Khemani et al. Journal of Big Data

(2024) 11:18 Journal of Big Data

https://doi.org/10.1186/540537-023-00876-4

®

A review of graph neural networks: concepts, ==
architectures, techniques, challenges, datasets,
applications, and future directions

Bharti Khemani', Shruti Patil*’, Ketan Kotecha? and Sudeep Tanwar?

*Correspondence:
shruti.patil@sitpune.edu.in

! Symbiosis Institute

of Technology Pune Campus,
Symbiosis International (Deemed
University) (SIU), Lavale,

Pune 412115, India

2 Symbiosis Centre for Applied
Artificial Intelligence

(SCAAI), Symbiosis Institute

of Technology Pune Campus,
Symbiosis International (Deemed
University) (SIU), Lavale,

Pune 412115, India

3 |EEE, Department of Computer
Science and Engineering,
Institute of Technology, Nirma
University, Ahmedabad, India

@ Springer Open

Abstract

Deep learning has seen significant growth recently and is now applied to a wide range
of conventional use cases, including graphs. Graph data provides relational informa-
tion between elements and is a standard data format for various machine learning

and deep learning tasks. Models that can learn from such inputs are essential for work-
ing with graph data effectively. This paper identifies nodes and edges within specific
applications, such as text, entities, and relations, to create graph structures. Different
applications may require various graph neural network (GNN) models. GNNs facilitate
the exchange of information between nodes in a graph, enabling them to understand
dependencies within the nodes and edges. The paper delves into specific GNN models
like graph convolution networks (GCNs), GraphSAGE, and graph attention networks
(GATs), which are widely used in various applications today. It also discusses the mes-
sage-passing mechanism employed by GNN models and examines the strengths

and limitations of these models in different domains. Furthermore, the paper

explores the diverse applications of GNNs, the datasets commonly used with them,
and the Python libraries that support GNN models. It offers an extensive overview

of the landscape of GNN research and its practical implementations.

Keywords: Graph Neural Network (GNN), Graph Convolution Network (GCN),
GraphSAGE, Graph Attention Networks (GAT), Message Passing Mechanism, Natural
Language Processing (NLP)

Introduction

Graph Neural Networks (GNNs) have emerged as a transformative paradigm in machine
learning and artificial intelligence. The ubiquitous presence of interconnected data in
various domains, from social networks and biology to recommendation systems and
cybersecurity, has fueled the rapid evolution of GNNs. These networks have displayed
remarkable capabilities in modeling and understanding complex relationships, making
them pivotal in solving real-world problems that traditional machine-learning models
struggle to address. GNNs’ unique ability to capture intricate structural information
inherent in graph-structured data is significant. This information often manifests as
dependencies, connections, and contextual relationships essential for making informed
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predictions and decisions. Consequently, GNNs have been adopted and extended across
various applications, redefining what is possible in machine learning.

In this comprehensive review, we embark on a journey through the multifaceted land-
scape of Graph Neural Networks, encompassing an array of critical aspects. Our study
is motivated by the ever-increasing literature and diverse perspectives within the field.
We aim to provide researchers, practitioners, and students with a holistic understanding
of GNNS, serving as an invaluable resource to navigate the intricacies of this dynamic
field. The scope of this review is extensive, covering fundamental concepts that under-
lie GNN, various architectural designs, techniques for training and inference, prevalent
challenges and limitations, the diversity of datasets utilized, and practical applications
spanning a myriad of domains. Furthermore, we delve into the intriguing future direc-
tions that GNN research will likely explore, shedding light on the exciting possibilities.

In recent years, deep learning (DL) has been called the gold standard in machine learn-
ing (ML). It has also steadily evolved into the most widely used computational technique
in ML, producing excellent results on various challenging cognitive tasks, sometimes
even matching or outperforming human ability. One benefit of DL is its capacity to learn
enormous amounts of data [1]. GNN variations such as graph convolutional networks
(GCNs), graph attention networks (GATs), and GraphSAGE have shown groundbreak-
ing performance on various deep learning tasks in recent years [2].

A graph is a data structure that consists of nodes (also called vertices) and edges.
Mathematically, it is defined as G=(V, E), where V denotes the nodes and E denotes
the edges. Edges in a graph can be directed or undirected based on whether directional
dependencies exist between nodes. A graph can represent various data structures,
such as social networks, knowledge graphs, and protein—protein interaction networks.
Graphs are non-Euclidean spaces, meaning that the distance between two nodes in a
graph is not necessarily equal to the distance between their coordinates in an Euclidean
space. This makes applying traditional neural networks to graph data difficult, as they
are typically designed for Euclidean data.

Graph neural networks (GNNs) are a type of deep learning model that can be used
to learn from graph data. GNNs use a message-passing mechanism to aggregate infor-
mation from neighboring nodes, allowing them to capture the complex relationships in
graphs. GNNs are effective for various tasks, including node classification, link predic-
tion, and clustering.

Organization of paper
The paper is organized as follows:

1) The primary focus of this research is to comprehensively examine Concepts, Archi-
tectures, Techniques, Challenges, Datasets, Applications, and Future Directions
within the realm of Graph Neural Networks.

2) The paper delves into the Evolution and Motivation behind the development of
Graph Neural Networks, including an analysis of the growth of publication counts
over the years.

3) It provides an in-depth exploration of the Message Passing Mechanism used in
Graph Neural Networks.
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4) The study presents a concise summary of GNN learning styles and GNN models,
complemented by an extensive literature review.

5) The paper thoroughly analyzes the Advantages and Limitations of GNN models
when applied to various domains.

6) It offers a comprehensive overview of GNN applications, the datasets commonly
used with GNNSs, and the array of Python libraries that support GNN models.

7) In addition, the research identifies and addresses specific research gaps, outlining
potential future directions in the field.

"Introduction” section describes the Introduction to GNN. "Background study”
section provides background details in terms of the Evolution of GNN. "Research
motivation” section describes the research motivation behind GNN. Section IV
describes the GNN message-passing mechanism and the detailed description of
GNN with its Structure, Learning Styles, and Types of tasks. "GNN Models and
Comparative Analysis of GNN Models" section describes the GNN models with their
literature review details and comparative study of different GNN models. "Graph
Neural Network Applications” section describes the application of GNN. And finally,
future direction and conclusions are defined in "Future Directions of Graph Neural
Network" and "Conclusions" sections, respectively. Figure 1 gives the overall struc-
ture of the paper.

Background study

As shown in Fig. 2 below, the evolution of GNNSs started in 2005. For the past 5 years,
research in this area has been going into great detail. Neural graph networks are being
used by practically all researchers in fields such as NLP, computer vision, and healthcare.

Graph neural network research evolution

Graph neural networks (GNNs) were first proposed in 2005, but only recently have they
begun to gain traction. GNNs were first introduced by Gori [2005] and Scarselli [2004,
2009]. A node’s attributes and connected nodes in the graph serve as its natural defi-
nitions. A GNN aims to learn a state embedding h, € R® that encapsulates each node’s
neighborhood data. The distribution of the expected node label is one example of the
output. An s-dimension vector of node v, the state embedding h,, can be utilized to gen-
erate an output O,, such as the anticipated distribution node name. The predicted node
label (O,) distribution is created using the state embedding h, [30]. Thomas Kipf and
Max Welling introduced the convolutional graph network (GCN) in 2017. A GCN layer
defines a localized spectral filter’s first-order approximation on graphs. GCNs can be
thought of as convolutional neural networks that have been expanded to handle graph-
structured data.

