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Over the past 15 years, the use of structural equation modeling has
become increasingly common in the social and behavioral sciences.
Enthusiastic recognition by researchers of the advantages of the struc-
tural equation modeling approach and an eagerness to implement this
potentially powerful methodology has also brought with it inappropri-
ate use of the technique. One major source of inappropriate usage has
been the failure of investigators to satisfy the scaling and normality
assumptions upon which estimation and testing are based. The com-
monly used approaches to estimating the parameters of structural equa-
tion models, maximum likelihood and normal theory generalized least
squares, assume that the measured variables are continuous and have a
multivariate normal distribution. In practice, current applications of the
structural equation modeling approach to real data often involve viola-
tions of these assumpltions.
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In some substantive areas, the measured variables used by researchers
are dichotomous or ordered categories (e.g., “agree,” “no preference,”
“disagree”) rather than truly continuous. In other areas, the measured
variables are continuous but their distributions depart dramatically from
normality (e.g., measures of amount of substance use). Micceri (1989)
analyzed over 400 large data sets, finding that the great majority of data
collected in behavioral research do not follow univariate normal distri-
butions, let alone a multivariate normal distribution. Yet researchers
often ignore these assumptions. For example, Breckler (1990) identi-
fied 72 articles in personality and social psychology journals that had
used structural equation modeling and found that only 19% acknowl-
edged the normal theory assumptions, and fewer than 10% explicitly
considered whether these assumptions had been violated.

Given that real data often fail to satisfy the underlying scaling and
normality assumptions, there has been growing interest in determining
the robustness of structural equation modeling techniques to violations
of the scaling and normality assumptions and in developing alternative
remedial strategies when these assumptions are seriously violated.
These topics are the focus of the present chapter.

Overview of Normal Theory Estimation

As discussed in Chapters 1 and 3, the objective of estimation is to
minimize the magnitude of the set of differences between each element
in § and the corresponding element in X(8). Recall that § is thg sample
covariance matrix calculated from the observed data and 2('9) is the
covariance matrix implied by a set of parameter estimates 6 for the
hypothesized model. Throughout the presentation below, all parameters
that are estimated will be grouped in a vector 6.

The two most commonly used estimation techniques are maximum
likelihood (ML) and normal theory generalized least squares (GLS).
Both techniques are based on the same set of assumptions, yield very
similar estimates, and have the same desirable statistical properties.
These techniques are discussed in more detail in Chapter 3 and by Bollen
(1989b); here we briefly review the assumptions and properties of the
GLS estimator to set the stage for our later discussion of nonnormality.

The generalized least squares fitting function, Fgis, can be ex-
pressed as
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Fgrs=Yatr [([S - 2(6)]W")2]‘ @.1)

In this equation, S represents the observed covariance matrix, 2(6)
represents the covariance matrix implied by the hypothesized model,
W-! represents a weight matrix, and “tr” is the trace operator, which
takes the sum of the elements on the main diagonal of the matrix, here
the matrix resulting from the operations within the large brackets.
Minimization of this fitting function involves rRinimizalion of the
weighted squared discrepancies between § and X(8). Like other mem-
bers of the class of weighted least squares procedures, GLS requires the
selection of the weight matrix. The most common choice for Wlis
S-!, which weights the squared discrepancies between S and 2(6)
according to their variances and covariances with other elements. This
choice is based on two assumptions. First, E(s;;), the expected value of
the sample covariance between x; and x;, is assumed to equal oy, the
corresponding covariance in the population. Second, the large sample
distribution of the elements of § is assumed to be multivariate normal.
If these assumptions are satisfied, GLS estimates have several desirable
statistical properties.

1. The parameter estimates are asymptotically unbiased: On average, in large
samples, they neither overestimate nor underestimate the corresponding
population parameter (i.c., E[0] = 0, where E[0] is the expected value of
the estimate of 0).

2. The parameter estimates are consistent: They converge in probability to
the true value of the population parameter being estimated as sample size
increases.

3. The parameter estimates are asymptotically efficient: With increasing N,
they have minimum variance.

4. (N — 1)FgLs approximates a chi-square distribution in large samples,
permitting tests of the fit of the model to the data.

Recall, however, that these desirable statistical properties of the GLS
estimator (and the ML estimator; see Bollen, 1989b) are contingent on
meeting several assumptions. These assumptions include that a very
large (asymptotic) sample size is employed, the observed variables are
continuous, the measured variables have a multivariate normal distri-
bution, and the model estimated is a valid one. When these assumptions
are not met, there is no guarantee in statistical theory that the desirable
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properties will continue to hold. Consequently, the robustness of the
estimators to violations of assumptions becomes an important issue for
empirical study.

