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A B S T R A C T   

The prolonged use, incorrect diagnosis, unnecessary prescription, improper dosing over the year has transformed 
klebsiella organisms into resistant to antibiotics. The emergence of resistance to many antibiotics and drugs makes 
treatment options limited. Now, the antibiotic pipeline has become severely dry. So, there is a pressing necessity 
for a new drug against Klebsiella oxytoca infections as well as the identification of drug targets. In this study, a 
systematic proteome subtractive method is used to screen out the most potential drug targets of Klebsiella oxytoca 
that might facilitate the discovery of putative drug in the near future. The comparative proteome analysis of host 
and pathogen was made to identify the non-homologous proteins which showed no similarity with human host 
proteins. KEGG pathway analysis was made to identify common and unique metabolic pathways. A computa-
tional analysis was carried out to list out the indispensable non-homologous proteins of the pathogen. Essential 
proteins were predicted by the analysis of protein-protein interactions networks to reveal the proteins which are 
exigent for the survival of the pathogen, and these proteins also have a lethal effect when removed from the 
pathogen. In this study, 43 essential proteins were identified. To predict subcellular localization, CELLO (version 
2.5) and PSORTb (version 3.00) tools were used. The druggability of proteins was predicted using the DrugBank 
database. Besides, the physiochemical properties of proteins were analyzed using the Protparam tool of ExPASy. 
After physiochemical properties analysis and the based on 3D structure availability in the Protein Data Bank, the 
homology model was built for only one influential drug target using MODELLER. In the end, molecular docking 
study was carried out to investigate the protein interactions with five different drugs.   

1. Introduction 

Klebsiella oxytoca is a non-motile, Gram-negative, rod-shaped bacil-
lus in the Enterobacteriaceae family. It causes nosocomial infection in 
hospitalized patients as well as high morbidity and mortality [1,2], and 
it is the second most disease-causing agent of bacteremia after Klebsiella 
pneomoniae [3]. The most common infections caused by Klebsiella oxy-
toca are urinary tract infections, pneumonia, wound infections, and 
antibiotic-associated hemorrhagic colitis [4]. 

Generally, Klebsiella oxytoca is spread in healthcare environments. 
These environments might be nursing homes and ICU (intensive care 
units). While Klebsiella oxytoca (KO) resides inside intestines of a person, 
it is considered healthy and normal. If it spreads outside the intestinal 

tract, it can lead to severe infections. Increasingly, it has been present in 
the newborn baby’s blood, and they are suffering from neonatal septi-
cemia [5]. Neonatal septicemia symptoms are seizures, slow heart rate, 
temperature changes, jaundice, vomiting, diarrhea, low blood sugar, 
breaking difficulties, reduction in movements and sucking, and swollen 
abdomen. In the traditional drug discovery process, roughly ten to 
fifteen years are required to bring a new product to the market in the 
traditional drug discovery system. It is time-consuming and costly to 
determine drug targets in the wet lab. Therefore, drug target identifi-
cation by computational based bioinformatics approach is the most 
preferable way because it reduces time and cost-effectiveness. 

Antibiotic resistance is a global concern. Now, it is becoming 
increasingly threatening to public health. Like other enterobacteria 
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klebsiella oxytoca capable of acquiring antibiotic resistance. Evidently, 
the resistance of Klebsiella species to current antibiotics like penicillins, 
especially cephalosporinases, ampicillin and carbenicillin, carbapene-
mases and the oxyimino β-lactams suchas cefotaxime, ceftazidime and 
the monobactam, and aztreonam are increasing order [6,7]. 

Many researchers have worked on different organisms, for example 
Salmonella typhimurium LT2, Streptococcus pneumoniae, Klebsiella pneu-
moniae, using the comparative genomic approach to identify drug and 
vaccine targets with regard to overcome the limitations of drug and 
vaccine [3,8–10]. A recent study has figured out novel drug targets in 
the pathogen Leptospira using in silico approach [11]. It has now been 
demonstrated that novel drug targets discovered by utilizing the sub-
tractive genomic approaches are useful [12]. 

Antibiotic resistance has become more common now, and there is an 
urgent need for developing alternative drugs for better treatments. 
Furthermore, the drug pipeline is running very slowly and dry [13]. It 
has become the driving force behind developing a novel and effective 

drug. So, it is explored the possibility of identification of novel drug 
targets and designing of drugs against human pathogens. Proteomes of 
the pathogens are available to use for further study. Thus, in this present 
study, a strategy has been made for identifying the disease-causing 
agents in Klebsiella oxytoca with the help of the subtractive genomics 
approach for moving forward to the drug discovery process. 

