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Evaluating overall model fit for growth curve models involves 3 challenging issues. (a) Three
types of longitudinal data with different implications for model fit may be distinguished: balanced
on time with complete data, balanced on time with data missing at random, and unbalanced on
time. (b) Traditional work on fit from the structural equation modeling (SEM) perspective has
focused only on the covariance structure, but growth curve models have four potential sources of
misspecification: within-individual covariance matrix, between-individuals covariance matrix,
marginal mean structure, and conditional mean structure. (¢) Growth curve models can be
estimated in both the SEM and multilevel modeling (MLM) frameworks; these have different
emphases for the evaluation of model fit. In this article, the authors discuss the challenges
presented by these 3 issues in the calculation and interpretation of SEM- and MLM-based fit
indices for growth curve models and conclude by identifying some lines for future research.
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Growth curve modeling (GCM) has developed into one of
the more important analytic approaches in the behavioral sci-
ences. It has been widely applied in many areas of psychology,
including clinical, developmental, educational, learning and
memory, and personality. GCM can be characterized as an
efficient method that simultaneously estimates intraindividual
growth trajectories (represented by growth parameters, e.g.,
intercept and slope for linear growth) and interindividual dif-
ferences in those growth parameters (Bryk & Raudenbush,
1987; Singer & Willett, 2003). GCM requires repeated obser-
vations using the same or equated measures on individuals.
GCM enables investigators to predict future development, to
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study interindividual variation in growth trajectories, and to
examine whether background characteristics and experimental
treatments can account for variance in individual growth tra-
jectories (Bryk & Raudenbush, 1987).

Modern GCM has largely developed out of three tradi-
tions in different disciplines. In psychology, latent curve
analysis (e.g., Meredith & Tisak, 1990; Willett & Sayer,
1994; see also Tucker, 1958) has developed within the
framework of structural equation modeling (SEM). Statis-
tics, biostatistics, and econometrics have emphasized ran-
dom coefficient regression models for longitudinal data
(e.g., Laird & Ware, 1982; Rao, 1965). Education has
emphasized the development of multilevel modeling
(MLM) and its application to longitudinal data (e.g., Bryk &
Raudenbush, 1987; Goldstein, 2003). These three ap-
proaches are closely related, but the advantages, disadvan-
tages, and compatibility between the three approaches are
still being explored (e.g., Chou, Bentler, & Pentz, 1998;
Curran & Peterman, 2005; Mehta & West, 2000).

A central issue in GCM is the evaluation of the adequacy
of the models. In practice, the SEM tradition has empha-
sized the use of chi-square goodness-of-fit tests and practi-
cal fit indices that evaluate the overall fit of the hypothe-
sized model to the data. In contrast, the random coefficient
regression models and MLM traditions, which are treated as
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identical here,' have emphasized the use of correlational
measures of overall fit that evaluate the agreement between
the estimated and observed responses. Fit indices offered by
the SEM and MLM frameworks complement each other to
reflect different sources of misfit in GCMs.

In this article, we focus on issues that arise in the evaluation
of fit of GCMs from the perspectives of both the SEM and
MLM frameworks. We begin the article with a consideration
of three general types of longitudinal data structures that, as we
see later, have implications for the calculation of measures of
fit. We then briefly review critical features of the SEM and
random coefficient/MLM approaches, including model speci-
fication, assumptions, and estimation procedures, highlighting
aspects of estimation that have a close relationship with fit
indices. We then introduce four sources of misfit in GCMs—
two related to the mean structure and two related to the co-
variance structure. We show how they can be reflected in fit
indices from the SEM and MLM frameworks, followed by a
discussion of the factors that might affect the performance of
those fit indices. Finally, we discuss issues and challenges in
evaluating model fit for GCMs, which are introduced by the
type of longitudinal data and the fact that GCMs involve
different sources of misspecification from both mean and co-
variance structures. We summarize what is currently known
and not known about assessing the fit of growth models and
identify areas for future research. Space limitations preclude
consideration of important issues related to hypothesis tests of
parameter estimates and residual analysis (Bollen & Curran,
2006; Fitzmaurice, Laird, & Ware, 2004; Singer & Willett,
2003; Weiss, 2005).

Types of Longitudinal Data

Raudenbush (2001), building on earlier work by Ware
(1985), proposed a classification in which three types of
longitudinal data are distinguished (see Table 1).

Type I: Balanced on Time With Complete Data

Every person is observed at the same fixed set of time
points, a design that is often termed a panel study. Suppose
a research group wants to study the change of students’
school achievement over Grades 1-3 (see Table 1, column
1). They repeatedly measure students’ school achievement
at the end of each grade from Grades 1 to 3. Here, grade in
school is used to define the time scale. Every student was
measured successfully, and there were no missing data. This
structure is termed Type I longitudinal data.

Type II: Balanced on Time With Data Missing at
Random (MAR)

The data collection plan conceptually specifies that every
person should be observed at the same set of time points.
However, in the actual data, some observations are MAR?

(Little & Rubin, 2002; Rubin, 1976). Time must be discrete
(observations taken at fixed time points), and the number of
missing data patterns has to be limited so that all vari-
ances and covariances can be estimated. Data that are
MAR may be an assumption of the researcher or may be
built into the study design as in planned missingness
designs (Graham, Taylor, Cumsille, & Olchowski, 2006).
Table 1, column 2, illustrates this design. Student Case 1
was measured at all three time points. However, there
was one observation missing at one of the three time
points for Student Cases 2, 3, and 4. When all systematic
sources of missingness in a panel study are related to
measured study variables, this structure is termed Type 11
longitudinal data.

Type 1II: Unbalanced on Time

The design is unbalanced, which means every person is
observed at a potentially different set of time points. The data
become sparse (in the limit only 1 participant may be measured
at a given time point) so that the variances and covariances
cannot be estimated. Longitudinal data collection with a con-
tinuous (typically treated as random) time variable is an ex-
ample of this type of data (see Table 1, column 3). Suppose age
in months is used to define the time scale. Individuals are
repeatedly measured on three occasions but at different sets of
ages—for example, Case 1 was measured at ages 76.8, 79.2,
and 81.3, whereas Case 2 was measured at ages 78.0, 79.5, and
80.1. This structure is termed Type III longitudinal data.

In practice, there are a large number of options for the time
scale. The units may vary: For example, age could be ex-
pressed in years or months.® The origin (0-point) could be
defined, for example, by birthdate, the date of entry into Grade
1, or the date of the last measurement. Each time scale has

! Although they developed separately, the random coefficient and
MLM approaches are treated as identical in this article because they
do not lead to models that have important distinctions in the present
context.

2 There are theoretically three types of missingness (Little & Rubin,
2002; Schafer & Graham, 2002). Data are missing completely at
random (MCAR) when the probability of an observation being miss-
ing does not depend on any observed or unobserved measurements.
Data are MAR when the probability of an observation being missing
depends only on observed measurements. Finally, data are missing
not at random (MNAR) when the probability of an observation being
missing depends on its unobserved level. When data are MNAR, no
method will produce unbiased estimates of the growth trend.

3 In some cases, a Type III structure can be degraded into a Type
I or Type II data structure. For example, if each child was measured
at a random time point between the beginning and end of each school
grade, the design could be analyzed using grade instead of age or
exact time since the beginning of the study. However, using grade
instead of exact time would involve considerable loss of information
and introduce error into the measure of the time variable.
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Table 1
Different Types of Longitudinal Data

Type I Type 11

Type 11

Time (grade) Time (grade)

Time (age in months)

m 1 2 3 ID 1 2 3 ID 768 780 792 795 80.1 802 813 81.8 825 838 846 857
1 X X X 1 X X X 1 X X X

2 X X X 2 X X 2 X X X

3 X X X 3 X X 3 X X X

4 X X X 4 X X 4 X X X

Note. Type I is balanced on time with compete data. Type II is balanced on time with missing data assumed to be missing at random. Type III is
unbalanced on time; time is continuous; and different numbers of observations may be collected for each participant. ID = identification number.

different implications for the interpretation of the results (for a
discussion, see Biesanz, West, & Kwok, 2003). Types I and II
are associated with many replications at each measurement
point and a limited (if any) number of patterns of missing data.
In contrast, Type Il is associated with few (if any) replications
at any time point and a large number of patterns of missing
data.

The type of longitudinal data available is important for at
least three reasons. First, SEM and MLM differ in their
capability to analyze different types of longitudinal data.
Second, different estimation methods are used for different
types of longitudinal data. Third, the availability and inter-
pretation of measures of model fit depend on the type of
longitudinal data being analyzed.

The MLM and SEM Approaches to Modeling
Growth: A Brief Review

MLM

MLM is a statistical technique that addresses clustered
data and is typically used when participants are nested
within groups or observations are nested within individ-
uals. MLM takes into account the dependency between
observations that is ignored by conventional multiple
regression analysis (Cohen, Cohen, West, & Aiken,
2003). In longitudinal data, measurement occasions are
nested within individuals, so MLM provides a method of
estimating GCMs that yields correct standard errors for
parameter estimates and, thus, correct significance tests
and confidence intervals (MacCallum, Kim, Malarkey, &
Kiecolt-Glaser, 1997).