Graph neural network evolution

As shown in Fig. 3 below, research on graph neural networks (GNNs) began in 2005
and is still ongoing. GNNs can define a broader class of graphs that can be used for
node-focused tasks, edge-focused tasks, graph-focused tasks, and many other appli-
cations. In 2005, Marco Gori introduced the concept of GNNs and defined recursive
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Fig. 1 The overall structure of the paper
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Fig. 2 Year-wise publication count of GNN (2005-2022)

neural networks extended by GNNs [4]. Franco Scarselli also explained the concepts
for ranking web pages with the help of GNNs in 2005 [5]. In 2006, Swapnil Gandhi
and Anand Padmanabha Iyer of Microsoft Research introduced distributed deep
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graph learning at scale, which defines a deep graph neural network [6]. They explained
new concepts such as GCN, GAT, etc. [1]. Pucci and Gori used GNN concepts in the
recommendation system.

2007 Chun Guang Li, Jun Guo, and Hong-gang Zhang used a semi-supervised
learning concept with GNNs [7]. They proposed a pruning method to enhance the
basic GNN to resolve the problem of choosing the neighborhood scale parameter. In
2008, Ziwei Zhang introduced a new concept of Eigen-GNN [8], which works well
with several GNN models. In 2009, Abhijeet V introduced the GNN concept in fuzzy
networks [9], proposing a granular reflex fuzzy min—max neural network for classi-
fication. In 2010, DK Chaturvedi explained the concept of GNN for soft computing
techniques [10]. Also, in 2010, GNNs were widely used in many applications. In 2010,
Tanzima Hashem discussed privacy-preserving group nearest neighbor queries [11].
The first initiative to use GNNs for knowledge graph embedding is R-GCN, which
suggests a relation-specific transformation in the message-passing phases to deal with
various relations.

Similarly, from 2011 to 2017, all authors surveyed a new concept of GNNs, and the
survey linearly increased from 2018 onwards. Our paper shows that GNN models such
as GCN, GAT, RGCN, and so on are helpful [12].

Literature review

In the Table 1 describe the literature survey on graph neural networks, including the
application area, the data set used, the model applied, and performance evaluation. The
literature is from the years 2018 to 2023.
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Research motivation

We employ grid data structures for normalization of image inputs, typically using an
n*n-sized filter. The result is computed by applying an aggregation or maximum func-
tion. This process works effectively due to the inherent fixed structure of images. We
position the grid over the image, move the filter across it, and derive the output vec-
tor as depicted on the left side of Fig. 4. In contrast, this approach is unsuitable when
working with graphs. Graphs lack a predefined structure for data storage, and there is
no inherent knowledge of node-to-neighbor relationships, as illustrated on the right
side of Fig. 4. To overcome this limitation, we focus on graph convolution.

In the context of GCNs, convolutional operations are adapted to handle graphs’
irregular and non-grid-like structures. These operations typically involve aggregating
information from neighboring nodes to update the features of a central node. CNNs
are primarily used for grid-like data structures, such as images. They are well-suited
for tasks where spatial relationships between neighboring elements are crucial, as in
image processing. CNNs use convolutional layers to scan small local receptive fields
and learn hierarchical representations. GNNs are designed for graph-structured data,
where edges connect entities (nodes). Graphs can represent various relationships,
such as social networks, citation networks, or molecular structures. GNNs perform
operations that aggregate information from neighboring nodes to update the features
of a central node. CNNs excel in processing grid-like data with spatial dependencies;
GNNss are designed to handle graph-structured data with complex relationships and
dependencies between entities.

Limitation of CNN over GNN
Graph Neural Networks (GNNs) draw inspiration from Convolutional Neural Net-
works (CNNs). Before delving into the intricacies of GNN, it is essential to under-
stand why Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) may not suffice for effectively handling data structured as graphs. As illus-
trated in Fig. 5, Convolutional Neural Networks (CNNs) are designed for data that
exhibits a grid structure, such as images. Conversely, Recurrent Neural Networks
(RNNs) are tailored to sequences, like text.

Typically, we use arrays for storage when working with text data. Likewise, for
image data, matrices are the preferred choice. However, as depicted in Fig. 5, arrays
and matrices fall short when dealing with graph data. In the case of graphs, we require

Fig.4 CNN In Euclidean Space (Left), GNN In Euclidean Space (Right)
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Table 2 Summary of Graph Convolution Network with the technique used, datasets used, and

(2024) 11:18

performance measure (accuracy)

Refs.  Applicationarea  Method applied Dataset A model with Accuracy
several layers
and an activation
Function
[33] Node Classification ~ Graph Convolution  CORA GCN model with2  82.98
(2016) Network layers
ReLU function
[33] Semi-Supervised Graph Convolution  Zachary's Karate GCN model with 2~ 90%
(2017)  Node Classification  Network Club layers
Rel U function
[33] Semi-Supervised Graph Convolution  CORA GCN model with2 ~ 81.5%
(2016)  Node Classification  Network layers
ReLU function
[39] Text Classification GCN for Text Clas- 20NG 2 Layer GCN 0.8634 40.0009
(2019) sification Ohsumed RelU function 0.970740.0010
R52 0.93564+0.0018
R8 0.683640.0056
MR 0.767440.0020
[31] Node Classification  Node Classification  Cora, 4-layer GCN 74.60%
(2019) Citeseer, RelU function 61.40%
Pubmed 86.20%
Reddit 50.51%
[40] Quiz Question Answer-  WIKIHOP Two layers MLP 65.3% to 68.7%
(2018) ing by Reasoning
[41] Node Classification  Node Classification  Cora, 2 Layer GCN 70.3%
(2018) Citeseer, Pubmed RelU function 81.5%
79.0%
[42] Node Classification  Hierarchical graph  Cora, 2 Layer GCN 70.3%
(2019) convolutional Citeseer, Rel U function 81.5%
networks for semi- ~ Pubmed 79.0%
supervised node NELL 73.0%
classification
[43] Traffic prediction Traffic prediction Real-time dataset ~ Message passing 70-75%
(2020) technique + Graph
Convolution
Network
[44] Motion Capture for ~ Graph Convo- COCO dataset Graph Neural 793
(2023)  Sporting Events |utional Neural Network Com-
Networks and bined With High
Single Target Pose Resolution Network
Estimation (HRNET)
[45] Defect Recognition  Deep Graph Con- 9 different dataset ~ Graph Convo- Around 90%
(2023) volutional Neural lutional Neural
Network Network (GCNN)
[46] Flow Prediction Graph Convolu- Société de trans- MLP, 733
(2023) tional Long Short-  portde Laval (STL) ~ CNN, 70.0
Term Memory LSTM, 80.2
Neural Network BNG-Convl- 85.3

Model

STM = bus network
graph convolu-
tional long short-
term memory

a specialized technique known as Graph Convolution. This approach enables deep
neural networks to handle graph-structured data directly, leading to a graph neural
network.