2. Material and methods 

2.1. Identification of metabolic pathways 

The overall workflow for identifying the putative drug targets in 
Klebsiella oxytoca is shown in Fig. 1. The KEGG (Kyoto Encyclopedia of 
Genes and Genomes) is a database resource and knowledge base for 
genes function analysis with higher-order functional information by 
computerizing present knowledge on cellular processes and utilizing the 
biological system [14,15]. The metabolic pathways for both host and 

Fig. 1. The workflow of the overall analysis pipeline.  
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pathogen were extracted from the KEGG database (https://www.kegg. 
jp/), and a manual comparison was made between the host and path-
ogen pathways. Then, the pathways that were presented in both human 
and KO metabolic pathways were considered as common pathways, and 
pathways that were not present in humans were selected as unique 
pathways. Furthermore, all proteins reside in both metabolic pathways 
that were accessed from the UniProt database (https://www.uniprot. 
org/), a repository of a comprehensive resource for protein sequences 
and annotation datasets [16,17]. 

2.2. Identification of non-homologous proteins 

All retrieved proteins from common and unique pathways were im-
ported to BLASTp tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and 
the similarity search of amino acid sequences was carried out against the 
human proteome [18]. The key aim of this search is to find proteins that 
show no similarity with human host proteins in the pathogenic bacteria 
Klebsiella oxytoca. Because the availability of non-homologous proteins 
might lead to cross-reactivity or side-effects of drug compounds with 
human proteins [19]. The homologous proteins were filtered out with 
the conditions of expectation value (e-value) ≤ 0.005 and minimum bit 
score 100. Proteins, that showed hit above the e-value 0.005 were 
selected as non-homologous proteins, and the remaining amino acid 
sequences of proteins were eliminated from the list [20–22]. Based on 
the previous study, the criteria for the e-value was selected [23]. 

2.3. Identification of essential proteins 

To discover the essential proteins of Klebsiella oxytoca, resultant non- 
homologous proteins were further subjected to the STRING database 
(https://string-db.org/cgi/input.pl) [24], a search tool for recurring 
instances of neighbouring genes to build a protein-protein interaction 
network. Essential proteins are those which are crucial for the survival of 
pathogens and elimination of these proteins have a lethal effect on or-
ganisms [25]. In constructed protein-protein interaction network, the 
degree of nodes (i.e., proteins) is correlated with lethality [26,27]. Thus, 
essential proteins were identified by selecting hub nodes in the graph, i. 
e., nodes with three or higher degrees are selected as essential proteins 
in this study. The remaining proteins were omitted from the list, which 
shows the dispensability for their cellular process [28,29]. 

2.4. Subcellular localization prediction 

The prediction of subcellular localization for essential proteins is one 
of the vital steps in search for drug targets. For identification of the 
biological significance of its function and subcellular localization, all 
predicted proteins that are non-homologous to humans and essential for 
pathogens were subjected to subcellular localization prediction. It was 
carried out by a precise and multicomponent approach using PSORTb 
(http://www.psort.org/psortb/) [30], a commonly used and powerful 
tool for predicting the localization of the Gram-negative bacterial pro-
tein. It offers unique advantages over other methods. If the confidential 
prediction is not possible, the result would be in an ‘unknown’ location 
[31]. It can identify the subcellular localization of the protein in five 
regions of a cell: (1) Cytoplasm, (2) Periplasm, (3) Outer membrane, (4) 
Inner membrane, and (5) Extracellular space [32]. The resultant data-
sets of PSORTb were further cross-checked using CELLO (http://cello. 
life.nctu.edu.tw/), which is another web-based tool for implementa-
tion of Support Vector Machine (SVM) classifiers to forecast the location 
of proteins in cells [32]. The cytoplasmic proteins were considered as a 
putative drug target. From the output of PSORTb and CELLO, proteins 
that did not show the same region in the cells were omitted from the list 
[33]. 

2.5. Druggability 

Testing the druggability is another vital ground for drug target 
identification, i.e., the likelihood of being susceptible to regulate the 
function of the drug targets with a small drug compound [34,35]. Pre-
dicting the similar protein that binds to the drug is the most convenient 
way to assess the druggability of a protein [36,37]. Druggability of each 
selected non-homologous essential protein was evaluated by submitting 
them to the DrugBank Database (https://www.drugbank.ca/biodb/se 
arch/bonds/sequence) [38], an online resource that deals with dual 
fields bioinformatics and cheminformatics, which associates detailed 
information about drugs and drug targets. The resultant hits found with 
the DrugBank database were defined as druggable targets, whereas the 
non-hits were considered unique targets and needed to be evaluated 
experimentally. 