Effects and Detection of Nonnormality

THEORETICAL BASIS FOR THE PROBLEM

Potential problems in estimation of structural equation models are
introduced when the distribution of the observed variables departs
substantially from multivariate normality. As can be seen from Equa-
tion 4.1, the parameter estimates are derived from information in §, the
sample covariance matrix, and W', the optimal weight matrix. When
the observed variables are (a) continuous but nonnormal, (b) dichoto-
mous, or (c) ordered categories, the information in S or W~! or both may
be incorrect. As a result, estimates based on S and W~! may also be
incorrect.

Continuous, Nonnormal Variables. As we saw in the discussion of
estimation, the variation in the measured variables is completely sum-
marized by the sample covariances only when multivariate normality
is present. If multivariate normality is violated, the variation of the
measured variables will not be completely summarized by the sample
covariances; information from higher-order moments is needed. In this
situation, S™' is no longer the correct estimator of W™ The parameter
estimates do remain unbiased and consistent (i.e., as sample size grows
larger, 8 converges to @), but they are no longer efficient. These results
suggest that theoretically two important problems will occur with nor-
mal theory estimators (ML, GLS) when the observed variabies do not
have a multivariate normal distribution. (a) The x2 goodness-of-fit test
is not expected to produce an accurate assessment of fit, rejecting too
many (> 5%) true models. (b) Tests of all parameter estimates are
expected to be biased, yielding too many significant results.

Coarsely Categorized Variables. Investigations of the effects of
coarse categorization of continuous variables (e.g., Bollen & Barb,
1981) have found that the Pearson correlation coefficient between two
continuous variables is generally higher in magnitude than the correla-
tion between the same variables when they have been divided up into a
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set of ordered categories. The greatest attenuation occurs when few
categories are employed (i.e., fewer than five) for either variable in-
volved in the correlation and when the categorized variables are skewed,
particularly in opposite directions. These findings imply that coarse
categorization of continuous variables can theoretically be expected to
lead to biased % tests of model fit, parameter estimates, standard errors,
and tests of parameter estimates.

DETECTING DEPARTURES FROM NORMALITY

Skewness and Kurtosis, Univariate and Multivariate. A number of
procedures are available for assessing the univariate and multivari-
ate normality of the measured variables. These procedures depend
on the calculation of higher order moments: A moment is defined as
(l/N)Z(x - p)", where N is sample size, x is an observed score, W is
the population mean, and k is the order of the moment (k = 1 for the
first-order moment; k = 2 for the second-order moment, etc.). When
univariate normality is satisfied, only the first- and second-order mo-
ments (mean and variance) are needed to describe fully the distribution
of the measured variables—the standardized third-order moment is 0
and the standardized fourth-order moment is technically 3 for a normal
distribution. Univariate distributions that deviate from normality, how-
ever, possess significant nonzero skewness and kurtosis that are re-
flected in the standardized third- and fourth-order moments, respec-
tively. Nonzero skewness is indicative of a departure from symmetry.
Negative skewness indicates a distribution with an elongated left-hand
tail; positive skewness indicates a distribution with an elongated right-
hand tail (relative to the symmetrical normal distribution). Kurtosis,
which is particularly important for statistical inference, indicates the
extent to which the height of the curve (probability density) differs from
that of the normal curve. Positive kurtosis is associated with distribu-
tions with long, thin tails, whereas negative kurtosis is associated with
shorter, fatter tails relative to the normal curve. To simplify interpreta-
tion, many computer packages subtract 3 from the standardized fourth-
order moment so that kurtosis will be 0 for a normal curve. We follow
this convention in reporting values of kurtosis in this chapter.

Examinations of the skewness and kurtosis of the univariate distri-
butions provide only an initial check on multivariate normality. If any
of the observed variables deviate substantially from univariate normal-
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ity, then the multivariate distribution cannot be multinormal. However,
the converse is not true: Theoretically, all of the univariate distributions
may be normal, yet the joint distribution may be substantially multi-
variately nonnormal. Consequently, it is also important to examine
multivariate measures of skewness and kurtosis developed by Mardia
(1970; see also D’ Agostino, 1986).

The Mardia measures construct functions of the third- and fourth-
order moments, which possess approximate standard normal distribu-
tions, thereby permitting tests of multivariate skewness and multivari-
ate kurtosis. The Mardia measure of multivariate kurtosis, which is
particularly important for structural equation modeling (Browne, 1982),
is available in the EQS (Bentler, 1992a) and PRELIS (Joreskog &
Sorbom, 1993¢c) computer software packages.

