Functions (VFs) within a single pod or container.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 101 editor@iaeme.com

6.1 What is Balance-XOR?

Balance-XOR is one of the modes provided by Linux bonding drivers. It selects which

interface (VF) to use for each packet based on a hash of the source and destination MAC

addresses. This ensures that:

• Each network flow is consistently handled by the same VF.

• Different flows can be distributed across different VFs.

• Link aggregation occurs without a centralized switch dependency.

Hash formula:

selected_interface = hash(src_mac XOR dst_mac) % number_of_active_VFs

6.2 Implementation in SR-IOV CNFs

In CNF architectures:

• Two or more VFs from different NICs (or ports) are bonded inside the container or

pod.

• The container uses ifenslave or in-container bonding drivers to configure bonding in

mode 2.

• A typical bonding setup includes bond0 (master interface) with vf0 and vf1 as slaves.

Example configuration:

bash

CopyEdit

echo +vf0 > /sys/class/net/bond0/bonding/slaves

echo +vf1 > /sys/class/net/bond0/bonding/slaves

echo 2 > /sys/class/net/bond0/bonding/mode

6.3 Failure Handling with ARP Monitoring

Without ARP monitoring:

• A VF failure may silently degrade performance as traffic continues being hashed to a

failed path.

With ARP monitoring:

• The agent detects VF failures using ARP probes.

• Only the impacted flows (~50%) are redirected to the standby VF.

• Complete failure of all bonded VFs triggers failover to a standby vLB instance.

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 102 editor@iaeme.com

6.4 Performance Trade-Offs

Advantage Limitation

Utilizes both VFs simultaneously Debugging becomes complex due to split traffic

Improves bandwidth and redundancy Requires static hashing — may not balance perfectly

Reduces failover recovery time Per-flow steering can cause reordering if failover is partial

6.5 Best Practices

• Use multiple targets per VF in ARP monitoring to avoid false positives.

• Disable LRO/GRO in bonded VFs to minimize latency spikes.

• Ensure VFs in the bond come from different physical NICs for fault domain separation.

By using balance-xor bonding in SR-IOV-based CNFs, operators can achieve higher

resilience and throughput, while relying on ARP monitoring to gracefully handle link

failures in an active/active topology.

7. Use Cases and Performance Benefits

SR-IOV is a foundational technology in high-performance and real-time networking

environments, especially where deterministic performance, low latency, and high throughput

are required. By enabling direct NIC access for containerized applications, SR-IOV eliminates

the bottlenecks typically introduced by kernel-based network stacks and software switches.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 103 editor@iaeme.com

7.1 Telecom and 5G Network Functions

SR-IOV is extensively used in Cloud-Native Network Functions (CNFs) deployed in

5G core and edge networks. It is ideally suited for:

• User Plane Function (UPF): High throughput packet forwarding in the 5G core

• Session Border Controllers (SBC): Low-latency, jitter-sensitive VoIP traffic

• Packet Gateways (PGW-C/PGW-U): Real-time traffic classification and tunneling

• RAN Fronthaul Gateways: Precision timing and deterministic Ethernet (TSN)

compatibility

7.2 Data Center and Edge Applications

• Distributed Edge Analytics: SR-IOV reduces compute load on edge nodes by allowing

DPDK-based analytics to process packets directly from the NIC.

• Low-Latency Trading Systems: Financial systems benefit from microsecond-level

deterministic performance.

• High-Frequency Intrusion Detection Systems (IDS): Real-time inspection of high-

volume traffic with minimal packet drops.

7.3 Containerized Packet Processing Pipelines

In Kubernetes, SR-IOV allows:

• Assigning one or more VFs directly to a pod via Multus CNI

• Integrating with DPDK applications for zero-copy, user-space packet processing

• Reducing latency spikes caused by kernel interrupt processing

7.4 Measurable Performance Gains

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 104 editor@iaeme.com

7.5 Benefits Summary

Metric SR-IOV + DPDK VirtIO Linux Bridge

Latency ~12–20 μs ~45–60 μs ~60–80 μs

Throughput 9–10 Gbps (line-rate) ~6 Gbps ~4 Gbps

CPU Utilization Low Moderate High

Packet Loss (under load) 0–0.5% 1–3% 5–10%

SR-IOV transforms Kubernetes from a generic compute platform into a network-aware,

telecom-grade infrastructure capable of hosting high-demand workloads with deterministic

guarantees.