2.6. Physicochemical properties analysis 

Being non-homologous to human proteins and unavoidable for the 
survival of pathogens are not only specifications to select the most 
attractive drug targets, but some other physiochemical properties also 
play a significant role and could be useful as drug targets. The properties 
involve low molecular weight, grand average of hydropathicity 
(GRAVY), isoelectric point (pI), aliphatic index. All these requisite pa-
rameters were measured using ProtParam tools of ExPASy (https://web. 
expasy.org/protparam/) [39]. Further, Protein Data Bank (PDB) (htt 
ps://www.rcsb.org/) [40] and Modbase (https://modbase.compbio. 
ucsf.edu/modbase-cgi/index.cgi) [41] were assessed with the aim of 
searching for the availability of solved three-dimensional structures of 
targeted proteins. 

2.7. Homology modelling 

The homology modelling of possible drug targets was carried out by 
performing MODELLER v9.20 [42,43], a commonly used and precise 
computer program for predicting the three-dimensional structure of the 
‘target’ protein. The basic steps include in comparative modelling are 
initial template selection, then best template selection having higher 
sequence identity with the ‘target’, query sequence alignment with the 
best template structure, model generation, and model assessment. For a 
three-dimensional structure building, template sequences were 
retrieved from the NCBI-Blast search against Protein Data Bank (PDB) 
[43]. Template structures were selected based on the sequence identity 
and query coverage. The most appropriate model was selected from the 
various models that were generated by MODELLER. The model was 
visualized by RasMol [44] software. 

2.8. Model assessment 

Homology modelling involves the model evaluation phase. The 
reliability of the simulated model was verified with the help of the 
Ramachandran plot, which was generated using PDBsum (https://www. 
ebi.ac.uk/thornton-srv/software/PROCHECK/) [45]. The Ramachan-
dran graph illustrates phi and psi dihedral angles for the residues of each 
amino acid in a protein. The graph is separated into favoured, allowed, 
and disallowed regions. If more than 90% of residues of amino acid lie in 
the favoured region, then the generated model is considered to be a good 
quality structure [46]. 

2.9. Drug preparation and molecular docking calculations 

Initial geometry of amikacin, aztreonam, ceftriaxone, tigecycline, 
and meropenem were taken from online chemical structure database 
named PubChem (https://pubchem.ncbi.nlm.nih.gov/) (PubChem CID: 
37768, 5,459,211, 5479530, 54686904, and 441,130). Further geome-
try optimization was performed by utilizing Gaussian 09W Revision 
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D.01 [47]. Density functional theory (DFT), along with B3LYP [48], and 
6-31G (d, p) basis set was used for optimization in the gas phase. Energy 
minimization of the protein structure was performed by using Swiss pdb 
viewer software (http://www.expasy.org/spdbv/) for the preparation of 
the molecular docking study. 

Finally, optimized structures were subjected to molecular docking 
against the modelled protein, considering the protein as macromolecule, 
and drugs as ligand utilizing PyRx (version 0.8) software package. 
Flexible docking was performed considering the center grid box size 
52.94 Å, 48.91 Å, 47.63 Å in x, y, and z directions respectively, where 
the whole protein was covered by the grid box. 

3. Results and discussion 

3.1. Identification of metabolic pathways 

In this study, we used the computational strategy to identify the most 
attractive drug target for the pathogenic bacteria Klebsiella oxytoca 
through the protein subtractive approach. From the start, we collected 
information of metabolic pathways of Klebsiella oxytoca and human host 
from the KEGG online database. After performing a manual comparison 
between the metabolic pathways of the pathogen (KO) and host 
(human), 46 unique and 31 common metabolic pathways were identi-
fied in Klebsiella oxytoca. A total number of 132 proteins were found 
from 31 common pathways of host-pathogen (Table SI1), while 227 
proteins were found from 46 unique pathogen pathways (Table SI2). 
Finally, we accessed all the protein sequences (amino acid sequence) for 
common and unique pathways from the UniProtKB online database (htt 
ps://www.uniprot.org/help/uniprotkb), and the sequences were stored 
on our local machine as FASTA files. 

3.2. Identification of non-homologous protein 

With the aim of reducing the cross-reactivity or side effects, we 
excluded homologous proteins from the list using the NCBI-Blastp (https 
://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) analysis against 
the human proteome. Total 59 proteins (18 proteins from common 

pathways, and 41 proteins from unique pathways) were remained those 
had no significant sequence similarity to human proteins as non- 
homologous. 