For most applications, two-level models are adequate
to represent growth. We now use a linear GCM with four
time points to illustrate model specification for GCMs in
a MLM framework (see Equations 1 and 2). All terms are
defined below Equation 2. More complex forms of
growth (e.g., quadratic) may be specified, but we con-
sider only the basic linear GCM for simplicity.

Level 1: Y; = my, + m,Time; + €, €~ N(0,0%). (1)

ijo

Level 2: wy; = oo + Soi» T1; = Yio T S (2)

Soi| 0 _ Too Toi >
[gli] MVN([O]’G [Tlo "'11]’

where MVN = multivariate normally distributed; / indicates
individual, i = 1, ..., N; and j indicates time point. In the
example, j = 1, 2, 3, 4.

The Level-1 submodel (Equation 1) is specified to capture
the shape of the within-individual growth trends by predicting
the response variable (Y;) as a function of time (Time;). The
parameters determining the individual growth trajectories are
called growth parameters, which for a linear growth trajectory
are the intercept () and slope (;). The Level-1 model
also includes residuals (€;) that represent deviations of
the observed data from the predicted individual growth
curves. Conventionally in MLM, €; are assumed to fol-
low a normal distribution with a mean of 0, and a co-
variance matrix (called the R matrix) with a constant
variance ¢® and no covariance over time. For growth
curve models, the assumptions of constant variance and
no covariance of residuals over time may be unrealistic.*

The basic Level-2 submodel (Equation 2) is specified to
capture the interindividual differences in growth parame-
ters. At this level, the growth parameters for the intercept
(mo;) and slope (m,;) conceptually become outcome vari-
ables, and predictors that might account for their variation
across individuals can be entered into the model. In the
basic growth curve model in which no predictor is specified,
y; and 1r,; are represented by their predicted population

4 There are three different traditions with respect to residuals in
GCMs: (a) MLM has used the default that error variances are
constrained equal over time; (b) some researchers (e.g., Browne &
Du Toit, 1991) have advocated using constraints that allow the
error variances to increase following an ordinally increasing struc-
ture; and (c) SEM has used the default that error variances are
freely estimated over time. The decrease in restrictions as the
models move from (a) to (c) can have implications for the fit of the
models. Depending on the data and the model, the restrictions can
in some cases lead to appreciable changes in model fit.
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mean intercept (yy,) and mean slope (o). Yoo and y,, are
constant across individuals and are termed fixed effects.
Deviations of individual growth parameters from the pop-
ulation means are s, and s;; for the intercept and slope,
respectively. s, and s;; vary across individuals and are
termed random effects. G is the covariance matrix of the
random effects, which is also called the between-individuals
covariance matrix. Ty, is the variance of the intercepts, T, is
the variance of the slopes, and 7,,(= T,,) is the covariance
of the intercepts and slopes.

For some applications, it is useful to combine the two
levels together to obtain a mathematically equivalent re-
duced form or mixed model:

Y =Yoo + YioTime; + s; + sy Time; + €. 3)

Equation 4 below expresses the model in matrix form.
The key insight from Equation 4 is that there is a term X,I"
that represents the fixed effects (mean parameter estimates
in the sample), a term Zb, that represents the random
effects (summarizes the individual deviations from the
mean levels), and a random error term e;.

Y, 1 Time;
|| _ |1 Time, Yoo
Y= Y| |1 Timey X[ym
Y, 1 Timey,
1 Time, €1
1 Timey Soi €h
+ 1 Tim€[3 X|:§1,':|+ €s
1 Timey €
Y, = X + Z.b, + g
)

Here, I' is the vector of fixed effects; b, is the vector of
random effects for individual /; X is the design matrix for
fixed effects; and Z, is the design matrix for random effects.
Z,; can be equal to X, or a submatrix of X;. As can be seen
in Equation 4, it is easy to accommodate random time for
each individual (each individual may have a different num-
ber of repeated measurements and be measured at different
occasions) in the MLM framework.

Model implied marginal means. Using the fixed effects,
we can calculate the model implied mean response profile,
termed marginal means (Equation 5).

f=EY)=XI. 5)

The estimated marginal means are the overall mean level
predicted by the growth model at each measurement wave
for the sample of participants.

Model implied covariance matrix. Combining the G
and R matrices using Equation 6, we can calculate the
estimated model implied covariance matrix.

$,=cony) =26z, + R, ©®)

where G is the model implied between-individuals covari-
ance matrix, and R; is the model implied within-individual
covariance matrix. The values of 3, represent the variances

at each measurement wave and the covariances between
measurement waves for each individual that are predicted
by the growth model.

In the basic growth curve model for Type I data, we can
drop the i subscripts. All individuals are measured at the
same set of common times so there is only one predicted
mean vector . for the set of measurement occasions. Sim-
ilarly, 3, can be simplified to 3 because both the Z,GZ, and

R, matrices are constant across individuals.

Model implied conditional means. In MLM, we can
estimate the random effects (b,) for each individual using
the estimated best linear unbiased predictor (EBLUP; see
Equation 7 below). Then, the estimated random effects can
be used to calculate the estimated individual response pro-
file, \AQ (see Equation 8). In other words, we use information
from the mean growth line and the individual i’s deviation
from the mean slope and intercept to estimate a growth line
specifically characterizing individual i. Y, is also called the
vector of conditional means because it is conditional on the
random effects for individual i (b)).

b= GZ3 (v, - XD, ™

?i = E(Yilbi) = Xif + Zif)i = (ﬁ,ﬁf')xf + Z,-GZ;SFIY,,
(3)

where again X,f‘ is the vector of model implied marginal
means for individual i (Fitzmaurice et al., 2004).

A careful look at Equation 8 shows that EBLUP shrinks
the ith individual’s predicted response profile toward the
mean response profile based on the entire sample (X,»f‘). The
shrinkage depends on the relative magnitude of the within-
individual variability (R,) and the between-individuals vari-
ability (Zl-(A}Z;-). When the within-individual variability is
large relative to the between-individuals variability, more
weight is assigned to the estimated marginal means (X,»IA‘)
than to the ith individual’s observed responses (Y;) (Ver-
beke & Molenberghs, 2000).

SEM

SEM is a comprehensive statistical technique used to
test hypotheses about relations among observed and la-
tent variables (Hoyle, 1995). Meredith and Tisak (1990)
showed that SEM can be used to estimate growth curve
models if the growth parameters are treated as latent
variables and repeated measures as multiple indicators of
the latent variables.
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Figure 1 depicts a linear GCM in the SEM framework,
which is identical to the linear GCM represented earlier in
the MLM framework. The factor loadings associated with
the intercept are all fixed at 1 because the intercept is
invariant across time. The loadings associated with the slope
are usually fixed at values proportional to the time of each
measurement occasion (t; t, t; and t, in Figure 1). For
example, if data were collected at baseline (0 months), 6
months, 12 months, and 24 months, one possible scaling of
these loadings would be t;, = 0, ¢, = 6,1t; = 12, and t, =
24; another would be t;, = 0,1, = 1, t; = 2, and t, = 4.
Here, the matrix of factor loadings is identical to the matrix
of X; and Z; in the MLM example. The mean of the latent
variables estimates the population mean of the growth pa-
rameters (vyy and 1y, fixed effects). The covariance matrix
of the latent variables is identical to the G matrix in the
MLM framework. The covariance matrix of the unique
factors is identical to the R matrix in the MLM framework.

Basic Assumptions

Both frameworks usually assume that the longitudinal re-
sponses, Level-1 residuals, and Level-2 random effects have a

Figure 1. A linear latent growth curve model. Y, to Y, are four
waves of repeated measures. Intercept and slope are the two
growth parameters that are correlated with each other. The factor
loadings are fixed at 1 for the intercept factor and are fixed at time
at each wave (¢, to t,) for the slope factor. The two paths pointing
from the triangle to the two factors represent the means of the
intercept and slope factors; e, to e, are residuals (Level-1 residu-
als) for Y, to Y,, respectively. The residual variances (or unique
variances) are constrained to be equal so the structural equation
modeling model is identical to the multilevel modeling model
presented earlier. In the model portrayed, the triangle indicates that
the means of intercept and slope are estimated.

multivariate normal distribution. They also assume that the
Level-2 random effects are independent of the Level-1 resid-
uals, and the Level-1 residuals are usually assumed to be
independent of one another. Moderate departures from normal-
ity do not severely affect estimation of the fixed effects, al-
though a correction may be needed to produce accurate stan-
dard errors (Verbeke & Molenberghs, 2000). Violations of the
independence assumptions are more problematic, leading to
biased test statistics (Satorra, 1992).

Comparison of MLM and SEM in GCM

Although MLM and SEM represent the growth model in
different ways, they share the same basic rationale when mod-
eling growth. They also yield similar results across a wide
range of models, including all linear growth models as well as
some nonlinear growth models (Chou et al., 1998; MacCal-
lum et al., 1997; Mehta & West, 2000; B. O. Muthén &
Curran, 1997).