Outliers. Outliers are extreme data points that may affect the results
of structural equation modeling, even when the remainder of the data
are well distributed. Outliers typically occur because of errors in re-
sponding by subjects or data recording errors, or because a few respon-
dents may represent a different population from the target population
under study. Outliers can potentially have dramatic effects on the
indices of model fit, parameter estimates, and standard errors. They can
also potentially cause improper solutions, in which estimates of pa-
rameters are outside the range of acceptable values (e.g., Heywood
cases in which estimates of error variance are < 0; see Dillon, Kumar,
& Mulani, 1987). Possible corrective actions for outliers include check-
ing and correction of the data for the extreme case, dropping the
extreme case, redefinition of the population of interest, or respecifica-
tion of the model, with the appropriate remedy depending on the
apparent source of the outlier. »

Two general approaches can be used to detect outliers in the context
of structural equation models. The first, a model-independent approach,
is to identify any deviant cases whose values diverge sharply from the
mass of data points. Univariately, this can be accomplished by visual
examination of the plots of each measured variable, identifying cases
that are several standard deviations from the mean of the distribution
and not close to other observations. Multivariately, leverage statistics,
such as Mahalanobis distance available in major regression diagnostic
packages, identify extreme points in multivariate space (see Chatterjee
& Yilmaz, 1992). Alternatively, Bentler (1989) has proposed identify-
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ing the cases that have the greatest contribution to Mardia’s measure of
multivariate kurtosis. Typically, all measured variables would be con-
sidered together in these analyses.

The second approach is to identify observed data points that are
extreme relative to their predicted value based on a specific model.
Bollen and Arminger (1991) have proposed a method based on factor
scores, which represent each case’s predicted score on the hypothetical
factor. These factor scores, in turn, are used to estimate a set of
predicted scores on the measured variables for each case. Raw residuals
representing the difference between the predicted and the observed
scores for each case on each measured variable are calculated. The
residuals are standardized (M = 0; SD = 1), using procedures described
in Bollen and Arminger (1991), and then plotted and visually examined
to detect possible outliers.

RESULTS OF EMPIRICAL STUDIES OF NONNORMALITY

Continuous, Nonnormal Variables. Several simulation studies have
assessed the performance of the normal theory ML and GLS estimators
for a variety of CFA models under diverse conditions of nonnormality
and sample size (Browne, 1984a; Curran, West, & Finch, 1994; Finch,
Curran, & West, 1994; Hu, Bentler, & Kano, 1992). In these studies,
the value of each parameter is set to a known value in the population.
This value is then compared with the mean of a large number of
empirical estimates to study the effects of specified levels of nonnor-
mality. The following conclusions have been reached:

1. ML and GLS estimators produce ¥? values that become too large
when the data become increasingly nonnormal. For example, Curran
et al. (1994) investigated a three-factor, nine-indicator confirmatory
factor analysis model in which each measured variable was highly
nonnormal (skewness = 3; kurtosis = 21). Compared to the expected
%2 of 24, the mean of %2 from 200 simulations was 37.4 (approximate
50% overestimate) when sample size was 1000 in each simulation.
Compared to the expected Type 1 error rate of 5%, 48% of the true
models in the population were rejected under these conditions.

2. The GLS and particularly the ML estimator produce %2 values that
are slightly too large when sample sizes are small, even when multi-
variate normality is present. For example, in the Curran et al. (1994)
study, when the sample size was 50 and the observed variables were
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multivariate normal, the mean x2 of 200 simulations was 26.7 (10%
overestimate) and 12% of the true models in the population were
rejected. Simulations by Anderson and Gerbing (1984) and Boomsma
(1983) have also found that decreasing sample size and increasing
nonnormality lead to increases in the proportion of analyses that fail to
converge or that result in an improper solution (Heywood case).

3. Nonnormality leads to modest underestimation of fit indexes such
as the Normed Fit Index (NFI; Bentler & Bonett, 1980), the Tucker and
Lewis (1973) Index (TLI), and the Comparative Fit Index (CFI; Bentler,
1990). (See Tanaka, 1993, for an overview of fit indexes.) For example,
Curran et al. (1994) found that when using maximum likelihood esti-
mation with a sample size of 100, the mean CFI for a correctly specified
model was .97 (3% underestimate), compared to the expected value of
1.00 when each of the measured variables was highly nonnormal (skew-
ness = 3; kurtosis = 21). The TLI and the CFI are modestly underesti-
mated, whereas the NFI is severely underestimated at low sample sizes
(e.g., mean NFI = .81 vs. 1.00 expected at N = 50 under multivariate
normality; see also Marsh, Balla, & McDonald, 1988).

4. Nonnormality leads to moderate to severe underestimation of
standard errors of parameter estimates. For example, Finch et al. (1994)
studied the standard errors of parameter estimates in confirmatory
factor analysis models. When the measured variables were highly
nonnormal (skewness = 3; kurtosis = 21), the standard errors of corre-
lations between factors (¢) were underestimated by about 25%, whereas
the standard errors of factor loadings (A) and the specific factors (error
variances; 0) were underestimated by approximately 50%. Such sub-
stantial underestimates in standard errors imply that tests of parameter
estimates will not be trustworthy under conditions of nonnormality.