8. Limitations and Best Practices

While SR-IOV enables near-native performance in containerized workloads, it introduces

several operational and architectural limitations. Understanding these limitations and applying

best practices ensures that SR-IOV-based deployments remain reliable, maintainable, and

scalable in modern cloud-native infrastructure.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 105 editor@iaeme.com

8.1 Limitations of SR-IOV

Limitation Description

Static VF Allocation
VFs must be configured in advance and are statically assigned to nodes,

limiting dynamic scaling.

Limited Portability
Pods with SR-IOV VFs are tied to specific nodes that have available VFs,

breaking the Kubernetes abstraction of seamless scheduling.

No Built-in

SDN/Overlay Support

SR-IOV bypasses Linux bridges and software switches, making it

incompatible with overlays like Flannel or Calico BGP.

Resource

Fragmentation

Uneven VF distribution can lead to resource exhaustion on certain nodes,

requiring manual rebalancing.

Complex Teardown and

Cleanup

Improper pod teardown can leave VFs in a stale or bound state, requiring

manual intervention or cleanup scripts.

Security Exposure
Misconfigured PF or VF settings can inadvertently expose traffic across

tenants if isolation mechanisms are not enforced.

Monitoring Gaps
Standard Kubernetes metrics (e.g., cAdvisor) do not natively expose VF-

level statistics. Additional agents are needed for observability.

8.2 Best Practices for Reliable SR-IOV Deployments

Practice Recommendation

Use Multus CNI
Allows pods to attach both SR-IOV and default interfaces, enabling flexible

network design.

Label SR-IOV Nodes
Add labels (e.g., feature.node.kubernetes.io/network-sriov.capable=true)

and use nodeSelector or affinity to bind SR-IOV pods to compatible nodes.

Implement VF Health

Monitoring

Use ARP-based monitoring agents to proactively detect failures and trigger

resets or switchovers.

Use Dynamic VF

Reconfiguration

Automate VF provisioning using Kubernetes operators or scripts that

respond to cluster load.

Tag Prometheus

Metrics by VF/Pod

Ensure observability by exporting VF-specific counters (e.g., RX/TX, ARP

success, reset events).

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 106 editor@iaeme.com

Practice Recommendation

Enforce Network

Isolation

Use NIC features like VLAN filtering or PCI segment isolation to prevent

traffic leakage.

Implement Graceful

Cleanup

Use lifecycle hooks or termination scripts to release VFs, unbind drivers,

and reset NIC state cleanly.

Schedule Capacity

Audits

Regularly audit VF allocations per node and redistribute workloads to avoid

hot spots and fragmentation.

By following these best practices and proactively addressing SR-IOV’s operational

constraints, platform operators can achieve deterministic performance without

compromising cluster resilience and maintainability.

9. Conclusion

SR-IOV Single Root I/O Virtualization (SR-IOV) has emerged as a critical enabler for

high-performance, low-latency networking in modern containerized environments. By

exposing Virtual Functions (VFs) that bypass the host kernel, SR-IOV provides cloud-native

workloads—especially telecom and real-time applications—with near line-rate throughput,

deterministic latency, and reduced CPU overhead.

This journal explored a complete SR-IOV-based networking stack integrated with

Kubernetes, covering DPDK acceleration, per-VF ARP-based monitoring, proactive

switchover logic, and real-time observability via Prometheus and SNMP. The inclusion of

active/active bonding strategies such as balance-xor further enhances resilience, allowing split

traffic paths and faster recovery.

Despite its benefits, SR-IOV introduces certain limitations including static VF allocation,

limited portability, and complex lifecycle management. By following best practices around

monitoring, node labeling, and cleanup automation, these challenges can be effectively

mitigated.