However, associated with the different methodologies
they use, both MLM and SEM have unique advantages and
limitations. SEM has advantages over MLM in flexibility in
modeling data from Types I and II longitudinal data. For
instance, SEM can estimate GCMs in which loadings of
measured variables on the growth parameters are freely
estimated; can easily freely estimate the elements in the R
and G matrix; can model a latent outcome variable with
multiple indicators at each time point; and can include other
variables that can serve as correlates, predictors, or conse-
quences (outcomes) of the latent growth parameters (Mac-
Callum et al., 1997; Meredith & Tisak, 1990; B. O. Muthén
& Curran, 1997).

On the other hand, MLM allows for simpler model specifi-
cation and is more efficient computationally in yielding results.
MLM is also better at incorporating additional levels of clus-
tering (e.g., repeated measures on individuals clustered within
groups), for which the SEM approach quickly becomes un-
wieldy (Mehta & West, 2000; B. O. Muthén & Curran, 1997).
Of particular importance in the present context, MLM can
directly handle all three types of longitudinal data described
earlier. Traditionally, SEM has been able to handle only the
first two types of longitudinal data because it assumes that a
common covariance matrix exists across individuals, which is
only plausible for Type I and Type II longitudinal data struc-
tures. The introduction of full information maximum likeli-
hood (FIML) estimation procedures in several software pack-
ages now allows SEM to be used to estimate models with a
wider variety of data structures, including Type III longitudinal
data. However, standard SEM fit indices cannot be calculated
for this latter type of data.

Estimators for GCMs

Understanding the functions used to estimate GCMs is
important because these estimators are the basis for chi-
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square tests of overall model fit and ultimately for the
calculation of practical fit indices for Type I and Type II
longitudinal data that are discussed later (Hu & Bentler,
1998). We focus on two estimators that are commonly used
in estimating GCMs: FIML and standard maximum likeli-
hood (ML).

For FIML, the log-likelihood of a set of sample data Y
given a vector of parameters 0 can be expressed as follows.

1Y 1Y .
lnLFIML(Y‘e) = _EE nlog(2m) — EE nlog | 21(0)|

i=1 i=1
1 A
=52 (Y: = (8)'%(0) (Y, — f(8). (9)
i=1

Here, 0 is the vector of parameters, N is the number of
individuals, n; is the number of observations for individual i,
{1(0) is the model implied marginal mean vector, and X,(0) is

the model implied covariance matrix for individual i. The third
1 A
term of Equation 9, EE" ((Y; — 140))'20) (Y, — 1(0)),
i=1

reflecting the fit of the mean structure, is of particular impor-
tance in GCMs; its effects have received relatively little study.
In addition to multivariate normality, FIML assumes that data
are MAR (Rubin, 1976). FIML takes advantage of all the
available observed data for each individual. FIML can be
applied to all three types of longitudinal data. For GCMs
with Type I longitudinal data, the i subscript in Equation 4
can be dropped, and FIML simplifies to ML. Equation 10
shows the log-likelihood function for ML. Equation 11 is
the discrepancy function for ML. Maximizing Equation 10
and minimizing Equation 11 will lead to equivalent param-
eter estimates. ML can be also used with Type II longitu-
dinal data through the use of a multiple-group approach in
which equality constraints are set across groups having
different patterns of missing data, so long as a sufficient
number of cases follow each pattern of missing data (B. O.
Muthén, Kaplan, & Hollis, 1987).

N

1 N .
In Ly;,(Y]0) = —5 > nlog(2m) — 5log|2(8)]

i=1

1 -
— 52 (Y, = f(©)'X(0)"'(Y, - ju(6)). (10)

i=1
Fun(0)=(Y — {1(8))’2(8) "' (Y — ji(6)) + In|2(0)|
—1In|S| + #r2@) 'S —p, (11

where Y is the sample mean vector, S is the sample covari-
ance matrix, and p is the number of nonduplicated elements
in the covariance matrix.

The Sources of Misfit in GCM

To evaluate model fit for GCM, it is necessary to under-
stand the sources of misfit. Because GCMs involve both
mean and covariance structures, the misfit can come from
the mean, covariance, or both structures. Figure 2 presents
a hierarchical depiction of the sources of misfit for GCMs.
At the highest level of the hierarchy is the GCM. The GCM
can be partitioned into the mean structure and covariance
structure. The mean structure can be further partitioned into
marginal and conditional mean structures. The covariance
structure, which we call the total covariance structure, can
be further partitioned into within-individual and between-
individuals covariance matrices (R and G matrices). The
total covariance structure is a function of the R and G
matrices (see Equation 6). Potential sources of misfit exist in
each of the four elements at the lowest level of the hierar-
chy. We initially describe each of these four elements below
and then describe their interrelationships.

Misfit in the Within-Individual Covariance Matrix
(R Matrix)

The within-individual covariance matrix contains the
variances and covariances of the Level-1 residuals. Some
elements in the R matrix might not be correctly specified.
For example, in the basic MLM framework, the variance of
the Level-1 residuals is usually assumed to be constant over
time (see Footnote 4), and there is no covariance between
Level-1 residuals from different measurement waves. In
practice, the variances might differ at different time points.
In addition, there might be covariances among the Level-1
residuals that cannot be accounted for by the variables
included in the Level-1 model (e.g., time).

Misfit in the Between-Individuals Covariance Matrix
(G Matrix)

The between-individuals covariance matrix contains the
variance and covariances of the growth parameters. Some

Covariance

Structure

Mean
Structure
y
N . Between- Within-
Conditional Marginal Subject Subject
Mean Mean (G matrix) (R matrix)

" Ratio

Figure 2. Sources of misfit in growth curve modeling (GCM)
models.
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elements in the matrix might not be correctly specified. For
example, the variances or covariances of growth parameters
might be wrongly constrained to be 0.

Misfit in the Marginal Mean Structure

The marginal mean structure is the structure (func-
tional form) for the mean responses at each of the mea-
surement occasions across individuals. An incorrect
functional form might be specified for the mean growth
trajectory. As a result, the model implied marginal means
(E(Y,); see Equation 5) would not agree with the sample
means (Yi).

Misfit in the Conditional Mean Structure

The conditional mean structure is the structure (func-
tional form) for the responses at each of the measurement
occasions for each individual. An incorrect functional
form might be specified for the individual growth trajec-
tories. As a result, the model estimated responses at each
measurement wave for individuals (E(Y,|b;); see Equa-
tion 8) might not agree with their observed individual
responses (Y)).

Relationships Among the Sources of Misfit

Relationships between the fit of the marginal mean struc-
ture and the fit of the covariance structures. The fit of the
covariance structures will be affected by the discrepancy
between the observed and estimated marginal means. The
total covariance structure is calculated on the basis of the
residuals from the marginal means so that the magnitude
of the discrepancy in the covariance structure will in-
crease as the marginal means become increasingly mis-
specified. In contrast, marginal means are a function only
of the fixed effects as shown in Equation 5. The estimates
of the marginal means are far less sensitive to specifica-
tion of the covariance structure; indeed, for linear mod-
els, the marginal means are asymptotically independent
of the covariance structure for Type I longitudinal data
when the standard assumptions are met (Verbeke & Le-
saffre, 1997; Yuan & Bentler, 2004). However, for real-
istic sample sizes, the fit of the marginal mean structure
will still be affected by the estimated covariance structure
because the residuals in means are weighted by the esti-
mated covariance structure (see Equations 9, 10, and 11).

Relationships between the fit of the conditional mean
structure and the fit of the marginal mean and covariance
structures. Recall that the fit of the conditional mean
structure (fit of the individual functional form) measures the
agreement between the observed and estimated individual
responses. The fit of the conditional mean structure is de-
pendent on both the fit of the marginal mean structure and
the fit of the covariance structure because the estimated

individual responses (E(Y,|b;)) are a function of both the
marginal mean and covariance structures (specifically, the
ratio of the between- to within-subject variability [see Equa-
tion 8]). Knowing either the fit of the marginal mean or the
fit of the covariance structure alone is not sufficient to make
an inference about the fit of the conditional mean structure.

The fit of the marginal mean structure (functional form
for the average growth trajectory) alone cannot guarantee
the fit of the conditional mean structure (functional form
for individual growth trajectories) because the functional
form for the average growth trajectory and individual
growth trajectories can be inconsistent (Singer & Willet,
2003). Figure 3 shows an example in which the individ-
ual growth curves have a quadratic form, but the average
growth trajectory is linear. In practice, we should choose
the functional form that fits most of the individual growth
trajectories instead of just the average mean trajectory.
Thus, by checking only the fit of the marginal mean
structure, one may end up with an incorrect functional
form for the GCM.