Coarsely Categorized Variables. Several simulation studies (Babakus,
Ferguson, & Joreskog, 1987; Boomsma, 1983; Muthén & Kaplan, 1985)
have evaluated the performance of the normal theory ML and GLS
estimators when continuous normally distributed measured variables
are divided into ordered categories. Once again, a variety of CFA
models and rules for categorizing the continuous variables have been
utilized. These studies have led to the following conclusions:

1. The number of categories per se has relatively little impact on the
x? goodness-of-fit test when the distribution of the categorized vari-
ables is approximately normal. As the distributions of the categorized
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variables become increasingly and particularly differentially skewed
(e.g., variables skewed in opposite directions), the x? values become
inflated.

2. Factor loadings and factor correlations are only modestly under-
estimated as long as the distribution of the categorized variables is
approximately normal. However, underestimation becomes increas-
ingly serious as (a) there are fewer categories (e.g., two or three), (b)
the magnitude of skewness increases (e.g., > 1), and (c) there is a
differential degree of skewness across variables.

3. Estimates of error variances (specific factors) are more severely
biased than other parameter estimates by each of the influences noted
under (2). Relatedly, correlations may be spuriously obtained between
the error variances associated with items having similar degrees of
skewness. When there are only a small number (e.g., two) of categories,
the degree of skewness is determined by the percentage of subjects in
the study agreeing with (or passing) the item. Thus a set of items with
similar agreement rates (e.g., 15% to 20%) can give rise to a spurious
factor (so-called “difficulty factor”) reflecting only the common degree
of skewness among the items.

4. Estimated standard errors for all parameters are too low, particu-
larly when the distributions are highly and differentially skewed. This
means that tests of parameter estimates may not be trustworthy.

Remedies for Multivariate Nonnormality
ALTERNATIVE ESTIMATION TECHNIQUES

As we saw above, the problem of nonnormality can arise in two
different contexts: poorly distributed continuous variables or coarsely
categorized continuous variables. Estimation-based remedies to these
two problems differ. However, these techniques share the common goal
of yielding %2 tests and estimates of standard errors that more closely
approximate their true values.

The Asymptotically Distribution Free Estimator. Browne (1984a)
developed an alternative estimator that does not assume multivariate
normality of the measured variables. His “asymptotically distribution
free” (ADF) estimation procedure is based on the computation of a
general weight matrix, W, and GLS estimation. The key to ADF esti-
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mation is the use of an optimal weight matrix that consists of a combi-
nation of second- and fourth-order terms. W is a covariance matrix of
the elements in S, which contains both variances and covariances. Thus
the ADF weight matrix has many more elements than the normal theory
GLS weight matrix (S~ 1); however, it has the desirable property of
simplifying to the normal theory matrix (S~ ') under conditions of
multivariate normality (i.e., fourth-order moments = 0). Because of the
link to the normal theory GLS fitting function, the ADF estimator is
sometimes referred to as the arbitrary generalized least squares (AGLS)
estimator.

The ADF estimator produces asymptotically (large sample) unbiased
estimates of the xz goodness-of-fit test, parameter estimates, and stan-
dard errors. These are major theoretical advantages relative to the
normal theory-based ML and GLS estimators, which, as was shown
above, produce biased test statistics and standard errors under condi-
tions of multivariate nonnormality. However, the ADF estimator is
associated with two important practical limitations. First, the ADF
estimator is computationally demanding. The calculation of the ADF
fitting function requires the inversion of the ADF optlmal weight
matnx In CFA with p measured variables, Wis a p° x p’ matrix, where
p’is Yap(p + 1), the number of unique elements in S. For example, with
15 measured variables it is necessary to invert a 120 by 120 weight
matrix consisting of 14,400 unique elements. With more than 20 to 25
measured variables, implementation of the methodology becomes im-
practical, even given modern high speed computers (Bentler, 1989).
Second, the calculation of the matrix of fourth-order moments requires
a large sample size to produce stable estimates (Joreskog & Sorbom,
1992). This sample-size based limitation is a serious one, as we will see
below.

SCALED y* Stansuc and Robust Standard Errors. Although the
normal theory ¥ statistic does not follow the expected x distribution
under conditions of nonnormality, it can be corrected or rescaled to
approximate the referenced x2 distribution. Satorra and Bentler (see
Satorra, 1990) have developed the statistical theory underlying this
rescaling. The normal theory x® (from ML or GLS) is divided by a
constant k, whose value is a fanction of the model-implied residual
weight matrix, the observed multivariate kurtosis, and the degrees of
freedom for the model. As the degree of multivariate kurtosis increases,
so does k, subsequently leading to a greater downward adjustment of
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the normal theory xz. The same theory underlying the SCALED xz
statistic can also be applied to the computation of robust standard
errors. These standard errors can theoretically be considered to be
adjusted for the degree of multivariate kurtosis. The SCALED xz and
robust standard errors are available in the EQS program.