Fig. 5 illustrates that we can employ masking techniques and apply filtering operations
to transform the data into vector form when we have images. Conversely, traditional

Page 10 of 43
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Table 3 Summary of Graph Attention Network with Application area, technique, datasets used, and
performance measure (accuracy)

Refs. Applicationarea Method applied Dataset Layer size and Performance
activation evaluation
function

[47] Node Classification  Graph Attention CORA GAT Method with  76.5%

(2017) Network (GAT) 3 layers
RelU function

[48] Traffic prediction Gated Residual Citation X 77.8%

(2017) Recurrent Graph

Neural Networks
[49] Edge Detection Sparse Graph CORA GAT Method with  82.5%
(2021) Attention Network 1 layer

(GAT) ReLU function

[50] Fault Diagnosis KNN 4 GAT hardware-in-the- X 87.7%

(2021) loop (HIL)

[47] Citation Network GAT Cora Citeseer GAT F1-score

(2017)  Node Classification PubMed 64 hidden features  83.040.7%
(using ReLU) 7254+0.7%

79.0£0.3%

[51] Node-Prediction GAT OGB LeakyRelLU activa- ~ GAT 78.1£0.59

(2021) GAT-v2 tion function GATv2 7854+0.38

[52] Node Embeddings  Signed Graph Epinions LeakyRelLU 0.9293

(2019) Attention Network

(Si-GAT)
[53] Node Classification  Heterogeneous IMDB Random walk- 10.01
(2019)  Task Graph Attention DBLP based methods 84.76
Network ACM 64.39
[54] Node Classification  Hyperbolic Graph ~ Cora Citeseer 8,16,32,64 (i.e,the 0.567
(2021)  Task Attention Network — PubMed Amazon number of hidden 0427
Photo units in GNN 0.359
0.667

[55] Rumor Detection GAT and GRU Weibo and Pheme  Two-layer GAT 97.2%

(2023) dataset having 4 attention-
head to each layer

[56] Disease Prediction  Knowledge Graph ~ Own dataset fivefold cross vali-  84.76

(2022) Attention Network dation with KGAT

masking methods are not applicable when dealing with graph data as input, as shown in
the right image.

Graph neural network

Graph Neural Networks, or GNNSs, are a class of neural networks tailored for handling
data organized in graph structures. Graphs are mathematical representations of nodes
connected by edges, making them ideal for modeling relationships and dependencies in
complex systems. GNNs have the inherent ability to learn and reason about graph-struc-
tured data, enabling diverse applications. In this section, we first explained the passing
mechanism of GNN ("Message Passing Mechanism in Graph Neural Network Section"),
then described graphs related to the structure of graphs, graph types, and graph learning
styles ("Description of GNN Taxonomy" Section).

Message passing mechanism in graph neural network
Graph symmetries are maintained using a GNN, an optimizable transformation on all

graph properties (nodes, edges, and global context) (permutation invariances). Because
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Table 4 Summary of GraphSAGE Network with Application area, technique, datasets used, and
performance measure (accuracy)

Refs. Application Area Method Applied Dataset Accuracy
[48] Citation Network GraphSAGE Citation 77.8%
(2017) Mean- aggregator
GraphSAGE-LSTM aggregator ~ Citation 78.8%
GraphSAGE-pool aggregator ~ Citation 79.8%
[31] Node Classification 4-layer GCN Cora, 32.20%
(2019) Citeseer, PubMed 53.60%
Reddit 47.90%
96.47
[57] Social Network Analysis Based GraphSAGE (GCN) microblogs 53.87%
(2019) on Graph SAGE
[58] Intrusion Detection E-GraphSAGE UNSW-NB15 0.9868
(2021) E-ResGAT CIC-DarkNet 0.8093
CSE-CIC-IDS 0.8774
ToN-loT 0.9384
[59] Data-Driven Node Sampling ~ GraphSAGE PPI 0.813
(2019) Reddit PubMed 0.954
0.898
[60] Underwater Moving Object  GraphSAGE 4 Fish4Knowledge dataset Mean: 98.51%
(2023) Detection Aggregator( Mean, Max and Max: 94.46%
LSTM) LSTM: 98.50%

/

2D- Convolution Neural Network Graph Neural Network

€100t 18 9raph we GaNY parionrm COMOLoN Using N'n si2e mask

1
—J \._.

I Ingt I3 Ima00 W CAN PErioam CONVORION LEiNg N°N Si20 mask

Fig. 5 Convolution can be performed if the input is an image using an n*n mask (Left). Convolution can't be
achieved if the input is a graph using an n*n mask. (Right)

a GNN does not alter the connectivity of the input graph, the output may be character-
ized using the same adjacency list and feature vector count as the input graph. However,
the output graph has updated embeddings because the GNN modified each node, edge,
and global-context representation.

In Fig. 6, circles are nodes, and empty boxes show aggregation of neighbor/adjacent
nodes. The model aggregates messages from A’s local graph neighbors (i.e., B, C, and D).
In turn, the messages coming from neighbors are based on information aggregated from
their respective neighborhoods, and so on. This visualization shows a two-layer version
of a message-passing model. Notice that the computation graph of the GNN forms a
tree structure by unfolding the neighborhood around the target node [17]. Graph neural
networks (GNNs) are neural models that capture the dependence of graphs via message

passing between the nodes of graphs [30].

Page 12 of 43
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Fig. 7 Message passing mechanism in GNN

The message-passing mechanism of Graph Neural Networks is shown in Fig. 7. In this,
we take an input graph with a set of node features X £ R“—(V| and Use this knowledge to
produce node embeddings z,. However, we will also review how the GNN framework may
embed subgraphs and whole graphs.

At each iteration, each node collects information from the neighborhood around it. Each
node embedding has more data from distant reaches of the graph as these iterations pro-
gress. After the first iteration (k=1), each node embedding expressly retains information
from its 1-hop neighborhood, which may be accessed via a path in the length graph 1. [31].
After the second iteration (k=2), each node embedding contains data from its 2-hop neigh-
borhood; generally, after k iterations, each node embedding includes data from its k-hop
setting. The kind of “information” this message passes consists of two main parts: structural
information about the graph (i.e., degree of nodes, etc.), and the other is feature-based.

In the message-passing mechanism of a neural network, each node has its message stored
in the form of feature vectors, and each time, the neighbor updates the information in the
form of the feature vector [1]. This process aggregates the information, which means the
grey node is connected to the blue node. Both features are aggregated and form new feature
vectors by updating the values to include the new message.

HD = UPDATE® (P, AGGREGATE® ({1, v, e Nw) })) (4.1)

N
— UPDATE" ><h< ) m (u)) (4.2)
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Equations 4.1 and 4.2 shows that h denotes the message, u represents the node num-
ber, and k indicates the iteration number. Where AGGREGATE and UPDATE are arbi-
trarily differentiable functions (i.e., neural networks), and mN(u) is the “message,” which
is aggregated from u’s graph neighborhood N(u). We employ superscripts to identify the
embeddings and functions at various message-passing iterations. The AGGREGATE
function receives as input the set of embeddings of the nodes in the u’s graph neighbor-
hood N (u) at each iteration k of the GNN and generates a message. mﬁ,(u). Based on this
aggregated neighborhood information. The update function first UPDATES the message
and then combines the message.mllij(u) with the previous message h;kil) of node, u to
generate the updated message /X

Description of GNN taxonomy
We can see from Fig. 8 below shows that we have divided our GNN taxonomy into 3
parts [30].