The fit of the covariance structure alone cannot guar-
antee the fit of the conditional mean structure either,
because we can always improve the fit of the covariance
structure by freeing more elements in the within-individ-
ual covariance matrix (R matrix; Marsh, Hau, & Wen,
2004). In this case, the total covariance structure (see
Equation 5), which is a combination of both within-
individual and between-individual covariance matrices,
might show a good fit to the data. However, the true
between-individuals and within-individual variability
will not be correctly captured. For example, if the correct
functional form were quadratic, but the data were fitted
with a linear GCM, an adequate fit of the covariance
structure might be achieved by allowing the residuals to
be correlated or to vary over time—practices that can be
easily done in SEM. However, the between-individuals
variability would be underestimated and the within-indi-
vidual variability would be overestimated.
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An interesting theoretical question is the extent to
which the adequacy of both the marginal mean and the
covariance structures justifies the adequacy of the condi-
tional mean structure (the fit of the individual functional
form). Under standard assumptions, if the marginal means,
the within-individual, and the between-subjects variability
were all adequately captured, then fit of the conditional
mean structure would be achieved. However, as described
above, even though the total covariance structure might
provide an adequate fit to the data, it is difficult to know
whether the within and between-subjects variability have
been adequately captured. Given that both the marginal
mean and covariance structures provide a good fit to the
data, there might be two explanations for the misfit in the
conditional mean structure: (a) the individual functional
form is incorrectly specified; and (b) the individual func-
tional form is correctly specified, but the ratio of between-
individuals to within-individual variability is not correctly
captured. The second explanation might be true when there
is misspecification in the between-individuals covariance
matrix, within-individual covariance matrix, or both. To rule
out the second explanation, researchers need to specify the
between-individuals and within-individual covariance struc-
tures carefully. Verbeke and Molenberghs (2000) recom-
mended freeing as many elements as possible in the between-
individuals covariance matrix first before considering the
within-individual covariance matrix. In this way, one can know
that both within-individual and between-individuals covari-
ance matrices have been optimally specified given the fitted
individual functional form. If one still detects the misfit in the
conditional mean structure, then that misfit must be due to the
first explanation: incorrect individual functional form. Clearly,
more work needs to be done to understand the relationship
between the fit of the marginal mean, conditional mean, and
covariance structures.

Introduction to Fit Indices in SEM and
MLM Frameworks

As described above, GCMs can be estimated in both the
SEM and MLM frameworks. Both frameworks provide
information on model fit. Compared with MLM, SEM pro-
vides more varieties of model fit indices. Though less fa-
miliar, the MLM-based fit indices have their own strengths,
as described below. Our presentation starts with an intro-
duction of the available fit indices in both frameworks. We
then discuss what source(s) of misfit can be detected by
these fit indices. Given space limitations, we do not attempt
to consider every SEM fit index. Rather, we review basic
dimensions that can be used to classify SEM-based fit
indices and show an example fit index within each category.
In SEM, researchers have conventionally been expected to
evaluate the adequacy of the fitted model using fit indices.
In MLM, global model fit has received far less emphasis,

with researchers often only reporting the significance of
parameter estimates.

SEM-Based Fit Indices

Yuan (2005) proposed that SEM fit indices can be clas-
sified into two major categories on the basis of whether the
fit index is defined directly through a likelihood ratio test (7)
or residuals in the mean and covariance matrices. Yuan
argued that all of the fit indices can be treated as weighted
functions of residuals, but the fit indices that are defined
through test statistics utilize theoretically more optimal
weight functions.

Sun (2005) proposed a more detailed classification of the
SEM-based fit indices. He argued that three dimensions can
be used to classify SEM-based fit indices.

1. Sample based versus population based. Sample-
based fit indices measure the discrepancy between the ob-
served and model implied mean vector and observed and
model implied covariance matrices. The likelihood ratio test
statistic (7)) is the most popular sample-based fit index.
Given multivariate normality,” T follows a chi-square dis-
tribution, and thus is often called the chi-square test statistic.
Population-based fit indices estimate the discrepancy be-
tween the model implied covariance matrix and the popu-
lation covariance matrix. Because the population covariance
matrix is unknown, the noncentrality parameter (\) is used
to represent the population discrepancy. T — dfis a sample
estimate of . \ is dependent on sample size; thus, research-
ers commonly rescale T — df by dividing by N — 1, which
leadstod = (T — df)/(N — 1) (McDonald, 1989; Steiger,
Shapiro, & Browne, 1985).

2. Absolute versus relative. Absolute fit indices eval-
uate the model fit of the hypothesized model without a
comparison with a baseline model, whereas relative fit
indices measure the specific improvement in model fit of
the hypothesized model relative to a baseline model
(Bollen & Curran, 2006). The baseline model is chosen to
estimate as few parameters as are reasonable. Widaman
and Thompson (2003) have noted the importance of
specifying the correct baseline model to derive a valid
relative fit index.

3. Adjustment versus no adjustment for model complexity.
T will always decrease as model complexity increases.
Model complexity is usually indicated by df or number of
free parameters. Some fit indices impose an adjustment
for model complexity; some do not. Three different strat-
egies are used to impose a penalty for model complexity:
linearly combining 7" with a weighted model df, dividing T by

ST will also follow a chi-square distribution under weaker
assumptions, such as asymptotic independence (see Satorra, 1992).
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the model df, or multiplying a relative fit index by a parsi-
mony index.

The combination of the three dimensions yields eight
categories. Table 2 shows examples of fit indices in each
category and their basic properties.

MILM-Based Fit Indices

MLM can be seen as an extension of multiple regres-
sion analysis. R? is often used to reflect the fit of the
multiple regression model. In OLS regression, R’ mea-
sures the proportion of variation in the outcome variable
that can be accounted for by the predictors in the regres-
sion model. R? is also equal to the squared correlation
between the observed outcome and estimated outcome.

Pseudo R?. Singer and Willet (2003, pp. 102-103)
proposed a pseudo R? statistic to summarize the propor-

tion of total outcome variability explained by predictors
in the model. They defined pseudo R?> = rii, which is the
squared Pearson correlation between the observed individ-

ual responses (Y) and the estimated marginal mean responses

(Y). Pseudo R* reflects the agreement between the observed
individual responses and estimated marginal means.

Conditional concordance correlation (CCC; Vonesh,
Chinchilli, & Pu, 1996). The CCC was originally devel-
oped in biostatistics to assess the agreement between two
continuous measures from different raters or methods (Lin,
1989). Vonesh et al. (1996) and Vonesh and Chinchilli
(1997) extended the CCC to assess the agreement between
the observed individual responses and conditional means
(estimated individual responses) in mixed effects model
settings. This conditional CCC is defined in Equation 12
(Vonesh et al., 1996):

Table 2
Classifications and Basic Properties of SEM-Based Fit Indices

Hierarchical Chi-square versus
classification residual based Normed
(Sun, 2005) Fit indices Reference (Yuan, 2005) Direction (0-1)
Sample—absolute— T Bollen (1989) Chi-square Small is good No
unadjusted SRMR® = Z ’}?k/ D" Joreskog and Sorbom Residual Small is good No
ik (1981)
L. K. Muthén and Residual Small is good No
WRMR® = Muthén
(1998-2007)
GFIF = 1 — T,/min[F(S5;2(0))] Joreskog and Sorbom Chi-square Large is good Yes
(1984)
Sample—absolute— AGFI = 1— (1 — GFDp*/df, Joreskog and Sorbom Chi-square Large is good No
adjusted (1984)
Sample-relative— NFI = (T, — T,)IT, Bentler and Bonett Chi-square Large is good Yes
unadjusted (1980)
Sample-relative— TLI = [(T,/df,) — (T, /df)V[(T/df,) — 1] Tucker and Lewis Chi-square Large is good No
adjusted (1973)
Population—absolute— J_ _1
unadjusted Me™ = exp( 2d") McDonald (1989) Chi-square Large is good No
Popu.lation—absolute— RMSEA = \}5 ax(d,/df,, 0) Steiger and Lind Chi-square Small is good ~ No
adjusted (1980)
Population—relative—
unadjusted CFI = 1 — max[d,, 0]/max[d,, d,, 0] Bentler (1990) Chi-square Large is good  Yes
Population—relative—
adjusted PCFI = CFI X df,/df, James et al. (1982) Chi-square Large is good  Yes
Note. SEM = structural equation modeling; 7' = likelihood ratio test statistic (chi-square test statistic); SRMR = standardized root-mean-square residual;

WRMR = weighted root-mean-square residual; GFI = goodness-of-fit index; AGFI = adjusted goodness-of-fit index; NFI = normed fit index; TLI =
Tucker-Lewis index; Mc = McDonald’s measure of centrality; RMSEA = root-mean-square error of approximation; CFI = comparative fit index; PCFI =
parsimony version of CFI; 4 = hypothesized model; b = baseline model.