Bootstrapping. Modern, computationally intensive statistical meth-
ods provide a completely different approach to tests of goodness-of-fit
and parameter estimates. Rather than relying on the theoretical distri-
butions of classical test statistics (e.g., xz, normal), we can imagine
taking repeated samples from a population of interest. For each sample,
we calculate the parameter estimates of interest resulting in an empirical
sampling distribution. In cases in which the assumptions of the classical
test statistics are severely violated, the empirical distribution that de-
scribes the actual distribution of the estimates from this population will
be substantially more accurate than the theoretical distribution.

Efron and his coworkers (e.g., Efron & Tibshirani, 1986; see Mooney
& Duval, 1993) have shown that the empirical sampling distribution
can often be reasonably approximated based on data from a single
sample. In the bootstrapping procedure, repeated samples of the same
size are taken from the original sample with replacement after each case
is drawn. To illustrate, imagine that the original sample consists of
cases (1, 2, 3, 4). Three possible bootstrap samples from this original
sample are (1,4,1,1),(2,3, 1,3), and (4, 2, 2, 4). Note that the elements
can be repeated in the bootstrap samples and that they are of the same
size as the original sample. By taking a large number of bootstrap
samples from the original sample, the mean and variance of the empiri-
cal bootstrap sampling distribution can be determined.

The bootstrap approach is simple conceptually and computationally,
given the increasing availability of software to implement bootstrap
resampling, including some of the structural equation modeling pack-
ages. Two related complexities arise in application. First, as Bollen and
Stine (1992, p. 207) emphasize: “The success of the bootstrap depends
on the sampling behavior of a statistic being the same when the samples
are drawn from the empirical distribution and when they are taken from
the original population.” Conditions under which this assumption ap-
pears to hold are discussed in Efron and Tibshirani (1986). Second, the
bootstrap is often more usefully applied to understand a portion or a
transformation of the statistic of interest. Bollen and Stine (1992) have
shown that the simple bootstrap approach to the x* goodness-of-fit test
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for a properly specified model in CFA often produces inaccurate results
under conditions of multivariate normality. Even with a properly speci-
fied model in the population, the original sample will reflect some
sampling fluctuation (e.g., s;; in the sample will not, in general, equal
c;;). The expected value of the y? for the set of bootstrap samples
constructed from the original sample will typically not be equal to the
expected value of the %2 (i.e., the df for the model) for a set of samples
taken from the population. Consequently, the bootstrap distribution will
follow a noncentral 2 distribution (which reflects the fluctuation pre-
sent in the original sample), rather than the usual central 2 distribution
specified by statistical theory. Bollen and Stine (1992) present a trans-
formation that is a complex function of the original data in the sample
and its covariance matrix that minimizes this problem. Evaluations of
Bollen and Stine’s approach have also shown reasonable performance
compared to the values expected from statistical theory for the x? test
statistic and the standard errors of direct effects and indirect effects.
under conditions of multivariate normality.

Empirical Studies of Alternative Estimation Procedures. A number
of simulation studies have examined the performance of the ADF
estimator, the SCALED x2 statistic and robust standard errors, or both
{Chou & Bentler in Chapter 3, this volume; Chou, Bentler, & Satorra,
1991; Curran et al., 1994; Finch et al,, 1994; Hu et al.,, 1992; Muthén
& Kaplan, 1985, 1992). To date, no large simulation studies have
investigated the performance of the bootstrapping approach with diverse
nonnormal distributions. The following conclusions may be reached
about the ADF and rescaling approaches:

1. All studies have found that the ADF procedure produces ©
statistics that are far too high when sample sizes are small to moderate.
For example, in the Curran et al. (1994) study, in which the expected
x? was 24, when the sample size was 100, the ADF-based x? was 36.4
(50% overestimate) when the distribution was multivariate normal and
44.8 (approximate 90% overestimate) when all measured variables
were highly nonnormal (skewness = 3; kurtosis = 21). In contrast, the
corresponding values of the SCALED ¥? statistics were 25.2 (5%
overestimate) and 26.8 (10% overestimate), respectively. Under these
conditions, the ADF estimator rejected 68% of models that were true in
the population, whereas the SCALED x? statistic rejected only 10% of
models that were true in the population.
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All studies have shown that very large samples are required for
adequate performance of the ADF-based x? statistic. Sample sizes of
1000 appear to be necessary with relatively simple models under typical
conditions of nonnormality (Curran et al., 1994). Perhaps 5000 cases
are necessary for more complex models, less favorable nonnormal
conditions, or both (Hu et al., 1992). The SCALED 7 statistic appeared
to provide good estimates of x? for samples of size 200 and higher.

2. Finch et al. (1994) found that when sample size was 100 and the
data were highly nonnormal (skewness = 3; kurtosis = 21), the ADF
estimates of the standard error underestimated the empirical standard
errors of the factor correlations by 25% and the standard errors of the
factor loadings and crror variances (specific factors) by approximately
35%. The performance of the Satorra-Bentler robust standard errors
was only modestly better under these conditions, with the standard
errors being underestimated by approximately 20% for the factor cor-
relations and 25% for the factor loadings and specific factors. The
robust standard errors provided generally accurate estimates beginning
at a sample size of 200 for moderately nonnormal (skewness = 2;
kurtosis = 7) and 500 for highly nonnormal observed variables.