3.3. Essential proteins 

To find the essentiality to the pathogen, the non-homologous pro-
teins were further analyzed using the STRING online database tool. The 
STRING is a database of predicted and known protein interactions that 
work through functional and physical associations. In the protein- 
protein interaction (PPI) network in the STRING database, nodes 
represent proteins, and undirected edges that are connected to nodes 
represent the interaction between two or more proteins. The degree of 
nodes of proteins is correlated with lethality. For better prediction, 
nodes with lower seeds are excluded. We generated PPI networks with 
different confidence levels, and the network that had the highest number 
of connected nodes with a confidence score was selected. In this study, 

Fig. 2. STRING database image selected by confidence level 0.150 from non-homologous proteins of common pathways. Undirected colored edges between the 
proteins represent the different types of interaction evidence. Nodes with three or higher degree are selected as essential proteins that are indicated with red circles. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
List of essential proteins selected by STRING database from non-homologous 
proteins of common pathways.  

SL. Protein Model Portal 
ID (3D Structure) 

Gene Protein Name 

1. A0A068H861 KOX_14,640 Putative fumarate hydratase 
2. A0A068H5T7 KOX_10,580 Putative hydratase 
3. A0A068HBS9 KOX_19,080 Putative oxidoreductase, Fe–S 

subunit 
4. A0A068HB58 sdhD Succinate dehydrogenase 

cytochrome b556 small membrane 
subunit 

5. A0A068H5T5 frdC Fumarate reductase subunit C 
6. A0A068H608 frdD Fumarate reductase subunit D 
7. A0A068H7R8 KOX_13,880 Putative transketolase C-terminal 

subunit 
8. A0A068HD23 KOX_11,075 Bifunctional aconitate hydratase 2/ 

2-methylisocitrate dehydratase 
9. A0A068HF19 KOX_21,685 Malate:quinone oxidoreductase 
10. A0A068HHD8 KOX_25,480 Fructose-bisphosphate aldolase 
11. A0A068HK09 gpmI Phosphoglyceromutase  
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nodes with three or higher degrees (K ≥ 3) were selected as essential 
proteins which represent the significant number of associations. We 
found 11 out of 18 non-homologous proteins in common pathways as 
essential proteins with the confidence level 0.150 is shown in Fig. 2 and 
listed in Table 1. The generated network was also tested by 0.9, 0.7, 0.4, 
and 0.2 confidence levels. Furthermore, out of 41 non-homologous 
proteins of unique pathways, we found 32 proteins as essential pro-
teins with the confidence level of 0.200 (tested by 0.9, 0.7, 0.4, 0.300, 
2.00, and 0.150 also) is demonstrated in Fig. 3 and listed in Table 2. 

3.4. Prediction of subcellular localization 

Predicting the location of a protein plays a vital role in the drug 
discovery and development process. Hence, all identified non- 
homologous essential proteins were subjected to both CELLO v2.5 and 
PSORTb tools separately, for subcellular locations prediction. The 
resultant outputs from the tools were cross-checked for getting out 
better drug targets (Table SI3). So, based on the prediction of CELLO 
v2.5 and PSORTb, we selected the proteins those were in the same 
location in cells. The proteins that reside in Cytoplasmic might be an 
attractive drug target. In this significant step, 24 non-homologous 
essential proteins were found from both common and unique 

Fig. 3. STRING database image selected by confidence level 0.200 from non-homologous protein of unique pathways. Undirected colored edges between the proteins 
represent the different types of interaction evidence. Nodes with three or higher degree are selected as essential proteins that are indicated with red circles. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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pathways. The dissimilarity in the subcellular localization of essential 
proteins is shown in Fig. 4 by using the CELLO v2.5 and PSORTb tools. 

3.5. Druggability 

In drug target identification, the druggability test of a protein is a 
crucial step that was assessed based on the assumption that druggable 
protein targets should interact with the drug-like compound. Therefore, 
the DrugBank database was used to identify the drug targets. For this 
reason, 24 essential non-homologous proteins that were found in the 
prediction of subcellular localization step were subjected to the Drug-
Bank database against BLASTp search with default settings. Hits found 
with DrugBank were considered as the common targets or druggable 
targets while remained were treated as unique drug targets that are 
further recommended for experimental validation. As demonstrated in 
Table 3, 10 out of 24 non-homologous proteins were found as novel 
unique targets. 