*ryis a standardized residual from a covariance matrix with j rows and k columns; p* is the number of nonduplicated elements in the covariance
matrix. °s, is an element of the sample statistics vector, including sample mean and covariance parameters; G, is the estimated model counterpart of s,;
v, is an estimate of the asymptotic variance of s,; and e is the number of sample mean and covariance parameters. € min[F(S;2(0))] is the minimum value
of the discrepancy function with all elements in the population covariance matrix assumed to be 0. 4d = (T — df)/(N — 1), where T — df is the sample
estimate of the noncentrality parameter.
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where Y is the grand mean of the observed responses, Y
is the grand mean of the estimated responses, 1; is an
identity vector that contains a column of 1s, Y; is the
vector of observed individual responses for individual i,
and Y; is the vector of estimated individual responses
(conditional means) for individual i. As shown before, Y;
can be calculated using Equation 8 for the linear mixed
model. N is the total number of observations; n is the total
number of individuals. Note that this formula assumes
homogeneity in Y;. If there is heterogeneity in Y;, Y;, and
Y, need to be weighted by 3,2 where 3, is the covari-
ance matrix of Y;.

Note that the numerator of the second term in Equation

12,3 (Y; — Y)'(Y; — Y,), is the expected square of the
i=1

deviation of the pairs of Y; and ¥, from the 45° line through
the origin (perfect agreement between Y; and Y;). The
denominator is the expected squared deviation of the pairs
of Y; and Y; from the 45° line when Y; and Y; are not
correlated. The lower the deviation of the pairs of Y; and Y
from the 45° line, the higher the conditional CCC will be.
The conditional CCC can be used to test the fit of the
conditional mean structure.

Average CCC (Vonesh et al., 1996). If we use the

estimated marginal means Y ;) to replace SA(i in Equation 12,
then we can use the CCC to evaluate the agreement between
the observed individual responses and the estimated mar-
ginal mean responses. Vonesh et al. (1996) referred to this
CCC as average CCC.

S -Y) (Y -Y)

i=1

S Y- TL)(Y, - T1) + 3 (¥, - Y1)’
(¥, — Y1) + N(Y - ¥)?
(13)

The distribution of the CCC measures is asymptotically
normal (Lin, 1989). The standard Fisher r to z transforma-
tion can be used to improve the normal approximation of the
CCC measures and to calculate the confidence interval for
the CCC measures (see Cohen et al., 2003).

Attractive features of CCC measures. According to
Vonesh et al. (1996), the CCC family of measures has
several advantages.

1. They have an intuitively reasonable interpretation.
They directly measure the level of agreement be-
tween the observed responses Y, and conditional or

marginal model implied responses (¥, oﬂcf,-).

2. The 45° line of identity where Y; = Y,ory, = SAKI-
serves as a point of reference for the CCC mea-
sures indicating perfect fit.

3. CCC measures have well defined endpoints (—1,
1). A value of 1 indicates a perfect fit, and a value
smaller than O indicates a lack of fit. A null model
need not be specified.

4. The variability of the points around the best fitting
straight line measures how far each observation
deviates from the optimal individual or mean
trajectory fit to the data (precision). The discrep-
ancy in slopes between the best fitting line and the
45° line (observed responses vs. estimated re-
sponses) indicates model accuracy. Note that the
Pearson correlation can measure the degree of
precision but not the degree of accuracy.

5. CCC measures are semiparametric coefficients
that do not require specification of a likelihood
function. They may be robust to nonnormal dis-
tributions.

Figure 4 is a simplified illustration of several of these
properties. It shows the observed individual responses for
five measurement occasions for only a single participant
rather than the full sample. The measure of accuracy is the
angle between the 45° line and the best fitting line. The
spread of the observed responses around the best fitting line
provides a measure of precision.

Fit Indices for Different Sources of Misfit

Fit indices for covariance structure. SEM-based fit in-
dices were originally developed to detect misfit in the co-
variance structure. Numerous Monte Carlo studies have
been conducted to examine the properties of fit indices in
detecting misfit in covariance structure. However, those
studies have primarily considered models in which factor
loadings were freely estimated. In GCMs, the factor load-
ings are usually fixed at a point in time or a point that is a
function of time.

Fit indices for the marginal mean structure. SEM-
based fit indices may be also used to test the fit of
the marginal mean structure. First, the chi-square test
statistic is built on the minimized fitting function that
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Figure 4. Simplified illustration of concordance correlations
(CCCs). The 45° line through the origin indicates perfect fit. The
CCC measures (average and conditional CCCs) provide informa-
tion about the degree of precision (deviation of the individual
response from the best fitting line) and the degree of accuracy
(angle between the best fitting line and the 45° line) for the fitted
model. Hypothetical data are shown for only 1 participant at five
measurement occasions.

takes into account the marginal mean structure (the
(Y — [u(0))2(0) (Y — [i(0)) term in Equation 11),
so that the chi-square test statistic reflects the fit of the
marginal mean structure. Similarly, the practical fit indi-
ces based only on the chi-square test statistic for the
hypothesized model (e.g., root-mean-square error of ap-
proximation [RMSEA] and McDonald’s measure of cen-
trality [Mc]), should also reflect the fit of the model to the
marginal mean structure.

Second, relative fit indices (e.g., comparative fit index
[CFI] and Tucker—Lewis index [TLI]) are defined through
the chi-square test statistic, so they should be able to reflect
the fit of the model to the marginal mean structure. The
major issue for relative fit indices is specification of an
acceptable baseline model. Fit indices with an incorrectly
specified baseline model have no valid interpretation and
may lead to biased inferences. Of importance, the standard
baseline model used by nearly all SEM packages (e.g., EQS,
Bentler, 1995; LISREL, Joreskog & Sorbom, 1996; Mplus,
L. K. Muthén & Muthén, 1998-2007) is not an appropriate
baseline model for commonly used GCMs (Widaman &
Thompson, 2003). The specification of an acceptable base-
line model for GCMs is discussed in the next section.

Third, residual-based fit indices (e.g., standardized root-
mean-square residual [SRMR] and weighted root-mean-
square residual [WRMR]) are weighted functions of model
residuals. As long as these fit indices take into account the
residuals of the marginal means (deviation of the sample
means from the model implied means), they should reflect

the model fit for the marginal means. So the central issue is
whether a residual-based fit index takes into account the
residuals in mean structure directly. From examining the
formula for SRMR (see Table 2), it is not clear whether it
takes into account the residuals in mean structure.

In addition, because the average CCC and pseudo R*
measure the agreement between the observed responses and
model estimated marginal means, both can be used as an
index of goodness of fit of marginal mean structure. Com-
pared with the average CCC, one disadvantage of pseudo R>
is that because it is built on the Pearson correlation, it is not
able to detect the deviations of the best fitting lines from the
perfect line for the pairs of the observed individual re-
sponses and estimated marginal means.

Fit indices for conditional mean structure. The SEM-
based fit indices are based on the sample means and the
model-implied marginal means instead of individual ob-
served and estimated responses; thus, SEM-based fit indices
cannot be used to test the fit of the conditional mean
structure. In contrast, the MLM-based conditional CCC
measures the agreement between the observed and esti-
mated individual responses, so that it can be used to test the
fit of conditional mean structure.

Can we construct SEM- and MLM-based fit indices for
the three types of longitudinal data? Let us consider
SEM-based fit indices first. The ability to obtain SEM fit
indices is directly related to the type of longitudinal data
being modeled. Raudenbush (2001) noted that a “gold-
standard” unrestricted (saturated) model, which is required
for most evaluations of model fit in SEM, can be defined
only for models that assume homogenous covariance ma-
trices across individuals (¥; = ). In covariance structure
modeling, the unrestricted model has traditionally been de-
fined having all of the covariance components freely esti-
mated. For GCMs containing both a mean and covariance
structure, Browne and Arminger (1995) added the require-
ment of a homogeneous mean structure across individuals
(r; = p) so that a saturated model may be derived. If the
hypothesized model is nested within the saturated model,
we can test the fit of the hypothesized model via the like-
lihood ratio test. Of importance, only with Type I and Type
IT longitudinal data can homogeneous mean and covariance
matrices be constructed. Thus, with these two types of
longitudinal data, we can compute overall chi-square tests
of model fit and SEM fit indices on the basis of this
chi-square test statistic. In addition, although the regular
residual-based fit indices do not require a saturated model,
they do require a common sample and model implied mean
and covariance structure, which are only plausible with data
from Type I or Type II longitudinal data. Thus, SEM-based
fit indices can be only constructed with Type I and Type II
longitudinal data.

Now consider the MLM-based fit indices. MLM-based fit
indices do not require a saturated model. The calculation of
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pseudo R?, average CCC, and conditional CCC involve only
observed individual responses and either the model implied
marginal means or model implied individual responses,
which are available for all of the three types of longitudinal
data.

Table 3 summarizes the sources of misfit that theoreti-
cally can be detected by SEM- and MLM-based fit indices
and for what type of longitudinal data those fit indices can
be calculated.

Factors That Affect the Performance of Fit Indices

Many factors have been found to influence the perfor-
mance of SEM-based fit indices. Here, we focus on three
commonly considered factors: model misspecification, dis-
tribution, and sample size. The three factors do not exert
their effects on the performance of fit indices independently.
Hu and Bentler (1998) argued that a good fit index should
have a large model misspecification effect accompanied by
trivial effects of sample size and distribution. Given space
limitations, we briefly summarize past research on the effect
of the three factors.