Coarsely Categorized Variables. As we saw earlier, coarse catego-
rization of continuous variables produces bias not only in the xz test-
of-fit and standard errors of parameter estimates, but also in the parame-
ter estimates themselves. Muthén (1984) has developed an alternative
estimator, which he termed the CVM (for continuous/categorical vari-
able methodology) estimator. The CVM estimator permits the analysis
of any combination of dichotomous, ordered polytomous, and interval-
scaled measured variables. Unlike traditional normal theory methods,
the CVM estimator can yield unbiased, consistent, and efficient pa-
rameter estimates when observed variables are dichotomous or ordered
categories.

The CVM approach to estimation is based on a strong assumption:
A continuous normally distributed (M = 0, o? = 1.0) latent response
variable, y°, is assumed to underlie each measured variable, y. For
dichotomous variables, a response of *“yes” would be observed if the
individual’s standing on the underlying normally distributed y' dimen-
sion is greater than a threshold value. A response of “no” would be
observed if the individual’s standing was below the threshold. Gener-
alizing to ordered categorical variables, the observed response category
is assumed to depend on the individual's standing on the normally
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distributed underlying y* variable, relative to a set of response thresh-
olds. In the case of a continuous measured variable, y and y' are
assumed to be equivalent.

Because the categorical and/or nonnormally distributed y variables
are assumed to be only approximations of the underlying normally
distributed y's, a distinction is drawn between the covariance structure
of the ys and the covariance structure of the underlying y's. When one
or more observed variables are categorical, the covariance structure of
the ys will differ from the covariance structure of the y's in important
respects. In general, measures of association between categorical vari-
ables will be attenuated relative to the underlying, continuous y's. A
solution in this case is to calculate measures of association between the
y's based on tetrachoric, polychoric, and polyserial correlations be-
tween the measured y variables. The objective of the CVM approach,
then, is to reproduce this estimated covariance structure of the y'
variables.

Note that this approach will be theoretically reasonable only in some
cases. For example, for many attitude items, the researcher will be more
interested in the relationships among the normally distributed, continu-
ous underlying latent variables than in the simple relationships between
the observed “agree” versus “disagree” responses on the items. For
other continuously distributed variables such as current drug use (“yes”
vs. “no”), it is difficult to conceive of a normally distributed underlying
latent variable. Finally, some variables such as gender are inherently
categorical, so no continuous underlying variable could exist.

The CVM approach once again utilizes a weighted least squares
estimator (Muthén, 1984). The fitting function minimized by this esti-
mator is of the form

Fuvs=[S—o®) W [S-o(0)], @)

where p is the number of measured variables, S is a p° x 1 vector
containing the nonredundant elements of the sample covariance matrix,
o(9) is the corr}:,sponding p° x 1 vector from the model implied covari-
ance matrix £(0), and W-'is a p* x p* weight matrix. Here p is defined
as Vap(p + 1). When S contains Pearson correlations (or covariances)
for normally distributed interval scaled measured variables, the fitting
function simplifies to the normal theory GLS estimator discussed pre-
viously. Muthén’s CVM approach is very general and can be applied to
ordered categories through the use of polychoric correlations and con-
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tinuous variables that have been censored or truncated through the use
of tobit correlations (Muthén, 1991). Combinations of these types of
variables can also be addressed.

Muthén’s CVM approach also has some significant limitations. Like
the ADF estimator, the estimation of the weight matrix places severe
practical limits on the number of variables that can be considered
(maximum is about 25). The use of the CVM estimator also requires
that large samples be used (at least 500-1000 cases, depending on the
complexity of the model). Nonetheless, simulation studies to date (see,
e.g., Muthén & Kaplan, 1985; Schoenberg & Arminger, 1989) have
shown good performance of the CVM estimator relative to ML, GLS,
and ADF estimators. The differences in performance are most apparent
under the conditions identified above when ML and GLS perform
poorly: The observed variables have a small number (two to three) of
categories and are highly (> 1 in magnitude) and differentially skewed.

REEXPRESSION OF VARIABLES

An alternative approach is to reexpress nonnormally distributed
continuous variables so as to produce distributions that more closely
approximate normality. The reexpressed variables can then be analyzed
using normal theory estimation techniques (e.g., GLS) without produc-
ing biased estimates of model fit or the standard errors of the relation-
ships between the reexpressed variables.

Item Parcels. A commonly used simple method of reexpression is
the construction of item parcels by summing or taking the mean of
several items that purportedly measure the same construct (e.g., Marsh,
Antill, & Cunningham, 1989). These parcels will typically exhibit
distributions that more closely approach a normal distribution than the
original items. Another perhaps less obvious advantage of item parcels
is that fewer parameters will need to be estimated in the measurement
model, implying that the estimates will be more stable in small samples.