3.6. Physiochemical properties analysis 

In the prioritization strategy, we explored a variety of criteria to 
classify the more specific drug target for better results. These parameters 
including lower molecular weight, lower isoelectric point, and higher 
hydrophobicity (show lower polarity) are playing a very important role 
in drug targets identification. The Isoelectric Point (pI) value of proteins 
was calculated as less than 10. For most of the proteins, the Instability 
Index was above 40, which indicates that they would remain unstable. 
The Instability Index of less than 40 shows the stability. The proteins had 
negative Grand Average Hydropathicity (GRAVY) scores on average, 
which meant that they are hydrophilic (having a tendency to mix with, 
dissolve in, or be wetted by water) in nature. The Aliphatic index (Ai) 
value of proteins was above 84. Based on these calculations, the Ai 
values were calculated quite high, which indicates that the proteins 
would remain stable over an array of temperatures. These criterion 
included several cutoff values, i.e., Molecular weight <100K Da; PI <
7.2; Instability index <40; Ai in between 85 and 104; Hydrophobicity > - 
0.240. The physiochemical properties of the proteins are illustrated in 
Table SI4. However, by the above comparison, only 3 out of 10 were 
selected for the next experiment which are unmarked, on the other hand, 
7 were rejected, which are marked by gray color in Table SI4. 

3.7. Homology modelling 

The three-dimensional (3D) structure was available only for the 
protein A0A068HBX6 after checking the availability of 3D structures of 
3 proteins from the Protein Data Bank (PDB) with the Modbase tool. 
Homology modelling was carried out to generate a 3D structure of 
A0A068HBX6 protein using MODELLER v9.20. The query sequence of 
the protein was subjected to the BLASTp search against PDB that 

Table 2 
List of essential proteins selected by STRING database from non-homologous 
proteins of unique pathways.  

SL. Protein Model 
Portal ID (3D 
Structure) 

Gene Protein Name 

1. A0A068H3W9 ppc Phosphoenolpyruvate carboxylase 
2. A0A068H4B8 metA Homoserine O-succinyltransferase 
3. A0A068H556 ilvM Acetolactate synthase 2 regulatory 

subunit 
4. A0A068H581 hemD uroporphyrinogen-III synthase 
5. A0A068H5D6 KOX_07615 Putative uroporphyrinogen III C- 

methyltransferase 
6. A0A068H5K2 KOX_08040 Malate synthase 
7. A0A068H5P1 ubiC Chorismate pyruvate lyase 
8. A0A068H6L7 KOX_06970 PTS system lactose/cellobiose- 

specific transporter subunit IIB 
9. A0A068H726 aroD 3-dehydroquinate dehydratase 
10. A0A068H7A3 KOX_07680 Flavin mononucleotide phosphatase 
11. A0A068H8W3 hrB Homoserine kinase 
12. A0A068HAP6 KOX_06990 PTS transporter subunit IIA-like 

nitrogen-regulatory protein PtsN 
13. A0A068HBX2 KOX_08920 Putative L-ascorbate 6-phosphate 

lactonase 
14. A0A068HDG5 nudB Dihydroneopterin triphosphate 

pyrophosphatase 
15. A0A068HE50 thiL Thiamine monophosphate kinase 
16. A0A068HEI2 lpxM Lipid A biosynthesis (KDO)2- 

(lauroyl)-lipid IVA acyltransferase 
17. A0A068HFD6 thiM Hydroxyethylthiazole kinase 
18. A0A068HFS3 KOX_26,545 3-octaprenyl-4-hydroxybenzoate 

carboxy-lyase 
19. A0A068HGC9 pssA Phosphatidylserine synthase 
20. A0A068HH49 cysI Sulfite reductase subunit beta 
21. A0A068HHD3 KOX_18,655 Chorismate mutase 
22. A0A068HHE7 argA N-acetylglutamate synthase 
23. A0A068HMC4 tyrA Bifunctional chorismate mutase/ 

prephenate dehydrogenase 
24. A0A068H3K0 KOX_06975 PTS system ascorbate-specific 

transporter subunit IIC 
25. A0A068H524 KOX_09230 Anaerobic ribonucleoside 

triphosphate reductase 
26. A0A068H5G0 ubiD 3-octaprenyl-4-hydroxybenzoate 

carboxy-lyase 
27. A0A068H872 KOX_12,630 2-dehydropantoate 2-reductase 
28. A0A068HBX6 ulaE L-xylulose 5-phosphate 3-epimerase 
29. A0A068HF58 dcd Deoxycytidine triphosphate 

deaminase 
30. A0A068HGL3 lpxL Lipid A biosynthesis lauroyl 

acyltransferase 
31. A0A068HIB0 folB Bifunctional dihydroneopterin 

aldolase/dihydroneopterin 
triphosphate 2′-epimerase 

32. A0A068HN42 ispD 2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase  

Fig. 4. The dissimilarity in subcellular localizations for identified essential 
proteins by using CELLO v2.5 and PSORTb tools. 

Table 3 
Ten unique drug targets were found in DrugBank.  