1. Graph Structures 2. Graph Types 3. Graph Learning Tasks

Graph structure
The two scenarios shown in Fig. 9 typically present are structural and non-structural.
Applications involving molecular and physical systems, knowledge graphs, and other
objects explicitly state the graph structure in structural contexts.

Graphs are implicit in non-structural situations. As a result, we must first construct
the graph from the current task. For text, we must build a fully connected “a word” graph
and a scene graph for images.

Graph types
There may be more information about nodes and links in complex graph types. Graphs
are typically divided into 5 categories, as shown in Fig. 10.

Directed/undirected graphs A directed graph is characterized by edges with a specific
direction, indicating the flow from one node to another. Conversely, in an undirected
graph, the edges lack a designated direction, allowing nodes to interact bidirectionally. As
illustrated in Fig. 11 (left side), the directed graph exhibits directed edges, while in Fig. 11
(right side), the undirected graph conspicuously lacks directional edges. In undirected
graphs, it’s important to note that each edge can be considered to comprise two directed
edges, allowing for mutual interaction between connected nodes.

Static/dynamic graphs The term “dynamic graph” pertains to a graph in which the prop-
erties or structure of the graph change with time. In dynamic graphs shown in Fig. 12, it
is essential to account for the temporal dimension appropriately. These dynamic graphs
represent time-dependent events, such as the addition and removal of nodes and edges,
typically presented as an ordered sequence or an asynchronous stream.

A noteworthy example of a dynamic graph can be observed in social networks like
Twitter. In such networks, a new node is created each time a new user joins, and
when a user follows another individual, a following edge is established. Furthermore,
when users update their profiles, the respective nodes are also modified, reflecting the
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Graph Structure
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Graph structure is explicit in nature
Applications:
1. Molecules

2. Physical systems
3. Knowledge graphs

Non- Structural Scenarios

Graph structure is implicit in nature.
Applications:

1. Building a fully-connected “word” graph for text
2. Building a scene graph for an image.
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Fig. 8 Graph Neural Network Taxonomy

evolving nature of the graph. It’s worth noting that different deep-learning libraries

handle graph dynamics differently. TensorFlow, for instance, employs a static graph,

eg.
NetFllix Video

005

Applications:
Tidge classification

Link prediction

->{ Graph Level W’—n

eg. Is this molecule a suitable

Applications:
Graph classification,
Graph regression, and

Graph Prediction Graph matching

while PyTorch utilizes a dynamic graph.

Homogeneous/heterogeneous graphs

and one type of edge shown in Fig. 13 (Left). A homogeneous graph is one with the same
type of nodes and edges, such as an online social network with friendship as edges and

nodes representing people. In homogeneous networks, nodes and edges have the same

types.

Homogeneous graphs have only one type of node
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Heterogeneous graphs shown in Fig. 13 (Right) , however, have two or more different
kinds of nodes and edges. A heterogeneous network is an online social network with var-
ious edges between nodes of the ‘person’ type, such as ‘friendship’ and ‘co-worker’ Nodes
and edges in heterogeneous graphs come in several varieties. Types of nodes and edges
play critical functions in heterogeneous networks that require further consideration.

Knowledge graphs An array of triples in the form of (h, r, t) or (s, r, 0) can be repre-
sented as a Knowledge Graph (KG), which is a network of entity nodes and relation-
ship edges, with each triple (h, 1, t) representing a single entity node. The relationship
between an entity’s head (h) and tail (t) is denoted by the r. Knowledge Graph can be
considered a heterogeneous graph from this perspective. The Knowledge Graph visu-
ally depicts several real-world objects and their relationships [32]. It can be used for
many new aspects, including information retrieval, knowledge-guided innovation, and
answering questions [30]. Entities are objects or things that exist in the real world,
including individuals, organizations, places, music tracks, movies, and people. Each
relation type describes a particular relationship between various elements similarly.
We can see from Fig. 14 the Knowledge graph for Mr. Sundar Pichai.

Transductive/inductive graphs In a transductive scenario shown in Fig. 15 (up), the
entire graph is input, the label of the valid data is hidden, and finally, the label for the
correct data is predicted. However, with an inductive graph shown in Fig. 15 (down), we
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Fig. 15 Transductive/Inductive Graphs

also input the entire graph (but only sample to batch), mask the valid data’s label, and
forecast the valuable data’s label. The model must forecast the labels of the given unla-
beled nodes in a transductive context. In the inductive situation, it is possible to infer

new unlabeled nodes from the same distribution.

Transductive Graph:

+ In the transductive approach, the entire graph is provided as input.

+ This method involves concealing the labels of the valid data.
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+ The primary objective is to predict the labels for the valid data.

Inductive Graph:

+ The inductive approach still uses the complete graph, but only a sample within a
batch is considered.

+ A crucial step in this process is masking the labels of the valid data.
+ The key aim here is to make predictions for the labels of the valid data.

Graph learning tasks

We perform three tasks with graphs: node classification, link prediction, and Graph
Classification shown in Fig. 16.
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Node-level task Node-level tasks are primarily concerned with determining the identity
or function of each node within a graph. The core objective of a node-level task is to pre-
dict specific properties associated with individual nodes. For example, a node-level task
in social networks could involve predicting which social group a new member is likely
to join based on their connections and the characteristics of their friends’ memberships.
Node-level tasks are typically used when working with unlabeled data, such as identifying
whether a particular individual is a smoker.

Edge-level task (link prediction) Edge-level tasks revolve around analyzing relationships
between pairs of nodes in a graph. An illustrative application of an edge-level task is
assessing the compatibility or likelihood of a connection between two entities, as seen
in matchmaking or dating apps. Another instance of an edge-level task is evident when
using platforms like Netflix, where the task involves predicting the following video to be

recommended based on viewing history and user preferences.

Graph-level In graph-level tasks, the objective is to make predictions about a charac-
teristic or property that encompasses the entire graph. For example, using a graph-based
representation, one might aim to predict attributes like the olfactory quality of a mol-
ecule or its potential to bind with a disease-associated receptor. The essence of a graph-
level task is to provide predictions that pertain to the graph as a whole. For instance,
when assessing a newly synthesized chemical compound, a graph-level task might seek to
determine whether the molecule has the potential to be an effective drug. The summary
of all three learning tasks are shown in Fig. 17.

GNN models and comparative analysis of GNN models

Graph Neural Network (GNN) models represent a category of neural networks spe-
cially crafted to process data organized in graph structures. They’ve garnered substantial
acclaim across various domains, primarily due to their exceptional capability to grasp
intricate relationships and patterns within graph data. As illustrated in Fig. 18, we’ve out-
lined three distinct GNN models. A comprehensive description of these GNN models,
specifically Graph Convolutional Networks (GCN), Graph Attention Networks (GAT/
GAN), and GraphSAGE models can be found in the reference [33]. In Sect. "GNN mod-
els", we delve into these GNN models’ intricacies; in "Comparative Study of GNN Mod-
els" section, we provide an in-depth analysis that explores their theoretical and practical
aspects.