Note, however, that the construction of item parcels is not without
its potential drawbacks (Cattell & Burdsal, 1975). Of most importance,
the construction of parcels may obscure the fact that more than one
factor may underlie any given item parcel. This problem leads to
considerable potential complication in the interpretation of relation-
ships and structure in models using item parcels. Moreover, the use of
too few measured variables (parcels) as indicators of a construct yields
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less stringent tests of the proposed structure of confirmatory factor
models. Identification problems are also more likely to occur if too few
item parcels are used per factor (i.e., < 3). In such cases, if the correla-
tion between factors is near 0, the model will not be identified.

Transformation of Nonnormal Variables. A transformation performs
an operation on observed scores that preserves the order of the scores
but alters the distance between adjacent scores. Linear transformations
(e.g., standardization) have no effect on either the distributions of
variables or the results of simple structural equation models that do nor
impose equality constraints (see Cudeck, 1989). Nonlinear transforma-
tions potentially alter the distribution of the measured variables as well
as the relationships among measured variables, potentially eliminating
some forms of curvilinear effects and interactions between variables.
In the presentation below, we assume that all observed values of the
variable being transformed are greater than 0, a condition that can be
achieved by adding a constant to each observation.

Two classes of approaches to selecting an appropriate transformation
are available. First, a power function of the variable may be identified
that produces a new (transformed) variable that more closely approxi-
mates normality. Several sources (e.g., Daniel & Wood, 1980) offer
rules of thumb for selecting power transformations. Given positively
skewed distributions, taking logarithmic, square root, or reciprocal
transformations (or, more generally, raising the scores on the measured
variable to a power less than 1.0) will typically result in distributions
that more closely approximate normality. Given negatively skewed
distributions, raising raw scores to a power greater than 1.0 will often
result in a more normally distributed transformed variable. Daniel and
Wood (1980) present plots that are highly useful in selecting a potential
transformation. Emerson and Stoto (1983) present a useful technique,
the transformation plot for symmetry, in which simple functions of
scores associated with specified percentile ranks are plotted. The slope
of the resulting graph helps identify the optimal power transformation.

A second class of approaches is useful when scatterplots suggest a
possible nonlinear relationship between pairs of variables. Box and Cox
(1964) suggested framing this as a nonlinear regression problem: The
slope (b)) and intercept (bg) of a linear regression equation, yh = by +
b,x + e, are estimated simultaneously with the optimal power transfor-
mation (A) for the dependent variable. In practice, several regression
equations representing values of A over the range -2 10 +2 (with the
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logarithmic transformation representing a value of 0) may be computed,
selecting the value of A for which R? is maximized as the optimal power
transformation. A more recent exploratory approach, the Alternating
Conditional Expectation (ACE) algorithm (see de Veaux, 1990), goes
one step further, finding the transformation of each variable that pro-
duces the maximum possible R* between y and x (or even a set of
predictors). The ACE algorithm finds optimal transformations that
maximize the linear relations between two variables, even when power
transformations are unsuccessful.

The Box-Cox and ACE approaches have considerable power when
applied to single regression equations; however, structural equation
analysts must recall that they are seeking a single transformation that
is applicable across a series of regression equations, some of which
involve latent variables. Consequently, Box-Cox and ACE must be
viewed as providing guidance, rather than a definitive solution in the
search for a single transformation that will improve the linearity of the
set of relations involving an initially problematic variable.

Several observations should be made about transformations. First,
the univariate skewness and kurtosis of the transformed data should
always be examined to assess the improvement, if any, in the distribu-
tion of the new variable. These indices are also useful in choosing
between competing transformations. Note that for some distributions of
observed variables, there will be no simple power transformation that
will substantially reduce the skewness and kurtosis. Second, the Mardia
measures of multivariate skewness and kurtosis for the original and
transformed variables should be compared for the set of original and
transformed variables. Recall that well-behaved univariate distribu-
tions are only a necessary and not a sufficient condition for multivariate
normality. Third, although the second approach to transformation, in-
creasing the linearity of relationships, does not directly address normal-
ity, linearizing transformations often have the additional benefit of
improving the distribution and homoscedasticity of errors of measure-
ment. Fourth, transformation of the data changes the original measure
y to a new measure y". The new correlations or covariances are com-
puted between the y* transformed variables, not between the original
variables. Reflecting this change, fit statistics, parameter estimates, and
standard errors will be based on the y* variables and may differ, perhaps
substantially, from those based on the original variables. Fifth, the
application of the ACE algorithm to any measured variable or of
different power transformations to each measured variable can poten-
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tially result in considerable confusion in the interpretation of the trans-
formed results. Even more severe interpretational problems result when
different transformations are applied to the same measured variable
across studies. This is particularly problematic in the use of the ACE
algorithm because of its strong tendency to capitalize on chance rela-
tionships that cannot be expected to replicate across studies. In general,
the loss of metric associated with the transformation is an issue to the
extent that researchers wish to compare results across variables or
across studies. In addition, the original metrics of the measured vari-
ables may represent important units in some areas of social science (i.e.,
income in dollars). However, in other areas of social science, measures
are more often assessed in arbitrary metrics (e.g., seven-point Likert
scales), so it is less crucial to preserve the scale of measurement.