SL. Uniprot ID Protein name 

1. A0A068H4B8 Homoserine O-succinyltransferase 
2. A0A068H5K2 Malate synthase 
3. A0A068H7A3 Flavin mononucleotide phosphatase 
4. A0A068H861 Putative fumarate hydratase 
5. A0A068HDG5 Dihydroneopterin triphosphate pyrophosphatase 
6. A0A068HE50 Thiamine monophosphate kinase 
7. A0A068HGC9 Phosphatidylserine synthase 
8. A0A068HMC4 Bifunctional chorismate mutase/prephenate dehydrogenase 
9. A0A068H5G0 3-octaprenyl-4-hydroxybenzoate carboxy-lyase 
10. A0A068HBX6 L-xylulose 5-phosphate 3-epimerase  
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revealed four template sequences, namely 3cqi, 3cqh, 6btm and 4pgl 
with higher sequence identity. The sequence identity of 3cqi, 3cqh, 
6btm, and 4pgl were 94%, 90%, 28%, and 22%, respectively. These four 
template sequences were used for homology modelling. After perform-
ing modelling using the MODELLER, five 3D models were built for the 
query sequence of the protein A0A068HBX6. The primary principles for 
selecting the best one among the several models are the lowest DOPE 
(discrete optimized protein energy) score [49] with the highest GA341 
score [50]. According to the summary of built models (Table 4), the 5th 
model qseq1.B99990005.pdb was selected as it had the lowest DOPE 
score of − 36290.39844 with the highest GA341 score of 1.00000. 
Therefore, the 3D structure for the selected A0A068HBX6 protein 
model “qseq1.B99990005.pdb” was visualized in RasMol (http://www. 
openrasmol.org/), and it is shown in Fig. 5. 

3.8. Model assessment 

The final selected A0A068HBX6 protein’s model “qseq1. 
B99990005.pdb” was evaluated and analyzed with the help of Ram-
achandran plot using the PROCHECK database [46], which provides a 
pictorial summary of 3D structure is demonstrated in Fig. 6. In the 
summary of the Ramachandran plot is shown in Table 5 with appro-
priate statistics, it is found that out of 284 amino acid residues, 234 
residues (93.2%) laid in the core or most favoured region, and 17 resi-
dues (6.8%) exist in the allowed region. By these statistics, it was 

considered that the generated model “qseq1.B99990005.pdb” was good 
and reliable as above 90% residues placed in the most favour region [51, 
52]. 

3.9. Molecular docking interactions analysis 

Molecular docking is an important tool to investigate the binding 
affinity of drugs with the protein [53]. We studied the binding in-
teractions of five selected drugs with the modelled protein (qseq1. 
B99990005.pdb), among them the docking interactions of amikacin and 
aztreonam are shown in Fig. 7. The greater the negative score of binding 
affinity, reveals the stronger binding interactions of ligands with the 
protein. Here, Aztreonam, meropenem, and ceftriaxone have relatively 
higher bonding scores than the others, that indicates they have inter-
action with the protein more strongly [54]. Aztreonam, meropenem, 
and ceftriaxone has binding affinity value of − 7.8 kcalmol-1, -7.7 kcal-
mol-1, and -7.6 kcalmol-1, respectively, which are tabulated in Table 6. 

Table 4 
DOPE and GA341 score for the generated model of A0A068HBX6 protein.  

Filename molpdf DOPE score GA341 score 

qseq1.B99990001.pdb 1370.14709 − 36044.33203 1.00000 
qseq1.B99990002.pdb 1418.36584 − 35956.98438 1.00000 
qseq1.B99990003.pdb 1345.41772 − 36031.97266 1.00000 
qseq1.B99990004.pdb 1344.84961 − 35872.92969 1.00000 
qseq1.B99990005.pdb 1392.72681 − 36290.39844 1.00000  

Fig. 5. 3D structure of the selected A0A068HBX6 protein for the targeted 
sequence in RasMol software. 

Fig. 6. The Ramachandran plot shows the stereochemical quality of 3D model 
generated by PROCHECK. The colouring on the plot signifies the phi-psi 
backbone conformational regions, where the red regions indicate the most 
favoured regions. The additional allowed regions and generously allowed re-
gions are shown in brown and yellow field, respectively. The light-yellow areas 
correspond to the disallowed regions. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 5 
The Ramachandran plot statistics for the ‘qseq1.B99990005.pdb’ 3D structure 
model.   