Graph .
: Graph Attention
Convolutional GNN Models Networks
Networks (GAN)
(GCN)

Graph SAGE

Fig. 18 GNN Models
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GNN models

Graph convolution neural network (GCN)

GCN is one of the basic graph neural network variants. Thomas Kipf and Max Welling
developed GCN networks. Convolution layers in Convolutional Neural Networks are
essentially the same process as ‘convolution’ in GCNs. The input neurons are multiplied
by weights called filters or kernels. The filters act as a sliding window across the image,
allowing CNN to learn information from nearby cells. Weight sharing uses the same fil-
ter within the same layer throughout the image; when CNN is used to identify photos
of cats vs. non-cats, the same filter is employed in the same layer to detect the cat’s nose
and ears. Throughout the image, the same weight (or kernel or filter in CNNs) is applied
[33]. GCNs were first introduced in “Spectral Networks and Deep Locally Connected
Networks on Graphs” [34].

GCNs, which learn features by analyzing neighboring nodes, carry out similar behav-
iors. The primary difference between CNNs and GNNss is that CNNs are made to oper-
ate on regular (Euclidean) ordered data. GNNs, on the other hand, are a generalized
version of CNNs with different numbers of node connections and unordered nodes
(irregular on non-Euclidean structured data). GCNs have been applied to solve many
problems, for example, image classification [35], traffic forecasting [36], recommenda-
tion systems [17], scene graph generation [37], and visual question answering [38].

GCNs are particularly well-suited for tasks that involve data represented as graphs,
such as social networks, citation networks, recommendation systems, and more. These
networks are an extension of traditional CNNs, widely used for tasks involving grid-like
data, such as images. The key idea behind GCNs is to perform convolution operations
on the graph data. This enables them to capture and propagate information through
the nodes in a graph by considering both a node’s features and those of its neighboring
nodes. GCNss typically consist of several layers, each performing convolution and aggre-
gation steps to refine the node representations in the graph. By applying these layers
iteratively, GCNs can capture complex patterns and dependencies within the graph data.

Working of graph convolutional network A Graph Convolutional Network (GCN) is a
type of neural network architecture designed for processing and analyzing graph-struc-
tured data. GCNs work by aggregating and propagating information through the nodes
in a graph. GCN works with the following steps shown in Fig. 19:

1) Initialization:

Each node in the graph is associated with a feature vector. Depending on the appli-
cation, these feature vectors can represent various attributes or characteristics of the
nodes. For example, in a social network, each node might represent a user, and the fea-
tures could include user profile information.

2) Convolution Operation:

The core of a GCN is the convolution operation, which is adapted from convolutional
neural networks (CNNs). It aims to aggregate information from neighboring nodes.
This is done by taking a weighted sum of the feature vectors of neighboring nodes. The
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Fig. 19 Working of GCN

graph’s adjacency matrix determines the weights. The resulting aggregated information

is a new feature vector for each node.
3) Weighted Aggregation:

The graph’s adjacency matrix, typically after normalization, provides weights for the
aggregation process. In this context, for a given node, the features of its neighboring
nodes are scaled by the corresponding values within the adjacency matrix, and the out-
comes are then accumulated. A precise mathematical elucidation of this aggregation
step is described in "Equation of GCN" section.

4) Activation function and learning weights:

The aggregated features are typically passed through an activation function (e.g.,
ReLU) to introduce non-linearity. The weight matrix W used in the aggregation step is
learned during training. This learning process allows the GCN to adapt to the specific
graph and task it is designed for.
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5) Stacking Layers:

GCNes are often used in multiple layers. This allows the network to capture more com-
plex relationships and higher-level features in the graph. The output of one GCN layer
becomes the input for the next, and this process is repeated for a predefined number of

layers.
6) Task-Specific Output:

The final output of the GCN can be used for various graph-based tasks, such as
node classification, link prediction, or graph classification, depending on the specific
application.
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Equation of GCN The Graph Convolutional Network (GCN) is based on a message-
passing mechanism that can be described using mathematical equations. The core
equation of a superficial, first-order GCN layer can be expressed as follows: For a graph
with N nodes, let’s define the following terms:

Equation 5.1 depicts a GCN layer’s design. The normalized graph adjacency matrix
A’ and the nodes feature matrix F serve as the layer’s inputs. The bias vector b and the
weight matrix W are trainable parameters for the layer.

Z = o(A'FW +b) (5.1)

When used with the design matrix, the normalized adjacency matrix effectively
smoothes a node’s feature vector based on the feature vectors of its close graph neigh-
bors. This matrix captures the graph structure. A’ is normalized to make each neigh-
boring node’s contribution proportional to the network’s connectivity.

The layer definition is finished by applying AFW +b to an element-wise non-linear
function, such as ReLU. The downstream node classification task requires deep neural
architectures to learn a complicated hierarchy of node attributes. This layer’s output
matrix Z can be routed into another GCN layer or any other neural network layer to
do this.

Summary of graph convolution neural network (GCN) is shown in Table 2.  Graph attention
network (GAT/GAN)

Graph Attention Network (GAT/GAN) is a new neural network that works with
graph-structured data. It uses masked self-attentional layers to address the shortcom-
ings of past methods that depended on graph convolutions or their approximations.
By stacking layers, the process makes it possible (implicitly) to assign various nodes
in a neighborhood different weights, allowing nodes to focus on the characteristics
of their neighborhoods without having to perform an expensive matrix operation
(like inversion) or rely on prior knowledge of the graph’s structure. GAT concurrently
tackles numerous significant limitations of spectral-based graph neural networks,
making the model suitable for both inductive and transductive applications.

Working of GAT The Graph Attention Network (GAT) is a neural network architec-
ture designed for processing and analyzing graph-structured data shown in Fig. 20.
GATs are a variation of Graph Convolutional Networks (GCNs) that incorporate the
concept of attention mechanisms. GAT/GAN works with the following steps shown
in Fig. 21.

1) Initialization:
As with other graph-based models, GAT starts with nodes in the graph, each asso-

ciated with a feature vector. These features can represent various characteristics of
the nodes.
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2) Self-Attention Mechanism and Attention Computation:

GAT introduces an attention mechanism similar to what is used in sequence-to-
sequence models in natural language processing. The attention mechanism allows
each node to focus on different neighbors when aggregating information. It assigns
different attention coefficients to the neighboring nodes, making the process more
flexible. For each node in the graph, GAT computes attention scores for its neighbor-
ing nodes. These attention scores are based on the features of the central node and its
neighbors. The attention scores are calculated using a weighted sum of the features of

the central node and its neighbors.
3) Weighted Aggregation:

The attention scores determine how much each neighbor’s feature contributes to the
aggregation for the central node. This weighted aggregation is carried out for all neigh-

boring nodes, resulting in a new feature vector for the central node.
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4) Multiple Attention Heads and Output Combination:

GAT often employs multiple attention heads in parallel. Each attention head computes
its attention scores and aggregation results. These multiple attention heads capture dif-
ferent aspects of the relationships in the graph. The outputs from the multiple attention
heads are combined, typically by concatenation or averaging, to create a final feature
vector for each node.