In terms of sensitivity to model misspecification, past
research in the context of confirmatory factor analysis mod-
els with only covariance structure has examined how SEM-
based fit indices are related to the misspecification of factor
covariances versus misspecification of factor loadings. TLI,
CFI, RMSEA, and WRMR were more sensitive to misspeci-
fication of the factor loadings than to the misspecifications
of factor covariance (Hu & Bentler, 1998; Yu, 2002). In
contrast, SRMR showed the opposite effect. Yu (2002)
found that CFI, TLI, RMSEA, and SRMR did not overreject
trivially misspecified models. WRMR rejected models with
trivial misspecification in the factor covariances too fre-
quently under all sample size conditions, and it overrejected
models with trivial misspecifications in the factor loadings

Table 3
Fit Indices to Detect the Misfit in Marginal Mean, Covariance,
and Conditional Mean Structure

Type of

Fit indices Sources of misfit longitudinal data
SEM-based fit

indices®

Marginal mean structure Types I and II
and covariance
structure

Average CCC,
Pseudo R?

Conditional CCC Conditional mean
structure

Marginal mean structure Types I, II, and III
Types L, 11, and III

Note. SEM = structural equation modeling; CCC = concordance corre-
lation.

* Residual-based fit indices (e.g., standardized root-mean-square residual)
appear to be less sensitive to the marginal mean structure than the likeli-
hood-ratio-based fit indices.

in the large sample size condition (N = 1,000). Given that
SRMR appeared to show sensitivity to a different type of
misspecification than the other fit indices, Hu and Bentler
(1998, 1999) recommended a two-index strategy of using
SRMR in combination with one of the other fit indices more
sensitive to factor loading misspecification (e.g., CFI,
RMSEA) to evaluate model fit. However, Fan and Sivo
(2005) noted that Hu and Bentler did not quantify the
severity of model misspecification and thus confounded
type with severity of misspecification in their study. Fan and
Sivo showed that, controlling for the severity of misspeci-
fication, Hu and Bentler’s conclusion that the fit indices
were differently sensitive to different types of misspecifi-
cation no longer held.

In the context of GCMs with five or eight time points, Yu
(2002) showed that SEM-based fit indices differ in their power
to detect misspecification in GCMs. He found that for the same
misspecified model (a linear GCM was fitted to data generated
by a quadratic model), the chi-square test statistic, TLI, CFI,
and RMSEA all had > .80 power to reject the model using
suggested cutoff criteria (T < X.ical at o — 050 TLI = 0.95,
CFI = 0.95, RMSEA = .07) when N = 250. With 5 time
points, SRMR had < .80 power to reject the misspecified
GCM with the cutoff criterion of SRMR < .07 when N = 250.
However, SRMR did have adequate power to reject the mis-
specified GCM with eight time points. The cutoff criteria of
WRMR < 1.0 led to reasonable Type I error rates and large
power for the GCM with five time points, whereas WRMR
tended to overreject the true GCM with eight time points with
this cutoff criterion.

Leite and Stapleton (2006) investigated the sensitivity of
RMSEA and SRMR to misspecification of the functional
form of growth (fitting a linear functional form to the data
generated from nonlinear and piecewise GCMs). They ma-
nipulated the severity of misspecification (slight, moderate,
and strong) defined on the basis of power calculations (Saris
& Satorra, 1993; Satorra & Saris, 1985) for the alternative
models. They found that RMSEA was very sensitive to
misspecification in functional form using a cutoff criterion
of RMSEA = .06 (average power = .89, .97, and 1.00 for
slight, moderate, and strong misspecification, respectively),
whereas SRMR had unacceptably low power to reject mod-
els with misspecified mean and covariance structures with a
cutoff criterion of SRMR = .08 (average power = .12, .41,
and .36 for slight, moderate, and strong misspecification,
respectively). As a comparison, they tested the same linear
models when the mean structure was specified as saturated
and would not contribute to misfit. Under these conditions,
SRMR had higher power to reject the misspecification in
covariance structure (average power = .31, .71, and .83 for
slight, moderate, and strong misspecification, respectively).
The average power for RMSEA under the different levels of
severity of misspecification did not change substantially
when the mean structure was specified as saturated. Thus, it
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appears that SRMR is less sensitive to misspecification in
mean structure than to the misspecification in covariance
structure.

As described earlier, GCMs often assume multivariate
normality of the longitudinal responses and random effects.
Given multivariate normality, the ML-based chi-square test
statistic (7}, ) asymptotically follows a central or noncentral
chi-square distribution. In practice, the multivariate normal-
ity assumption is often violated. Under these conditions, T),;
does not follow a chi-square distribution; therefore, infer-
ences based on T,,;, may have an inflated Type I error rate
(Curran, West, & Finch, 1996; Satorra, 1992; Yu, 2002).

To improve the approximation of the chi-square test sta-
tistic to a chi-square distribution under conditions of non-
normal data, Satorra and Bentler (1988) developed a
rescaled chi-square test statistic (Tg). Tg5 corrects Ty, by a
constant k, Ty Tyi/k (Bentler & Yuan, 1999). T
asymptotically follows a chi-square distribution if the ob-
served variables have homogeneous marginal skewness and
kurtosis. With heterogeneous marginal skewness and kur-
tosis, the asymptotic distribution of T is unknown (Bentler
& Yuan, 1999). Instead it will approach a variate with
expected value equal to df. Ty rescales the chi-square test
statistic by correcting only for the mean of the distribution
(Bentler & Yuan, 1999; Yuan, 2005; Yuan & Bentler,
1998). Tz behaved extremely well relative to T,, under
nonnormal distributions, except that it tends to overreject
correct models slightly when sample sizes are small (about
N = 125; Bentler & Yuan, 1999; Curran et al., 1996; Yu,
2002; Yuan & Bentler, 1998).

There are few studies on fit indices based on the
chi-square test statistic other than T,;. In the context of
covariance structure only models, Yu (2002) showed that
Tss-based CFI, TLI, and RMSEA led to a lower Type I
error rate than T,;-based CFI, TLI, and RMSEA when
N = 250. T);-based CFI, TLI, and RMSEA had higher
power than Tg;-based CFI, TLI, and RMSEA under al-
most all the sample size conditions, but the higher power
associated with ML-based fit indices was suspect because
Ty, was inflated with increasing nonnormality for mis-
specified models.

Strictly speaking, there is no fit index that is com-
pletely unaffected by sample size. Sample size exerts its
potential effect on model fit indices in two ways. First,
sample size may enter the calculation of a fit index
directly so that the value of a fit index increases as
sample size increases, which will lead to an inflated Type
I error rate (Bollen, 1989; Sun, 2005). For example,
Ty = (N — 1)F,, tends to be inflated by sample size
when the model is misspecified (Bollen, 1989). As a
result, even a trivially misspecified model could be re-
jected by this test under some commonly seen conditions.
Second, an increased Type I or Type II error rate may be
introduced at small sample sizes because the asymptotic

distribution is not well approximated when sample size is
small (Bollen, 1989; Sun, 2005). Some fit indexes are
much less sensitive to sample size than others. For ex-
ample, population-based fit indices (e.g., RMSEA) are
expected to be less affected by sample size than sample-
based fit indices, and relative fit indices (e.g., CFI and
TLI) are expected to be less affected by sample size than
absolute fit indices. Fan and Sivo (2005) found that
sample size had more effect on fit indices under slight
misspecification than under moderate misspecification.

The factors of misspecification, distribution, and sam-
ple size may also affect MLM-based fit indices. However,
there is a lack of systematic research examining the effect
of those factors on MLM-based fit indices in the context
of GCMs. Many questions remain to be answered. For
instance, do MLM fit indices decrease monotonically as
model misspecification in mean structure increases?
Which fit index is most sensitive to misspecification in
marginal mean structure, average CCC, Pseudo R2, or the
SEM-based fit indices? How sensitive is the conditional
CCC to misspecification in the conditional mean struc-
ture? How is the sensitivity of those fit indices moder-
ated, if at all, by other factors such as sample size or
distribution?

It is important to note that both SEM- and MLM-based fit
indices will be affected by still other factors when evaluat-
ing mean structure. For example, they will be affected by
the reliability of the repeated measures. If other conditions
are constant, higher reliability of repeated measures will
result in higher values of the fit indices for mean structure.
In addition, fit indices may be also affected by the extent to
which the repeated measures are predicted by the terms
included in the Level-1 model. If reliability of measurement
is kept constant, cases in which terms related to time (e.g.,
time, time*) can predict a larger rather than smaller propor-
tion of variance in the outcome variable in the population
will result in higher values on the fit indices. Consider a
GCM with time as the only time-varying predictor in the
model. The within-individual covariance matrix (the
Level-1 residual covariance matrix) is affected by two fac-
tors: (a) the measurement error due to the unreliability of
measurement and (b) the variances and covariances among
residuals that are accounted for by other time-varying co-
variates that are not included in the model. Given that the
between-individuals covariance matrix is constant, the
larger the values in the Level-1 residual covariance matrix,
the lower the proportion of variance in the outcome vari-
ables that can be accounted for by time, and the smaller the
fit indices for marginal means will be. Similarly, the larger
the values in the Level-1 residual covariance matrix, the
smaller the ratio of between to within-individual variability,
the greater the discrepancy between the observed and esti-
mated individual responses, and thus the smaller the condi-
tional CCC will be. As a result, specifying an optimal
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functional form® in different cases may lead to different
values on the fit indices for mean structure.