Number of Residues Percentage of Residues 

Most favoured regions [A,B,L] 234 93.2% 
Additional allowed regions [a,b, 

l,p] 
17 6.8% 

Generously allowed regions [~a, 
~b,~l,~p] 

0 0.0% 

Disallowed regions [XX] 0 0.0% 
Non-glycine and non-proline 

residues 
(234 + 17+0 + 0) =
251 

(93.2 + 6.8+0 + 0)% =
100% 

End-residues (excl. Gly and Pro) 2  
Glycine residues 19  
Proline residues 12  
Total number of residues (251 + 2+19 + 12) 

= 284   
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The other two ligands (Amikacin and tigecycline) have relatively lower 
binding affinity scores, i.e., − 6.7 kcalmol-1 and -7.2 kcalmol-1. 

There are some other parameters such as hydrogen bonding, halogen 
bonding, and hydrophobic interactions that are also related to the 
bonding interactions of the protein-ligand complexes [55]. Hydrogen 
bond distances of less than 2.3 Å increases the binding affinity score 
between ligand and protein [54,56]. So, the non-covalent bond in-
teractions in the drug-protein complex were examined (Table 6 and 
Fig. 8). In this study, all the drugs have mostly conventional hydrogen 
bonds with the amino acid residue, and among them, amikacin has 
lowest number of interactions but less bond distance. Ceftriaxone and 
tigecycline also have carbon-hydrogen bonds. Alkyl, Pi-alkyl, Anion, 
Pi-Anion and Pi-Donor bond interactions also been shown by most of the 
drugs. 

4. Discussion 

The identification of novel drugs and vaccines is now becoming 
increasingly crucial due to the growing resistance to existing drugs. To 
overcome this limitation, there arises the necessity of exploring the 
possibility of identifying new drug targets in the death-causing bacteria 
Klebsiella oxytoca. Nowadays, computational based techniques have 
become the most effective choice for identifying novel drug targets [10, 
33,57–59]. Researchers have found out potential drug targets in several 
pathogenic bacteria using comparative and subtractive genomic ap-
proaches [3,8–10,60–62]. However, in this study, we applied an in silico 
comprehensive subtractive genomics approach for discovering pro-
spective drug targets that are involved in life-threatening infection to 
Klebsiella oxytoca; non-existent in the human host organisms. 

The initial stage of the analysis revealed that the pathogenic organ-
ism Klebsiella oxytoca is made up of a wide range of unique metabolic 
pathways that are essential for survival and have no human homologs. 
Primarily, 227 and 132 proteins were identified in 46 unique and 31 
common metabolic pathways, respectively. The homologous proteins 
were excluded from the list as the existence of these proteins can cause 
cross-reactivity that is detrimental to the host [19,63]. The 
protein-protein interaction (PPI) networks analysis was carried out to 
identify essential proteins based on selecting the hub nodes with three or 
higher interacting partners. At this stage, 43 essential proteins were 
discovered using PPI network analysis in STRING database. Several 

studies have shown that PPI network analysis is effective in term of 
finding out the hub proteins which might be lethal for pathogen’s sur-
vival [64–66]. 

On the other hand, the study of the subcellular localization of pro-
teins can significantly increase the accuracy regarding target identifi-
cation during the drug discovery process. It is important for unravelling 
protein functions that are engaged in various cellular processes. Hence, 
in this step, the 43 selected essential proteins were further analyzed to 
predict the location of proteins in cells using PSORTb. Furthermore, to 
increase the accuracy of prediction, the proteins were further cross- 
checked with CELLO. After subcellular location prediction in cells of 
43 essential proteins, 24 out of 43 proteins were subjected to the 
DrugBank database for druggability testing. 10 out of 24 proteins were 
determined based on their druggability analysis. 

In the prioritization step, physiochemical properties of unique tar-
gets that are resident of the cytoplasm were estimated for getting better 
drug targets. By considering several parameters, such as lower molec-
ular weight, lower isoelectric point, higher hydrophobicity and insta-
bility index, 3 out of 10 drug targets were prioritized. Among them, 
protein Thiamine monophosphate kinase encoded by the gene thiL is 
responsible for the Thiamine biosynthesis pathway and 3-octaprenyl-4- 
hydroxybenzoate carboxy-lyase encoded by the gene ubiD is associated 
with Ubiquinone biosynthesis pathway. Accordingly, protein L-xylulose 
5-phosphate 3-epimerase coded by the gene UlaE belongs to the Ascor-
bate degradation pathway. However, all these three targets are 

Fig. 7. Molecular docking. (a): docked conformation, and (b) superimposed 
view of amikacin and aztreonam with the modelled protein (qseq1. 
B99990005.pdb). 

Table 6 
Binding affinity scores of the five selected drugs with the modelled protein.  