5) Learning Weights and Stacking Layers:

Similar to GCNs, GATs learn weight parameters during training. These weights are
learned to optimize the attention mechanisms and adapt to the specific graph and task.
GATs can be used in multiple layers to capture higher-level features and complex relation-
ships in the graph. The output of one GAT layer becomes the input for the next layer.

The learning weights capture the importance of node relationships and contribute to
information aggregation during the neighborhood aggregation process. The learning pro-
cess in GNNs also relies on backpropagation and optimization algorithms. The stacking of
GNN layers enables the model to capture higher-level abstractions and dependencies in the
graph. Each layer refines the node representations based on information from the previous

layer.
6) Task-Specific Output:

The final output of the GAT can be used for various graph-based tasks, such as node clas-
sification, link prediction, or graph classification, depending on the application.

Equation for GAT GAT’s main distinctive feature is gathering data from the one-hop
neighborhood [30]. A graph convolution operation in GCN produces the normalized sum of
node properties of neighbors. Equation 5.2 shows the Graph attention network, which thH)
defines the current node output, o denotes the non-linearity ReLU function, jeN (i) one hop

neighbor, C; ; normalized vector, W )) weight matrix, and h}(l) denotes the previous node.
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Why is GAT better than GCN? We learned from the Graph Convolutional Network
(GCN) that integrating local graph structure and node-level features results in good
node classification performance. The way GCN aggregates messages, on the other
hand, is structure-dependent, which may limit its use.

How attention coefficients update: the attention layer has 4 parts: [47]

1) A linear transformation: A shared linear transformation is applied to each node in the
following Equation.

2V = wO Y (5.3)
where h is a set of node features. W is the weight matrix. Z is the output layer node.

2) Attention Coefficients: In the GAT paradigm, it is crucial because every node can
now attend to every other node, discarding any structural information. The pair-wise
un-normalized attention score between two neighbors is computed in the next step.
It combines the 'z’ embeddings of the two nodes. Where || stands for concatenation,
a learnable weight vector a(l) is put through a dot product, and a LeakyReLU is used
[1]. Contrary to the dot-product attention utilized in the Transformer model, this
kind of attention is called additive attention. The nodes are subsequently subjected to
self-attention.

ei(jl) = LeakyReLU (a_> o (Zi(l) Il Zj(l))) (5.4)

3) Softmax: We utilize the softmax function to normalize the coefficients over all j val-

ues, improving their comparability across nodes.

O
exp (e.. )

S 5.5)
1) (1) (
2 keN(i)€XP (eik )

4) Aggregation: This process is comparable to GCN. The neighborhood embeddings
are combined and scaled based on the attention scores.
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(+1) O
h =0 Y o z (5.6)
JEN (i)

Summary of graph attention network (GAT) is shown in Table 3. GraphSAGE

GraphSAGE represents a tangible realization of an inductive learning framework shown
in Fig. 22. It exclusively considers training samples linked to the training set’s edges dur-
ing training. This process consists of two main steps: “Sampling” and “Aggregation”” Sub-
sequently, the node representation vector is paired with the vector from the aggregated
model and passed through a fully connected layer with a non-linear activation function. It’s
important to note that each network layer shares a standard aggregator and weight matrix.
Thus, the consideration should be on the number of layers or weight matrices rather than
the number of aggregators. Finally, a normalization step is applied to the layer’s output.

Two major steps:

1. Sample It describes how to sample a large number of neighbors.
2. Aggregator refers to obtaining the neighbor node embedding and then determining
how to collect these embeddings and change your embedding information.

Working of graphSAGE model:

First, initializes the eigenvectors of all nodes in the input graph
For each node, get its sampled neighbor nodes

The aggregation function is used to aggregate the information of neighbor nodes

oW

And combined with embedding, Update the same by a non-linear transformation
embedding Express.
Types of aggregators In the GraphSAGE method, 4 types of Aggregators are used.

1) Simple neighborhood aggregator:
!

k _ k—1
hv =0 Wk Z N(V) +Bkhl’ (5'7)
ueN (v)

2) Mean aggregator

He < oW - MEAN ({WE} U {n = v, e N }) (5.8)
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3) LSTM Aggregator: Applies LSTM to a random permutation of neighbors.
4) Pooling Aggregator: It applies a symmetric vector function and converts adjacent

vectors.
AGGREGATEP™ = max({c (Wpoolhﬁi + b) Vui € N(v) }) (5.9)
Equation of graphSAGE
W =0 ( {Wk -AGG({h’;‘l,VM c N(v)}),Bkh’;*D (5.10)
Here,

Wy, By : is learnable weight matrices.

Wi By = is learnable wight matrices.

H% = x, : initial0— the layer embeddings are equal to node features.
h*—1 = Generalized Aggregation.

z, = hXn: embedding after k layers of neighborhood aggregation.
o— non linearity (ReLU).

Summary of graphSAGE is shown in Table 4. Comparative study of GNN models
Comparison based on practical implementation of GNN models

Table 5 describes the dataset statistics for different datasets used in literature for
graph type of input. The datasets are CORA, Citeseer, and Pubmed. These statistics
provide information about the kind of dataset, the number of nodes and edges, the
number of classes, the number of features, and the label rate for each dataset. These
details are essential for understanding the characteristics and scale of the datasets
used in the context of citation networks. Comparison of the GNN model with equa-
tion in shown in Fig. 23.

Table 6 shows the performance results of different Graph Neural Network (GNN)
models on various datasets. Table 6 provides accuracy scores for other GNN models
on different datasets. Additionally, the time taken for some models to compute results
is indicated in seconds. This information is crucial for evaluating the performance of
these models on specific datasets.

Table 5 Different Dataset Statistics of Citation Network [33]

Dataset Statistics

Datasets CORA Citeseer Pubmed

Type Citation network Citation network Citation network
Nodes 2708 3327 19717

Edges 5429 4732 44338

Classes 7 6 3

Features 1433 3703 500

Label rate 0.052 0.036 0.003
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Table 6 Performance metrics of different models with different datasets [33, 47, 48]

Dataset Model

GCN GAT GraphSAGE
GraphSAGE- GraphSAGE— GraphSAGE— GraphSAGE—
Simple Mean LSTM Pooling
CORA 8154s) 83 76.8 78.7 79.7 80.7
Citeseer 703 (7 9) 72.5 74.2 77.8 788 79.8

Pubmed 79.0 (38 5) 79

Comparison based on theoretical concepts of GNN models are described in Table 7.

Graph neural network applications
Graph construction

Graph Neural Networks (GNNs) have a wide range of applications spanning diverse

domains, which encompass modern recommender systems, computer vision, natural

language processing, program analysis, software mining, bioinformatics, anomaly detec-

tion, and urban intelligence, among others. The fundamental prerequisite for GNN uti-

lization is the transformation or representation of input data into a graph-like structure.

In the realm of graph representation learning, GNNs excel in acquiring essential node or

graph embeddings that serve as a crucial foundation for subsequent tasks [61].