Issues and Challenges in Evaluating Model Fit
for GCMs

Given that GCMs involve both mean and covariance
structures and that longitudinal data have different types,
several complex issues arise in evaluating model fit for
GCMs.

Specifying Correct Baseline Model(s) for Growth
Curve Models for Relative Fit Indices

Specifying a correct baseline model is critical for relative
fit indices. Fit indices with an incorrectly specified baseline
model have no valid interpretation and may lead to biased
inferences. Widaman and Thompson (2003) defined the
necessary characteristics for an acceptable baseline model.
Of critical importance, a baseline model must be nested
within the hypothesized model under consideration for a set
of data. In addition, it must (a) estimate as few parameters
as are reasonable for the data, and (b) reproduce a nonzero
variance and mean (if included in the analysis) for each
manifest variable.

The standard baseline model used by nearly all SEM
packages (e.g., LISREL, Mplus) is an independence model
in which the covariances among the manifest variables are
set to zero, but variances are unrestricted, and means are
unrestricted if mean structure is included in the model’
(Bentler & Bonett, 1980; Widaman & Thompson, 2003).
Unfortunately, this standard baseline model is inappropri-
ate for growth curve models. Using the linear GCM in
Figure 1 as an example, the linear GCM has six parameters
to be estimated: means and variances for the intercept and
slope, the covariance between intercept and slope, and a
constant residual variance for the manifest variables. The
traditional baseline model for the linear GCM has eight free
parameters: four means and four variances for the manifest
variables. It is obvious that the standard baseline model is
not nested within the linear GCM. Widaman and Thompson
(2003) specified an acceptable baseline model® that may be
used for most of the commonly used GCMs (i.e., all of the
polynomial models and linear piecewise models). This
baseline model is based on an intercept-only growth model:
Only the mean of the intercept and the residual variances for
the manifest variables are free parameters. Note that if there
is an equality constraint on the residual variances in the
hypothesized model (as is typical in the MLM approach),
the baseline model must also reflect that constraint. The
variance of the latent variable intercept is fixed to be O in the
baseline model. Figure 5 shows an acceptable baseline
model for the above linear GCM, which has two parameters
to be estimated: a mean for the intercept and a single
constant residual variance for the manifest variables.
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Figure 5. An acceptable baseline model for the linear latent
growth curve model in Figure 1. There is only an intercept factor
in the model. The free parameters in the model are the mean of
intercept and the unique variances of Y, to Y,, which are con-
strained to be equal corresponding to the hypothesized model in
Figure 1. In the model portrayed, the triangle indicates that the
mean of the intercept is estimated.

Correcting the relative fit indices requires three steps:

1. Estimate the hypothesized model using any soft-
ware capable of estimating GCMs (e.g., EQS,
LISREL, MPlus) to obtain 7, and df, for the
model but ignore the relative fit index values
output by the program;

2. Estimate the correct baseline model to obtain T,
and dfy;

3. Use the values of 7}, df;,, T),, and df;, to calculate the
value of the fit index, for example, TLI =

SIf we have a limited number of repeated measures for each
individual, many forms of growth cannot be estimated. For exam-
ple, if one has only three repeated measures, one cannot estimate
quadratic growth. Such limitations may lead to the adoption of a
simple functional form that does not adequately represent the
growth process. However, that functional form might be the opti-
mal form that one can specify given the data.

7 In the standard baseline model used in AMOS (SPSS, 2008),
the means of the manifest variables are constrained to equal O if
mean structure is included in the model. This difference does not
affect our conclusion that standard SEM software does not use
acceptable baseline models unless unique variances in the test
model are all freely estimated.

8 Sobel and Bohmstedt (1985) have noted that more than one accept-
able baseline model may exist for a specific hypothesized model.
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[(Tydf,) — (T/df)VI(T,/df,) — 1]. We provide
macros in SAS (SAS Institute, 2001) and SPSS
(SPSS, 2005) to calculate relative fit indices, in-
cluding the TLI, normed fit index (NFI), CFI, and
parsimony adjusted CFI. These are available in
the supplemental materials.

Differentiating Misspecification in the Marginal
Mean and Covariance Structures

As described previously, SEM-based fit indices can be
used to detect misspecification in both the marginal mean
and covariance structures. Previous research on SEM-based
fit indices for GCMs only considered joint misspecification
involving both the mean and covariance structures. For
example, Yu (2002) created misspecified models by drop-
ping the quadratic effect from a quadratic population model.
The population model in Leite and Stapleton (2006) was
nonlinear or piecewise, and the misspecified model was
linear. In both studies, the misspecification in marginal
mean and covariance structure were confounded. As a re-
sult, the source of misfit is unclear, so no conclusions can be
reached about how fit indices reflect misspecifications only
in the mean or covariance structure.

It is possible that some fit indices might have differential
sensitivity to misspecification only in the mean structure
relative to only the covariance structure. If so, one could
combine information provided by different fit indices to
make an inference regarding the source of model misspeci-
fication. For example, on the basis of the results of Leite and
Stapelton (2006), the RMSEA might be much more sensi-
tive to misspecification in mean structure than is the SRMR.
If one obtained a RMSEA for the tested model that sug-
gested rejection, whereas the SRMR suggested acceptance,
then the misspecification is very likely to come from the
mean structure.

An alternative potential way to differentiate the misspeci-
fication in marginal mean and covariance structure is to
specify the covariance structure to be saturated while ex-
amining the fit of the marginal mean structure. Comparing
different competing functional forms (marginal mean struc-
tures) when the role of misspecification in the covariance
structure is reduced may give a clearer picture of misspeci-
fication in the mean structure. Similarly, the model for the
marginal means could be saturated while examining the fit
of the covariance structures. Once again, comparing differ-
ent plausible covariance structures when the marginal
means are freely estimated may give a clearer picture of
misspecification in the covariance structure. The goal is to
estimate a model in which only misspecification in one
structure would contribute to the misfit of the model. How-
ever, only preliminary work by Leite and Stapleton (2006)
has examined the performance of fit indices to detect the

misspecification in the covariance structure when the mean
structure is specified as saturated.

Difficulties in Determining Cutoff Criteria for
Models Involving Mean Structures

Indices based on both MLM and SEM can be used to
evaluate the fit of the marginal mean structures. For SEM-
based fit indices, it has been standard practice to evaluate
model fit indices using rule of thumb cutoff criteria (e.g.,
CFI = .95, RMSEA = .06, SRMR = .08; see Hu & Bentler,
1998, 1999). However, these rule of thumb cutoff criteria
were developed on the basis of practical experience and
simulation studies using covariance structure models with-
out a mean structure. Yu (2002) found that only some of the
criteria were appropriate for GCMs with misspecifications
in both mean and covariance structures. However, the con-
ditions investigated by Yu confounded misspecification in
the mean and covariance structures. If we wish to focus on
detecting misspecification only in the marginal mean struc-
ture, then it is likely that such rule of thumb guidelines do
not apply. Consider trying to develop potential cutoff crite-
ria for regression analysis or trend analysis in analysis of
variance, two analysis approaches in which the marginal
mean structure is of primary importance. There is little
consensus among researchers regarding what would consti-
tute an acceptable level of fit.

For MLM-based fit indices, no such cutoff criteria have
been proposed. The existing applications of the MLM-based
fit indices often use fit indices to compare competing mod-
els instead of to indicate the global fit directly. For example,
to model longitudinal data on the number of epileptic sei-
zures over time (Thall & Vail, 1990), Vonesh et al. (1996)
used the average CCC to compare competing longitudinal
models with different marginal functional forms. They then
used the selected marginal functional form to choose an
appropriate covariance structure. Singer and Willet (2003)
proposed that researchers can evaluate the contribution of
an added predictor to a model by using the increase in
pseudo R? associated with the predictor. In addition, the
MLM fit indices presented in the current article do not
adjust for model complexity, thus they will always increase
as model complexity increases.

The Effect of Missing Data on Fit Indices

Type II data in which some data are MAR create compli-
cations in both the estimation and evaluation of model fit in
GCMs. With Type II data, missing data techniques—such as
FIML and multiple imputation (MI)—produce unbiased esti-
mates of the mean growth trend after conditioning on the
observed data (see Schafer & Graham, 2002). However, as
noted by Enders (2001), when FIML is used for Type II
longitudinal data, the chi-square test statistic cannot be calcu-
lated using the general form, (N — 1)F,,, because there is no
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single N that is applicable to the entire sample. Researchers can
calculate the fit indices by following a two-step procedure: (a)
estimate the saturated model and the hypothesized model using
FIML, and (b) calculate the chi-square test statistics using the
formula —2(InLypsr nypornesizea) — MLpinarsanuraieay)- Then, the
fit indices based on the chi-square test statistics can be calcu-
lated by hand using standard formulas (see Table 3).