Drugs Binding affinity 
score (kcalmol-1) 

Residue in 
contact 

Interaction 
type 

Bond 
distance (Å) 

Amikacin − 6.7 LYS221 H 1.94548  
GLU42 H 2.31864  
GLU251 H 2.0036  
ASP158 H 1.99692 

Aztreonam − 7.8 SER77 H 3.0882  
ARG80 H 3.09451  
LYS213 H 3.15086  
LYS221 H 3.215  
TRP253 H 3.2583  
ASP41 H 2.64982  
GLU42 PA 3.7884  
TYR122 Pd 3.09164 

Ceftriaxone − 7.6 PHE225 H 3.10876  
GLU227 H 3.30537  
SER254 H 2.92154  
TRP270 H 3.03617  
THR256 H 1.9047  
TRP253 H 2.20893  
GLU227 H 2.97987  
TRP270 C 3.27973  
GLU263 C 3.29478  
VAL223 C 3.70647  
LYS266 A 4.80072 

Meropenem − 7.7 ARG80 H 3.15353  
ARG80 H 2.93757  
PHE220 H 3.18974  
LYS221 H 3.38334  
GLU155 H 2.61056  
LYS221 A 3.79296  
VAL219 A 3.70771  
TRP253 Pi-A 4.49596 

Tigecycline − 7.2 CYS20 H 3.26155  
TRP21 H 2.87957  
TRP52 H 3.0432  
TRP52 H 2.90554  
ASP45 H 2.88132  
ALA59 H 1.98036  
GLU19 C 3.34659  
ASP45 C 3.57015  
ALA59 Pi-A 4.62021 

H¼ Conventional Hydrogen Bond, C= Carbon Hydrogen Bond, A = Alkyl, Pi-A 
= Pi-Alkyl, Pd= Pi-Donor Hydrogen Bond, PA= Pi-Anion. 
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indispensable for pathogen survival. 
Consequently, based on 3D structure availability, homology model-

ling was performed on protein A0A068HBX6 (ulaE) to analyze struc-
tural characteristics. The model structures of A0A068HBX6 were 
revealed using the four templates with a higher sequence identity score. 
Based on the lowest DOPE score of − 36290.39844 and the highest 
GA341 score of 1.00000, the model structure qseq1.B99990005.pdb was 
selected as the best model. Next, the 3D protein model was evaluated by 
the Ramachandran plot that was calculated to 93.2% residues and 
located in the most favoured region, which indicates the model was 
highly valid and most reliable. 

Virtual screening of protein-ligand complex was completed to 
investigate the interaction between protein and drugs by molecular 
docking analysis. Binding affinity score is the key point in this analysis, 
where the better the binding score, reveals better interactions. The 
binding affinity score for the three selected drugs Aztreonam, mer-
openem, and ceftriaxone is of − 7.8 kcalmol-1, -7.7 kcalmol-1, and -7.6 
kcalmol-1, respectively. Their relatively better binding scores suggest 
their better interactions with the modelled protein. Non-covalent bond 
suggests the stability and efficacy of the bond. Among the selected drugs, 
most of them have shown better non-covalent interactions. 

Herein, we performed the subtractive genomic approach (Figure SI1) 
to identify significant drug targets in Klebsiella oxytoca, and the sug-
gested drugs would be progressed to the drug design and discovery 
process. 

5. Conclusion 

In recent years, Klebsiella organisms have become important patho-
gens in nosocomial infections. Due to the emergence of resistance to 
existing drugs, our research work is focused on drug target identification 
to improve the treatment of bacterial infectious diseases caused by 
Klebsiella oxytoca. In this in silico based approach, we identified a series 
of proteins that could be used as drug targets. In this study, by per-
forming a comparative metabolic pathway analysis, a set of proteins 
were identified as drug targets. The targets that were identified are 
indispensable for the growth of the organisms. The identification of 10 
drug targets provides the foundation for the computer-aided drug design 
process against Klebsiella oxytoca. On the basis of the physicochemical 
properties analysis of these 10 proteins, three of them were selected for 

further analysis. These three proteins are related to three distinct 
pathways, i.e., ulaE from the Ascorbate degradation pathway, ubiD from 
the Ubiquinone biosynthesis pathway, and thiL from the Thiamine 
biosynthesis pathway. Five models were predicted using the homology 
modelling analysis, and the best one was selected from them. Molecular 
docking reveals the biological interactions with drugs where most of 
them show good binding interactions with the modelled protein and 
nonbonding interactions suggest stability of the bonds. 

Computer-aided drug design with the help of bioinformatics tools is 
more useful. Moreover, the in silico based approach reduces the time and 
complications, which could make it faster in clinical trials. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.imu.2022.100998. 
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[6] Avcıoğlu NH, Bilkay IS. Comparative assessment of five clinical Klebsiella isolates 
in terms of antibiotic resistance and plasmid profiles/Beş farklı klinik Klebsiella 
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