The construction of a graph involves a two-fold process:

1)
2)
3)

4)

Graph creation and

Learning about graph representations

Graph Creation: The generation of graphs is essential for depicting the intricate rela-
tionships embedded within diverse incoming data. With the varied nature of input
data, various applications adopt techniques to create meaningful graphs. This pro-
cess is indispensable for effectively communicating the structural nuances of the
data, ensuring the nodes and edges convey their semantic significance, particularly
tailored to the specific task at hand.

Learning about graph representations: The subsequent phase involves utilizing the
graph expression acquired from the input data. In GNN-based Learning for graph
representations, some studies employ well-established GNN models like Graph-
SAGE, GCN, GAT, and GGNN, which offer versatility for various application tasks.
However, when faced with specific tasks, it may be necessary to customize the GNN
architecture to address particular challenges more effectively.

The different application which is considered a graph

1)

Molecular Graphs: Atoms and electrons serve as the basic building blocks of mat-
ter and molecules, organized in three-dimensional structures. While all particles
interact, we primarily acknowledge a covalent connection between two stable atoms
when they are sufficiently spaced apart. Various atom-to-atom bond configurations
exist, including single and double bonds. This three-dimensional arrangement is con-
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veniently and commonly represented as a graph, with atoms representing nodes and
covalent bonds representing edges [62].

2) Graphs of social networks: These networks are helpful research tools for identifying
trends in the collective behavior of individuals, groups, and organizations. We may
create a graph that represents groupings of people by visualizing individuals as nodes
and their connections as edges [63].

3) Citation networks as graphs: When they publish papers, scientists regularly refer-
ence the work of other scientists. Each manuscript can be visualized as a node in a
graph of these citation networks, with each directed edge denoting a citation from
one publication to another. Additionally, we can include details about each docu-
ment in each node, such as an abstract’s word embedding [64].

4) Within computer vision: We may want to tag certain things in visual scenes. Then,
we can construct graphs by treating these things as nodes and their connections as
edges.

GNNs are used to model data as graphs, allowing for the capture of complex rela-
tionships and dependencies that traditional machine learning models may struggle
to represent. This makes GNNs a valuable tool for tasks where data has an inherent
graph structure or where modeling relationships is crucial for accurate predictions and
analysis.

Graph neural networks (GNNs) applications in different fields

NLP (natural language processing)

a) Document Classification: GNNs can be used to model the relationships between
words or sentences in documents, allowing for improved document classification
and information retrieval.

b) Text Generation: GNNs can assist in generating coherent and contextually relevant
text by capturing dependencies between words or phrases.

c) Question Answering: GNNs can help in question-answering tasks by representing
the relationships between question words and candidate answers within a knowledge
graph.

d) Sentiment Analysis: GNNs can capture contextual information and sentiment
dependencies in text, improving sentiment analysis tasks.

Computer vision

a) Image Segmentation: GNNs can be employed for pixel-level image segmentation
tasks by modeling relationships between adjacent pixels as a graph.

b) Object Detection: GNNs can assist in object detection by capturing contextual infor-
mation and relationships between objects in images.

c) Scene Understanding: GNNs are used for understanding complex scenes and mod-
eling spatial relationships between objects in an image.
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a) Protein-Protein Interaction Prediction: GNNs can be applied to predict interactions

between proteins in biological networks, aiding in drug discovery and understanding

disease mechanisms.

b) Genomic Sequence Analysis: GNNs can model relationships between genes or

genetic sequences, helping in gene expression prediction and sequence classification

tasks.

¢) Drug Discovery: GNNs can be used for drug-target interaction prediction and

molecular property prediction, which is vital in pharmaceutical research.

Table 8 offers a concise overview of various research papers that utilize Graph Neural

Networks (GNNs) in diverse domains, showcasing the applications and contributions of

GNN:ss in each study.

Table 8 Different application areas with their proposed methodology of Graph Neural Networks

Ref

Application Area

Proposed Methodology

GNN Model applied

[58] (2022), [59] (2020)

[67-69]
(2021)

[63], (2021)
[64] (2022)

[72] (2017)
[73] (2020)

[67],(2021)
[68] (2020)

76]
2021)

29]
2023)

(771
(2023)

(28]
(2023)

Recommender Systems

Natural Language Process-
ing

HealthCare
Natural Language Process-
ing

Computer Vision

Anomaly Detection

Traffic Forecasting

HealthCare

Traffic Prediction

User/item representations
Recommendation sys-
tem based on heterogene-
ous features

Text graph transformer for
document classification
Text-Based Relational
Reasoning

Semantic parsing

Data Analysis-Based Agricul-
tural Products Management
Immunization and vaccine
injury

Knowledge Base Comple-
tion of text

Knowledge Graph Align-
ment of text

Image and video under-
standing

3D object detection in a
point cloud

Industrial Internet of Things

Hybrid GCN and branch-
and-bound optimization for
traffic flow forecasting

The configuration of fMRI-
derived networks deter-
mines the effectiveness of
a graph neural network in
discerning patients with
major depressive disorder
through classification

A study focusing on the
prediction of multi-port
ship traffic through the
application of Spatiotempo-
ral Graph Neural Networks

GCN, GAT, GraphSAGE

graph2seq, graph2tree,
graph2graph

GCN

GNN-LSTM

GCN, GAT

GCN, GAN, and GraphSAGE

GCN

GNN (Text based)

GNN
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Table 9 highlights various applications of GNNs in Natural Language Processing,
Computer Vision, and Bioinformatics domains, showcasing how GNN models are
adapted and used for specific tasks within each field.

Future directions of graph neural network

The contribution of the existing literature to GNN principles, models, datasets, applica-
tions, etc., was the main emphasis of this survey. In this section, several potential future
study directions are suggested. Significant challenges have been noted, including unbal-
anced datasets, the effectiveness of current methods, text classification, etc. We have
also looked at the remedies to address these problems. We have suggested future and
advanced directions to address these difficulties regarding domain adaptation, data aug-
mentation, and improved classification. Table 10 displays future directions.

1) Imbalanced Datasets—Limited labeled data, domain-dependent data, and imbal-
anced data are currently issues with available datasets. Transfer learning and domain
adaptation are solutions to these issues.

2) Accuracy of Existing Systems/Models—can utilize deep learning models such as
GCN, GAT, and GraphSAGE approaches to increase the efficiency and precision of
current systems. Additionally, training models on sizable, domain-specific datasets
can enhance performance.

3) Enhancing Text Classification: Text classification poses another significant challenge,
which is effectively addressed by leveraging advanced deep learning methodologies
like graph neural networks, contributing to the improvement of text classification
accuracy and performance.

The above Table 10 describes the research gaps and future directions presented in the
above literature. These research gaps and future directions highlight the challenges and
proposed solutions in the field of text classification and structural analysis.

Table 11 provides an overview of different research papers, their publication years,
the applications they address, the graph structures they use, the graph types, the graph
tasks, and the specific Graph Neural Network (GNN) models utilized in each study.