Conclusion and Recommendations

The effect of nonnormality on structural equation modeling depends
on both its extent and its source (poorly distributed continuous vari-
ables, coarsely categorized variables, or outliers). In general, the greater
the extent of nonnormality, the greater the magnitude of the problem.
Our presentation above has detailed the statistical effects of each of the
sources of nonnormality on 2 goodness-of-fit statistics, parameter
estimates, and standard errors. These problems also have important
practical implications. Researchers obtaining inflated x? goodness-of-
fit statistics because of nonnormal data will be tempted to make inap-
propriate, nonreplicable modifications in theoretically adequate models
to achieve traditional standards of fit (MacCallum, Roznowski, &
Necowitz, 1992; Chapter 2, this volume). Underestimated standard
errors will produce significant paths and correlations between factors,
even though they do not exist in the population. Such “findings” can be
expected to fail to be replicated, contributing to confusion in many
research areas.

The choice among the remedial measures again depends on the
extent and source of the nonnormality, as well as the sample size.
Considering first the measures of goodness of fit and standard errors
for continuous, nonnormally distributed variables, both the ADF esti-
mator and the Satorra-Bentler SCALED %2 and robust standard errors
have shown very good performance, regardless of the degree of non-
normality in large samples when the model has been correctly specified.
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What is meant by “large samples” has varied across studies, but it is
clearly of the range of 1000 to 5000 cases. For sample sizes in the range
of approximately 200 to 500 cases, depending on the extent of nonnor-
mality, the Satorra-Bentler statistics appear to have the best properties.
For smaller sample sizes, we recommend normal theory ML or GLS
estimates when the distributions are not substantially nonnormal, and
the Satorra-Bentler statistics as the distributions begin to depart sub-
stantially from normality (e.g., skewness = 2; kurtosis = 7). Under these
conditions, the use of a more stringent level of a for tests of parameters
might also be corsidered. Particularly for smaller sample sizes, we also
recommend inspection of the CFI or Bollen’s (1989a) IFI, which have
only a small downward bias (3% to 4%), even under severely nonnormatl
conditions. Note that these recommendations assume that the model has
been correctly specified.

For small sample sizes in particular, the two methods of reexpression
considered here may improve normal theory estimation techniques. The
construction of item parcels usually produces composite variables that
more closely approximate normality. The data reduction accomplished
in the process also yields a more favorable parameter-to-subject ratio,
which is likely to be particularly important in small samples (Bentler
& Chou, 1988). Transformations can also often yield new variables that
more closely approximate normal distributions. Identification of the
optimal normalizing transformation is less certain in small than in large
samples. The identification of an adequate transformation that is satis-
factory for normal theory estimation can be achieved in some, but not
all, data sets. Each of the reexpression methods has its own disadvan-
tages: Item parcels may obscure multifactorial structures; the loss of
the original metric from transformation may complicate the interpreta-
tion of the results. To date, little empirical work has been done specifi-
cally investigating the effect of reexpression techniques on the results
of structural equation modeling analyses.

Finally, the CVM estimator appears to provide the most appropriate
estimates of the model 2, parameter estimates, and standard errors with
coarsely categorized, skewed data. The primary advantage of the CVM
estimator over the competing normal theory and the Satorra-Bentler
statistics occurs as the number of ordered categories decreases. With
five or more categories, there is little or no benefit to using CVM; with
two categories, there is a substantial advantage given poorly distributed
observed variables. The CVM estimator appears to produce good re-
sults for ordered categories only with large samples (e.g., at least
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500-1000 depending on the complexity of the model beif\g estimated).
In addition, the relationships provided by the CVM estimator an"e.be-
tween latent, normally distributed variables rather than. the original
measured variables, potentially complicating interpretation of ‘the re-
sults. Coarsely categorized variables that cannot bg concepluahz‘ed as
having an underlying normal distribution, or for w.hncp lat‘em variables
cannot be constructed that have joint normal d.lsmbuuons, are .not
appropriate candidates for the technique .and are likely not appropriate

candidates for structural equation modeling. o o .
The remedies prescribed here address the majority ot.’ situations in
which nonnormality arises in practice. Most of lher remt?dles are easy to
program and are increasingly available as options in the standar'd
computer packages for structural equation n.\odellng (see Chapter 8, this
volume). These advances will make it easier for rcsearche.rs tq check
the distributional assumptions underlying normal theory estimation and
to select and implement alternative approaches when they are not met.
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