With MI, a Monte-Carlo-based technique is used to im-
pute plausible values for the missing data in multiple data
sets. Each data set can be analyzed separately using standard
methods developed for complete data. All of the standard
estimation methods and model fit indices applied to com-
plete data can be used in each data set and then recombined.
However, in some cases, complexities may arise in the
specification of the proper N and df. In addition, there may
be convergence problems associated with MI that become
far more likely with some patterns of missing data (e.g., the
multiple cohort design).

Although we can still calculate SEM-based fit indices
when data are MAR, such data raise problems for the
performance of model fit indices. Davey, Savla, and Luo
(2005) found that missing data greatly reduced the ability of
SEM-based fit indices (NFI, CFI, RMSEA, and Mc) to
detect misspecified covariance structure models. Using
FIML estimation, they found that when the data were
missing completely at random (MCAR), F,,, decreased
linearly. In contrast, when the data were MAR, F;,
decreased nonlinearly. To date, there is no good solution
to the problem of evaluating model fit when data are
missing. There is also little research on the topic, and
none in the context of GCMs. Given the linear relation-
ship between F,;, and the proportion of missing data in
covariance structure models, it may be possible to correct
fit indices for the proportion of missing data when data
are MCAR. Alternatively, relative rather than the abso-
lute values of fit indices can be used to choose the best of
a set of competing models. Tests indicating that missing
data are consistent with an MCAR structure are available
(Chen & Little, 1999; Park & Lee, 1997). However,
MCAR data may be rare in practice. To date, no study has
examined the effect of missing data on the MLM-based
fit indices.

Evaluating Model Fit for GCMs With Type IIl Data

As discussed previously, SEM-based fit indices cannot be
calculated for Type III longitudinal data. One is not able to
evaluate how the model estimated marginal mean and the
covariance structures match the sample mean vector and
covariance structure. However, one can still evaluate the fit
of the marginal means using the pseudo R and average
CCC as well as fit of the conditional means using the
conditional CCC. The challenge is how those fit indices will
be affected by the imbalances.

An alternative (and complementary) way to examine the
fit of growth models is to adapt methods for the examination
of residuals from multiple regression analysis (Cohen et al.,
2003; Weisberg, 2005). Fitzmaurice et al. (2004) and Weiss
(2005) have both noted that the analysis of longitudinal data
is not complete without a close examination of the residuals.
Residual diagnoses can not only help check the adequacy of
the mean and covariance structures but also help detect
outliers and violations of assumptions—for example, heter-
ogeneity of variance, serial dependency (autocorrelation)
among Level-1 residuals, and nonnormality of the random
effects. Given space limitations, we cannot consider resid-
ual diagnosis in detail in this article. Interested readers
should refer to Weiss (2005, pp. 327-341) and Fitzmaurice
et al. (2004, pp. 237-253).

Conclusions and Recommendations

This article has provided an overview of fit indices
from both the SEM and MLM frameworks that can be
used to evaluate model fit for GCMs and the challenges
in their use. Although MLM and SEM represent different
approaches to GCMs, in most applications they share
identical model-implied mean and covariance matrices,
statistical assumptions, and estimation methods (Mehta
& West, 2000). However, the measurement of goodness
of fit has historically differed between the approaches.
SEM has emphasized measuring the match between sam-
ple and model implied mean responses and the match
between the sample and model implied covariance ma-
trices using the chi-square test statistic and other practi-
cal fit indices. MLM has emphasized measures of the
agreement between the estimated mean or estimated in-
dividual responses with the observed individual re-
sponses using different correlational measures.

The first issue in choosing and interpreting model fit
statistics is the type of longitudinal data structure. Follow-
ing Raudenbush (2001), three types of data structures in
longitudinal data were distinguished: (a) Type I balanced
design with complete data, (b) Type II balanced design with
MAR data, and (c) Type III unbalanced design (see Table
1). All SEM and MLM fit indices can be calculated for Type
I longitudinal data. Although all SEM and MLM fit indices
can be calculated for Type II longitudinal data, missing data
have important effects on their interpretation. Missing data
reduce the power of SEM-based fit indices to differentiate
between correctly and incorrectly specified models. The fit
indices show attenuated ability to detect sources of misfit,
and traditional guidelines for adequate fit may be mislead-
ing. Type III longitudinal data severely restrict the set of
available fit indices. None of the SEM-based fit indices can
be calculated. All of the MLM-based fit indices—including
the pseudo R?, the average CCC, and the conditional
CCC—are potentially available.
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The second issue is that growth curve models involve
multiple sources of misspecification. We identified four
sources of misspecification in GCMs: within-individual co-
variance structure, between-individuals covariance structure,
marginal mean structure, and conditional mean structure. Only
SEM-based fit indices directly reflect misspecification in the
covariance structures. Only the MLM-based conditional
CCC reflects the misspecification in the conditional mean
structure. Both SEM- and MLM-based fit indices reflect
misspecification in the marginal mean structure. The fit of
the mean structures, especially the fit of the conditional
mean structure, has received less emphasis than the fit of the
covariance structures. The fit of the conditional mean struc-
ture in addition to the fit of marginal mean structure needs
to be considered to find the appropriate functional form for
a GCM. In addition, the fit of the total covariance structure
cannot guarantee that the between-individuals and within-
individual variability in the outcome has been correctly
captured.

It is very challenging to differentiate the different sources
of misspecification. One strategy may be to utilize combi-
nations of fit indices from both the MLM and SEM ap-
proaches that reflect different sources of misfit. This strat-
egy could provide a fuller picture of the adequacy of fit of
GCMs. A second possible strategy is to specify either the
mean or covariance structure to be saturated so that the
influence of that structure is minimized and different spec-
ifications in the other structure can be compared. The extent
to which each of these strategies can detect various forms of
misspecification in the mean and covariance structures
awaits future research.

Given the caveat that virtually all of the existing work has
been conducted using balanced designs with complete data
(Type I data), the RMSEA, CFI, and TLI among the SEM-
based fit indices have shown good potential performance in
evaluating the fit of GCMs. These fit indices (a) can be
applied to models with both mean and covariance structures,
(b) are sensitive to model misspecification without overre-
jection of true or trivially misspecified models, and (c) are
minimally affected by sample size. The RMSEA is affected
by nonnormality and high correlations among the measured
variables. The proper use of the CFI and TLI requires that
a correct baseline model be manually estimated (see the
supplemental materials). In the context of GCMs, research-
ers should be cautious about using the WRMR and SRMR,
considering that the WRMR may lead to overrejection of
trivially misspecified models, and the SRMR generally had
low power to detect misspecification in mean structure.

When data meet the assumption of multivariate normality
(or more precisely, asymptotic robustness), the ML chi-
square test provides the optimal test of the exact fit of the
overall model to the data for moderate to large sample sizes.
The Satorra—Bentler test statistic has superior performance
to the ML chi-square when there is nonnormality in the data

for moderate to large sample sizes. The Satorra—Bentler test
statistic is available in nearly all SEM programs. However,
the studies on fit indices in the context of GCMs have only
considered the performance of fit statistics using standard
ML estimation, precluding definitive statements about their
performance when alternative robust estimators (e.g., Tsp)
are used.

We presented three MLLM-based fit indices in this article.
Compared with SEM-based fit indices, the MLM-based fit
indices can be used with unbalanced designs, and the con-
ditional CCC can be used to detect misspecification in
conditional mean structure. However, the properties of
MLM-based fit indices have not been extensively studied in
the context of GCMs. These fit indices have good theoret-
ical properties, but it is an open question whether their
actual performance in practice with GCMs will fully match
their theoretical properties.

Given the multiple potential sources of misfit and the
three types of longitudinal data structures, evaluating good-
ness of fit is much more difficult for GCMs than for covari-
ance structure models. Researchers have typically evaluated
the fit of covariance structure models by comparing SEM-
based fit indices with conventional cutoff criteria. For
GCMs, fit indices will also be affected by aspects of the
mean structure. The fit of mean structure is not only affected
by the misspecification in mean structure but also by the
reliability of measurement, the range of the time variable,
and the extent to which the outcome variable is predicted by
the time variable and any other time-varying predictor(s) of
interest. It may be impossible to establish cutoff criteria that
are tenable for models with varying reliability and extent to
which the outcome variable is predicted by time. Rather
than attempting to make appeals to conventional cutoff
criteria associated with each model fit index, it is important
to use fit indices that best reflect the central questions of the
researchers. For example, if the central question of a re-
searcher is to identify the optimal functional form relating
time to the outcome variable of interest, a good strategy may
be to examine combinations of fit indices that are differen-
tially sensitive to the marginal and conditional mean struc-
tures. Through the use of such strategies, researchers will
have greater ability to identify the aspects of the mean and
covariance structures that are the source of misfit in their
models.
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