Conclusions

Graph Neural Networks (GNNs) have witnessed rapid advancements in addressing the
unique challenges presented by data structured as graphs, a domain where conventional
deep learning techniques, originally designed for images and text, often struggle to
provide meaningful insights. GNNs offer a powerful and intuitive approach that finds
broad utility in applications relying on graph structures. This comprehensive survey on
GNNs offers an in-depth analysis covering critical aspects such as GNN fundamentals,
the interplay with convolutional neural networks, GNN message-passing mechanisms,
diverse GNN models, practical use cases, and a forward-looking perspective. Our cen-
tral focus is on elucidating the foundational characteristics of GNNS, a field teeming
with contemporary applications that continually enhance our comprehension and utili-
zation of this technology.
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Table 9 Different Domains with their Tasks in Graph Neural Networks

Refs.

Technology domain

Task

Details

GNN Model applied

[78]
(2021)

[79]
(2022)

(80]
(2023)

Natural Language
Processing

Natural Language
Processing

Natural Language
Processing

Text Sentiment
Analysis

Text Classification

Question Generation

Their innovation
involved introducing a
multi-level graph neu-
ral network (MLGNN)
tailored for text senti-
ment analysis. Their
approach effectively
incorporated both
local and global
features, utilizing node
connection windows
of varying sizes

across different levels.
Additionally, they
seamlessly integrated
a scaled dot-product
attention mechanism
as a means of message
passing within their
method, allowing for
the integration of fea-
tures from individual
word nodes in the
graph

GNNs were chosen
for their aptness in
handling 2D vectors,
which aligns with

the two-dimensional
nature of text data.

In their approach,
Self-Organizing Maps
(SOM) was employed
to determine the clos-
est neighbors within
the graphs, facilitat-
ing the computation
of actual distances
between these neigh-
boring elements

They created a graph
from the input text,
where nodes represent
words or phrases,

and edges show their
relationships. An
auto-encoder model
compresses the graph,
capturing key informa-
tion. This compressed
representation helps
generate context-
relevant questions by
selecting nodes and
edges dynamically

MLGNN
GAT

GNN

Self-Organizing
Maps (For calculating
distance)

Context-Aware Auto-
Encoded Graph Neural
Model
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Table 9 (continued)

Refs. Technology domain

Task

Details

GNN Model applied

(81]-[83]
(2022)

Computer Vision

[67], (2021)
[68] (2020)

Computer Vision

[84] Bioinformatics
(2021)

[85] Bioinformatics
(2022)

Graph Construction

3D object detection

Multispecies Protein
Function Prediction

Link Prediction in Bio-
medical Networks

There are three
methods for graph
construction

1. Segmenting the
image or video frame
into uniform grid
sections, with each
grid section serving
as an individual vertex

within the visual graph

2. Utilizing preproc-
essed structures, like
scene graphs, for
direct vertex represen-
tation

3. Incorporating
semantic information
to group visually simi-
lar pixel features into
the same vertex

Image and video
understanding. 3D
object detection in a
point cloud

DeepGraph Go has 3
Features:

1. InterPro for repre-
sentation vector

2. Multiple graph
convolutional neural
(GCN) layers

3. Multispecies
strategy

1. Leveraging GCN to
extract node-specific
features from both
sequence and struc-
tural data

2. Employing a GCN-
based encoder to
enhance the node
features by capturing
inter-node depend-
encies within the
network effectively
3. Pre-training the
node features using
graph reconstruction
tasks as a foundational
step

GNN

GCN, GAT

DeepGraphGO: A semi-
supervised deep learn-
ing approach that har-
nesses the strengths of
both protein sequence
and network data by
utilizing a graph neural
network (GNN)

Pre-Training Graph
Neural Networks- (PT-
GNN)
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Table 9 (continued)

Refs. Technology domain  Task

Details GNN Model applied

[86] Bioinformatics

(2022)

(87
(2022)

Bioinformatics

Predicting Drug—Pro-
tein Interactions

Predicting Molecular

The network under-
goes optimization
through supervised
signals derived from
the downstream task,
specifically the DPI
prediction. By engag-
ing in information
propagation within the
drug-protein associa-
tion network, a Graph
Neural Network can
grasp network-level
insights encompassing
a variety of drugs and
proteins. This approach
amalgamates network-
level information

with learning-based
techniques

LR-GNN utilizes a
graph convolutional
network (GCN)
encoder to acquire
node embeddings. To
depict the relation-
ships between mol-
ecules, a propagation
rule has been crafted
to encapsulate the
node embeddings at
each GCN-encoder
layer, forming the LR
representation

Bridge Drug—-Protein
Interactions
(Bridge-DPI)

Link Representation
(LR-GNN)

Table 10 A list of research gaps and future research directions

Sr. no. Research gaps Future directions

1 Lack of ready datasets Domain Adaptation
Inconsistent Datasets

2 Inefficient and time-consuming  Here combining, deep learning and machine learning
feature extraction task methods like GNNs to increase classification accuracy
Improving Text Classification

3 Accuracy of Existing Systems/ Deep Learning models such as GCN, GAT, and GraphSAGE

Models
Identification of Type of structure,
i.e., homogenous heterogeneous

The continuous evolution of GNN-based research has underscored the grow-

ing need to address issues related to graph analysis, which we aptly refer to as the

frontiers of GNNSs. In our exploration, we delve into several crucial recent research

domains within the realm of GNNs, encompassing areas like link prediction, graph

generation, and graph categorization, among others.
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Neural Networks with application area, graph structure, type, task, and

model used
Refs. Application Graph Graph type Graph task GNN model used
structure
[88] 1. Recurrent Structural data Static Graph Node Classifica-  Text GCN
(2020) Graph Neural tion RGNN
Networks for
Text Classifica-
tion
[68] 1. Machine Structural data  Static Graph Node & Edge Graph2seq
(2021) translation Level task Graph2tree
2. Natural Graph2graph
language gen-
eration
3. Information
extraction
4. Semantic
parsing
[16] 1. Multi-hop Structural data Heterogeneous  Edge Leveltask ~ GCN
(2019) Reading Com- Graphs
prehension
[89] 1.Edge masking  Structural data ~ Undirected Edge Level task  LSTM+GNN
(2020) Graph
[90] 1. Multi-hop Structural data  Directed Graph ~ Node level task ~ GCN
(2020) reading com-
prehension on
hotpot a Fact
verification on
FEVER
Appendix
See Tables 12 and 13
Table 12 Commonly Used Datasets in this Survey (Related to Graph)
Application Area Datasets Refs.
Citation Networks 1) Pubmed [22,31,47,48]
2) Cora
3) Citeseer
4) NELL
Social Networks 1) Reddit [17,31,52,57,59]
2) Ciao
3) Epinions
4) Microblogs

Table 13 Python Libraries for Graph Computing

Sr.No

Python library

GitHub Link

[ N N O

PyTorch Geometric
Deep Graph Library
GraphVite

Plato

Paddle graph learning

https://github.com/pyg-team/pytorch_geometric

https//www.dgl.ai
https://graphvite.io

https://github.com/baskerville/plato
https://github.com/PaddlePaddle/PGL
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Abbreviations

GNN  Graph Neural Network

GCN  Graph Convolution Network
GAT  Graph Attention Networks
NLP Natural Language Processing
GNN  Graph Neural Network

CNN  Convolution Neural Networks
RNN  Recurrent Neural Networks
ML Machine Learning

DL Deep Learning

KG Knowledge Graph
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