As demand grows for network-intensive containerized workloads—such as 5G UPF, edge

gateways, and secure analytics pipelines—SR-IOV will continue to serve as the foundation for

high-throughput, telco-grade infrastructure. Future enhancements, including support for

dynamic VF orchestration, vDPA abstraction, and service mesh integration, will further evolve

the SR-IOV ecosystem to meet the performance and flexibility demands of next-generation

cloud-native platforms.

Comprehensive Overview of SR-IOV for High-Performance Cloud-Native Networking

https://iaeme.com/Home/journal/IJCET 107 editor@iaeme.com

References

[1] PCI-SIG. SR-IOV Specification. [Online]. Available:

https://pcisig.com/specifications/iov

[2] DPDK Project. [Online]. Available: https://www.dpdk.org/

[3] Multus CNI GitHub Repository. [Online]. Available:

https://github.com/k8snetworkplumbingwg/multus-cni

[4] SR-IOV CNI Plugin GitHub. [Online]. Available:

https://github.com/k8snetworkplumbingwg/sriov-cni

[5] SR-IOV Device Plugin for Kubernetes. [Online]. Available:

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

[6] CNI Project (CNCF). [Online]. Available: https://github.com/containernetworking/cni

[7] Kubernetes Network Attachment Definitions (CRD Spec). [Online]. Available:

https://github.com/k8snetworkplumbingwg/network-attachment-definition-client

[8] S. Dramasamy, "High-Performance Containerized Applications in Kubernetes,"

Medium. [Online]. Available: https://dramasamy.medium.com/high-performance-

containerized-applications-in-kubernetes-f494cef3f8e8

[9] CSDN Blog, “What is SR-IOV, PF, VF.” [Online]. Available:

https://blog.csdn.net/bandaoyu/article/details/121852974

[10] IBM Documentation, "SR-IOV Adapter and vNIC Diagrams." [Online]. Available:

https://www.ibm.com/docs/en/power10?topic=diagrams-sr-iov-vnic-diagram

[11] ResearchGate, "SR-IOV Architecture Diagram." [Online]. Available:

https://www.researchgate.net/figure/SR-IOV-Architecture-with-Virtual-Functions-

PCI-SIG-237_fig33_313309121

[12] Kubernetes Networking Documentation. [Online]. Available:

https://kubernetes.io/docs/concepts/cluster-administration/networking/

[13] Intel. "SR-IOV Technical Guide." [Online]. Available:

https://www.intel.com/content/www/us/en/ethernet-products/sriov-networking-

technology-brief.html

[14] Linux Foundation, "DPDK in Telco Environments." [Online]. Available:

https://www.lfnetworking.org/wp-content/uploads/2021/07/DPDK-in-Telco.pdf

Bikash Agarwal, Harikishore Allu Balan

https://iaeme.com/Home/journal/IJCET 108 editor@iaeme.com

[15] ETSI, "NFV Architecture Framework." [Online]. Available:

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010

201p.pdf

[16] Red Hat. "SR-IOV in OpenShift Documentation." [Online]. Available:

https://docs.openshift.com/container-

platform/latest/networking/hardware_networks/about-sriov.html

[17] DPDK Documentation: Kernel NIC Interface (KNI). [Online]. Available:

https://doc.dpdk.org/guides/sample_app_ug/kernel_nic_interface.html

[18] OpenConfig. "Network Telemetry Model." [Online]. Available:

https://github.com/openconfig/public/blob/master/release/models/telemetry/openconfi

g-telemetry.yang

[19] IETF RFC 4364 – BGP/MPLS IP VPNs. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc4364

[20] IETF RFC 8321 – Alternate Marking for Performance Measurement. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8321

Citation: Bikash Agarwal, Harikishore Allu Balan. (2025). Comprehensive Overview of SR-IOV for

High-Performance Cloud-Native Networking. International Journal of Computer Engineering and

Technology (IJCET), 16(3), 89-108.

Abstract Link: https://iaeme.com/Home/article_id/IJCET_16_03_008

Article Link:
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_008.pdf

Copyright: © 2025 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com

